Abstract

Nanowire-induced SiN photonic crystal (PhC) nanocavities specifically designed for the ultra-violet and visible range are investigated by three-dimensional finite-difference time-domain calculations. As opposed to their silicon PhC counterpart, we find that the formation of nanowire-induced two-dimensional (2D) SiN PhC nanocavities is more challenging because of the low refractive index of SiN. We thus discuss optimization strategies to circumvent such difficulties and we investigate the influence of critical design parameters such as PhC geometry, as well as nanowire geometry and position. We also propose a novel nanowire-induced cavity design based on one-dimensional (1D) nanobeam PhCs. We finally report on nanowire-induced nanocavity designs in 1D (resp. 2D) PhCs presenting quality factors as high as Qc = 5.1 x 104 (resp. Qc = 2.5 x 104 with a mode volume Vm=1.8(λ/nrNW)3 (resp. Vm=5.1(λ/nrNW)3), which show good prospects for light-matter interaction in the near-ultraviolet and visible ranges.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings

Eiichi Kuramochi, Hideaki Taniyama, Takasumi Tanabe, Kohei Kawasaki, Young-Geun Roh, and Masaya Notomi
Opt. Express 18(15) 15859-15869 (2010)

High-Q design of semiconductor-based ultrasmall photonic crystal nanocavity

Masahiro Nomura, Katsuaki Tanabe, Satoshi Iwamoto, and Yasuhiko Arakawa
Opt. Express 18(8) 8144-8150 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nat. Mater. 13(3), 279–285 (2014).
    [Crossref] [PubMed]
  2. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]
  3. T. P. H. Sidiropoulos, R. Röder, S. Geburt, O. Hess, S. A. Maier, C. Ronning, and R. F. Oulton, “Ultrafast plasmonic nanowire lasers near the surface plasmon frequency,” Nat. Phys. 10(11), 870–876 (2014).
    [Crossref]
  4. J. Ho, J. Tatebayashi, S. Sergent, C. F. Fong, Y. Ota, S. Iwamoto, and Y. Arakawa, “A NW-based plasmonic quantum dot laser,” Nano Lett. 16(4), 2845–2850 (2016).
    [Crossref] [PubMed]
  5. J. Heo, W. Guo, and P. Bhattacharya, “Monolithic single GaN NW laser with PhC microcavity on silicon,” Appl. Phys. Lett. 98, 021110 (2011).
    [Crossref]
  6. C. E. Wilhelm, M. Iqbal Bakti Utama, Q. Xiong, C. Soci, G. Lehoucq, D. Dolfi, A. De Rossi, and S. Combrié, “Broadband tunable hybrid PhC-NW light emitter,” arXiv:1509.08314 (2015).
  7. Y. Zhang and M. Lončar, “Ultra-high quality factor optical resonators based on semiconductor nanowires,” Opt. Express 16(22), 17400–17409 (2008).
    [Crossref] [PubMed]
  8. M. Danang Birowosuto, A. Yokoo, H. Taniyama, E. Kuramochi, M. Takiguchi, and M. Notomi, “Design for ultrahigh-Q position-controlled nanocavities of single semiconductor nanowires in two-dimensional photonic crystals,” J. Appl. Phys. 112(11), 113106 (2012).
    [Crossref]
  9. M. Khan, T. Babinec, M. W. McCutcheon, P. Deotare, and M. Lončar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett. 36(3), 421–423 (2011).
    [Crossref] [PubMed]
  10. M. Barth, N. Nüsse, B. Löchel, and O. Benson, “Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity,” Opt. Lett. 34(7), 1108–1110 (2009).
    [Crossref] [PubMed]
  11. M. W. McCutcheon and M. Lončar, “Design of a silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16(23), 19136–19145 (2008).
    [Crossref] [PubMed]
  12. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
    [Crossref]
  13. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q PhC nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
    [Crossref]
  14. A. C. Bedoya, C. Monat, P. Domachuk, C. Grillet, and B. J. Eggleton, “Measuring the dispersive properties of liquids using a microinterferometer,” Appl. Opt. 50(16), 2408–2412 (2011).
    [Crossref] [PubMed]
  15. A. Casas-Bedoya, C. Husko, C. Monat, C. Grillet, N. Gutman, P. Domachuk, and B. J. Eggleton, “Slow-light dispersion engineering of photonic crystal waveguides using selective microfluidic infiltration,” Opt. Lett. 37(20), 4215–4217 (2012).
    [Crossref] [PubMed]
  16. M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16(15), 11095–11102 (2008).
    [Crossref] [PubMed]
  17. Q. Quan and M. Lončar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
    [Crossref] [PubMed]
  18. C. Wang, Q. Quan, S. Kita, Y. Li, and M. Lončar, “Single nanoparticle detection with slot-mode photonic crystal cavities,” Appl. Phys. Lett. 106(26), 261105 (2015).
    [Crossref]
  19. I. Mukherjee, G. Hajisalem, and R. Gordon, “One-step integration of metal nanoparticle in photonic crystal nanobeam cavity,” Opt. Express 19(23), 22462–22469 (2011).
    [Crossref] [PubMed]
  20. S. Sergent, M. Arita, S. Kako, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-Q AlN photonic crystal nanobeam cavities fabricated by layer transfer,” Appl. Phys. Lett. 101(10), 101106 (2012).
    [Crossref]
  21. D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100(19), 191104 (2012).
    [Crossref]
  22. B. J. M. Hausmann, M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmer, and M. Lončar, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Diamond Related Materials 19, 621 (2010).
    [Crossref]
  23. P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single crystal diamond,” Diam. Related Mater. 15, 1614 (2006).
  24. K. A. Bertness, N. A. Sanford, and A. V. Davydov, “GaN nanowires grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 17(4), 847–858 (2011) .
    [Crossref]
  25. B. Damilano, S. Vezian, J. Brault, B. Alloing, and J. Massies, “GaN nanowires grown by molecular beam epitaxy,” Nano Lett. 16, 1863 (2016).
    [Crossref] [PubMed]

2016 (2)

J. Ho, J. Tatebayashi, S. Sergent, C. F. Fong, Y. Ota, S. Iwamoto, and Y. Arakawa, “A NW-based plasmonic quantum dot laser,” Nano Lett. 16(4), 2845–2850 (2016).
[Crossref] [PubMed]

B. Damilano, S. Vezian, J. Brault, B. Alloing, and J. Massies, “GaN nanowires grown by molecular beam epitaxy,” Nano Lett. 16, 1863 (2016).
[Crossref] [PubMed]

2015 (1)

C. Wang, Q. Quan, S. Kita, Y. Li, and M. Lončar, “Single nanoparticle detection with slot-mode photonic crystal cavities,” Appl. Phys. Lett. 106(26), 261105 (2015).
[Crossref]

2014 (2)

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nat. Mater. 13(3), 279–285 (2014).
[Crossref] [PubMed]

T. P. H. Sidiropoulos, R. Röder, S. Geburt, O. Hess, S. A. Maier, C. Ronning, and R. F. Oulton, “Ultrafast plasmonic nanowire lasers near the surface plasmon frequency,” Nat. Phys. 10(11), 870–876 (2014).
[Crossref]

2012 (4)

M. Danang Birowosuto, A. Yokoo, H. Taniyama, E. Kuramochi, M. Takiguchi, and M. Notomi, “Design for ultrahigh-Q position-controlled nanocavities of single semiconductor nanowires in two-dimensional photonic crystals,” J. Appl. Phys. 112(11), 113106 (2012).
[Crossref]

S. Sergent, M. Arita, S. Kako, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-Q AlN photonic crystal nanobeam cavities fabricated by layer transfer,” Appl. Phys. Lett. 101(10), 101106 (2012).
[Crossref]

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100(19), 191104 (2012).
[Crossref]

A. Casas-Bedoya, C. Husko, C. Monat, C. Grillet, N. Gutman, P. Domachuk, and B. J. Eggleton, “Slow-light dispersion engineering of photonic crystal waveguides using selective microfluidic infiltration,” Opt. Lett. 37(20), 4215–4217 (2012).
[Crossref] [PubMed]

2011 (6)

2010 (1)

B. J. M. Hausmann, M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmer, and M. Lončar, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Diamond Related Materials 19, 621 (2010).
[Crossref]

2009 (2)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

M. Barth, N. Nüsse, B. Löchel, and O. Benson, “Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity,” Opt. Lett. 34(7), 1108–1110 (2009).
[Crossref] [PubMed]

2008 (3)

2006 (2)

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single crystal diamond,” Diam. Related Mater. 15, 1614 (2006).

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q PhC nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

2005 (1)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Akahane, Y.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Alloing, B.

B. Damilano, S. Vezian, J. Brault, B. Alloing, and J. Massies, “GaN nanowires grown by molecular beam epitaxy,” Nano Lett. 16, 1863 (2016).
[Crossref] [PubMed]

Arakawa, Y.

J. Ho, J. Tatebayashi, S. Sergent, C. F. Fong, Y. Ota, S. Iwamoto, and Y. Arakawa, “A NW-based plasmonic quantum dot laser,” Nano Lett. 16(4), 2845–2850 (2016).
[Crossref] [PubMed]

S. Sergent, M. Arita, S. Kako, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-Q AlN photonic crystal nanobeam cavities fabricated by layer transfer,” Appl. Phys. Lett. 101(10), 101106 (2012).
[Crossref]

Arita, M.

S. Sergent, M. Arita, S. Kako, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-Q AlN photonic crystal nanobeam cavities fabricated by layer transfer,” Appl. Phys. Lett. 101(10), 101106 (2012).
[Crossref]

Asano, T.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Babinec, T.

Babinec, T. M.

B. J. M. Hausmann, M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmer, and M. Lončar, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Diamond Related Materials 19, 621 (2010).
[Crossref]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Barth, M.

Bedoya, A. C.

Benson, O.

Bertness, K. A.

K. A. Bertness, N. A. Sanford, and A. V. Davydov, “GaN nanowires grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 17(4), 847–858 (2011) .
[Crossref]

Bhattacharya, P.

J. Heo, W. Guo, and P. Bhattacharya, “Monolithic single GaN NW laser with PhC microcavity on silicon,” Appl. Phys. Lett. 98, 021110 (2011).
[Crossref]

Birowosuto, M. D.

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nat. Mater. 13(3), 279–285 (2014).
[Crossref] [PubMed]

Boucaud, P.

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100(19), 191104 (2012).
[Crossref]

Brault, J.

B. Damilano, S. Vezian, J. Brault, B. Alloing, and J. Massies, “GaN nanowires grown by molecular beam epitaxy,” Nano Lett. 16, 1863 (2016).
[Crossref] [PubMed]

Brimont, C.

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100(19), 191104 (2012).
[Crossref]

Casas-Bedoya, A.

Checoury, X.

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100(19), 191104 (2012).
[Crossref]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Damilano, B.

B. Damilano, S. Vezian, J. Brault, B. Alloing, and J. Massies, “GaN nanowires grown by molecular beam epitaxy,” Nano Lett. 16, 1863 (2016).
[Crossref] [PubMed]

Danang Birowosuto, M.

M. Danang Birowosuto, A. Yokoo, H. Taniyama, E. Kuramochi, M. Takiguchi, and M. Notomi, “Design for ultrahigh-Q position-controlled nanocavities of single semiconductor nanowires in two-dimensional photonic crystals,” J. Appl. Phys. 112(11), 113106 (2012).
[Crossref]

David, S.

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100(19), 191104 (2012).
[Crossref]

Davydov, A. V.

K. A. Bertness, N. A. Sanford, and A. V. Davydov, “GaN nanowires grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 17(4), 847–858 (2011) .
[Crossref]

Deotare, P.

Domachuk, P.

Duboz, J. Y.

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100(19), 191104 (2012).
[Crossref]

Eggleton, B. J.

Fong, C. F.

J. Ho, J. Tatebayashi, S. Sergent, C. F. Fong, Y. Ota, S. Iwamoto, and Y. Arakawa, “A NW-based plasmonic quantum dot laser,” Nano Lett. 16(4), 2845–2850 (2016).
[Crossref] [PubMed]

Gayral, B.

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100(19), 191104 (2012).
[Crossref]

Geburt, S.

T. P. H. Sidiropoulos, R. Röder, S. Geburt, O. Hess, S. A. Maier, C. Ronning, and R. F. Oulton, “Ultrafast plasmonic nanowire lasers near the surface plasmon frequency,” Nat. Phys. 10(11), 870–876 (2014).
[Crossref]

Gibson, B. C.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single crystal diamond,” Diam. Related Mater. 15, 1614 (2006).

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Gordon, R.

Greentree, A. D.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single crystal diamond,” Diam. Related Mater. 15, 1614 (2006).

Grillet, C.

Guillet, T.

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100(19), 191104 (2012).
[Crossref]

Guo, W.

J. Heo, W. Guo, and P. Bhattacharya, “Monolithic single GaN NW laser with PhC microcavity on silicon,” Appl. Phys. Lett. 98, 021110 (2011).
[Crossref]

Gutman, N.

Hajisalem, G.

Hausmann, B. J. M.

B. J. M. Hausmann, M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmer, and M. Lončar, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Diamond Related Materials 19, 621 (2010).
[Crossref]

Hemmer, P. R.

B. J. M. Hausmann, M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmer, and M. Lončar, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Diamond Related Materials 19, 621 (2010).
[Crossref]

Heo, J.

J. Heo, W. Guo, and P. Bhattacharya, “Monolithic single GaN NW laser with PhC microcavity on silicon,” Appl. Phys. Lett. 98, 021110 (2011).
[Crossref]

Hess, O.

T. P. H. Sidiropoulos, R. Röder, S. Geburt, O. Hess, S. A. Maier, C. Ronning, and R. F. Oulton, “Ultrafast plasmonic nanowire lasers near the surface plasmon frequency,” Nat. Phys. 10(11), 870–876 (2014).
[Crossref]

Ho, J.

J. Ho, J. Tatebayashi, S. Sergent, C. F. Fong, Y. Ota, S. Iwamoto, and Y. Arakawa, “A NW-based plasmonic quantum dot laser,” Nano Lett. 16(4), 2845–2850 (2016).
[Crossref] [PubMed]

Huntington, S. T.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single crystal diamond,” Diam. Related Mater. 15, 1614 (2006).

Husko, C.

Iwamoto, S.

J. Ho, J. Tatebayashi, S. Sergent, C. F. Fong, Y. Ota, S. Iwamoto, and Y. Arakawa, “A NW-based plasmonic quantum dot laser,” Nano Lett. 16(4), 2845–2850 (2016).
[Crossref] [PubMed]

S. Sergent, M. Arita, S. Kako, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-Q AlN photonic crystal nanobeam cavities fabricated by layer transfer,” Appl. Phys. Lett. 101(10), 101106 (2012).
[Crossref]

Jamieson, D. N.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single crystal diamond,” Diam. Related Mater. 15, 1614 (2006).

Kako, S.

S. Sergent, M. Arita, S. Kako, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-Q AlN photonic crystal nanobeam cavities fabricated by layer transfer,” Appl. Phys. Lett. 101(10), 101106 (2012).
[Crossref]

Khan, M.

M. Khan, T. Babinec, M. W. McCutcheon, P. Deotare, and M. Lončar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett. 36(3), 421–423 (2011).
[Crossref] [PubMed]

B. J. M. Hausmann, M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmer, and M. Lončar, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Diamond Related Materials 19, 621 (2010).
[Crossref]

Kita, S.

C. Wang, Q. Quan, S. Kita, Y. Li, and M. Lončar, “Single nanoparticle detection with slot-mode photonic crystal cavities,” Appl. Phys. Lett. 106(26), 261105 (2015).
[Crossref]

Kuramochi, E.

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nat. Mater. 13(3), 279–285 (2014).
[Crossref] [PubMed]

M. Danang Birowosuto, A. Yokoo, H. Taniyama, E. Kuramochi, M. Takiguchi, and M. Notomi, “Design for ultrahigh-Q position-controlled nanocavities of single semiconductor nanowires in two-dimensional photonic crystals,” J. Appl. Phys. 112(11), 113106 (2012).
[Crossref]

M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16(15), 11095–11102 (2008).
[Crossref] [PubMed]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q PhC nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Li, Y.

C. Wang, Q. Quan, S. Kita, Y. Li, and M. Lončar, “Single nanoparticle detection with slot-mode photonic crystal cavities,” Appl. Phys. Lett. 106(26), 261105 (2015).
[Crossref]

Löchel, B.

Loncar, M.

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Maier, S. A.

T. P. H. Sidiropoulos, R. Röder, S. Geburt, O. Hess, S. A. Maier, C. Ronning, and R. F. Oulton, “Ultrafast plasmonic nanowire lasers near the surface plasmon frequency,” Nat. Phys. 10(11), 870–876 (2014).
[Crossref]

Martinick, K.

B. J. M. Hausmann, M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmer, and M. Lončar, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Diamond Related Materials 19, 621 (2010).
[Crossref]

Massies, J.

B. Damilano, S. Vezian, J. Brault, B. Alloing, and J. Massies, “GaN nanowires grown by molecular beam epitaxy,” Nano Lett. 16, 1863 (2016).
[Crossref] [PubMed]

McCutcheon, M.

B. J. M. Hausmann, M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmer, and M. Lončar, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Diamond Related Materials 19, 621 (2010).
[Crossref]

McCutcheon, M. W.

Mexis, M.

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100(19), 191104 (2012).
[Crossref]

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q PhC nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Monat, C.

Moore, D.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single crystal diamond,” Diam. Related Mater. 15, 1614 (2006).

Mukherjee, I.

Néel, D.

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100(19), 191104 (2012).
[Crossref]

Noda, S.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Notomi, M.

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nat. Mater. 13(3), 279–285 (2014).
[Crossref] [PubMed]

M. Danang Birowosuto, A. Yokoo, H. Taniyama, E. Kuramochi, M. Takiguchi, and M. Notomi, “Design for ultrahigh-Q position-controlled nanocavities of single semiconductor nanowires in two-dimensional photonic crystals,” J. Appl. Phys. 112(11), 113106 (2012).
[Crossref]

M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16(15), 11095–11102 (2008).
[Crossref] [PubMed]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q PhC nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Nüsse, N.

Olivero, P.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single crystal diamond,” Diam. Related Mater. 15, 1614 (2006).

Ota, Y.

J. Ho, J. Tatebayashi, S. Sergent, C. F. Fong, Y. Ota, S. Iwamoto, and Y. Arakawa, “A NW-based plasmonic quantum dot laser,” Nano Lett. 16(4), 2845–2850 (2016).
[Crossref] [PubMed]

Oulton, R. F.

T. P. H. Sidiropoulos, R. Röder, S. Geburt, O. Hess, S. A. Maier, C. Ronning, and R. F. Oulton, “Ultrafast plasmonic nanowire lasers near the surface plasmon frequency,” Nat. Phys. 10(11), 870–876 (2014).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Prawer, S.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single crystal diamond,” Diam. Related Mater. 15, 1614 (2006).

Quan, Q.

C. Wang, Q. Quan, S. Kita, Y. Li, and M. Lončar, “Single nanoparticle detection with slot-mode photonic crystal cavities,” Appl. Phys. Lett. 106(26), 261105 (2015).
[Crossref]

Q. Quan and M. Lončar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

Rabeau, J. R.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single crystal diamond,” Diam. Related Mater. 15, 1614 (2006).

Rashid, M. J.

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100(19), 191104 (2012).
[Crossref]

Reichart, P.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single crystal diamond,” Diam. Related Mater. 15, 1614 (2006).

Röder, R.

T. P. H. Sidiropoulos, R. Röder, S. Geburt, O. Hess, S. A. Maier, C. Ronning, and R. F. Oulton, “Ultrafast plasmonic nanowire lasers near the surface plasmon frequency,” Nat. Phys. 10(11), 870–876 (2014).
[Crossref]

Ronning, C.

T. P. H. Sidiropoulos, R. Röder, S. Geburt, O. Hess, S. A. Maier, C. Ronning, and R. F. Oulton, “Ultrafast plasmonic nanowire lasers near the surface plasmon frequency,” Nat. Phys. 10(11), 870–876 (2014).
[Crossref]

Rubanov, S.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single crystal diamond,” Diam. Related Mater. 15, 1614 (2006).

Salzman, J.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single crystal diamond,” Diam. Related Mater. 15, 1614 (2006).

Sam-Giao, D.

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100(19), 191104 (2012).
[Crossref]

Sanford, N. A.

K. A. Bertness, N. A. Sanford, and A. V. Davydov, “GaN nanowires grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 17(4), 847–858 (2011) .
[Crossref]

Semond, F.

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100(19), 191104 (2012).
[Crossref]

Sergent, S.

J. Ho, J. Tatebayashi, S. Sergent, C. F. Fong, Y. Ota, S. Iwamoto, and Y. Arakawa, “A NW-based plasmonic quantum dot laser,” Nano Lett. 16(4), 2845–2850 (2016).
[Crossref] [PubMed]

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100(19), 191104 (2012).
[Crossref]

S. Sergent, M. Arita, S. Kako, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-Q AlN photonic crystal nanobeam cavities fabricated by layer transfer,” Appl. Phys. Lett. 101(10), 101106 (2012).
[Crossref]

Shinya, A.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q PhC nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Sidiropoulos, T. P. H.

T. P. H. Sidiropoulos, R. Röder, S. Geburt, O. Hess, S. A. Maier, C. Ronning, and R. F. Oulton, “Ultrafast plasmonic nanowire lasers near the surface plasmon frequency,” Nat. Phys. 10(11), 870–876 (2014).
[Crossref]

Song, B.-S.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Takiguchi, M.

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nat. Mater. 13(3), 279–285 (2014).
[Crossref] [PubMed]

M. Danang Birowosuto, A. Yokoo, H. Taniyama, E. Kuramochi, M. Takiguchi, and M. Notomi, “Design for ultrahigh-Q position-controlled nanocavities of single semiconductor nanowires in two-dimensional photonic crystals,” J. Appl. Phys. 112(11), 113106 (2012).
[Crossref]

Tanabe, K.

S. Sergent, M. Arita, S. Kako, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-Q AlN photonic crystal nanobeam cavities fabricated by layer transfer,” Appl. Phys. Lett. 101(10), 101106 (2012).
[Crossref]

Tanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q PhC nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Taniyama, H.

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nat. Mater. 13(3), 279–285 (2014).
[Crossref] [PubMed]

M. Danang Birowosuto, A. Yokoo, H. Taniyama, E. Kuramochi, M. Takiguchi, and M. Notomi, “Design for ultrahigh-Q position-controlled nanocavities of single semiconductor nanowires in two-dimensional photonic crystals,” J. Appl. Phys. 112(11), 113106 (2012).
[Crossref]

M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16(15), 11095–11102 (2008).
[Crossref] [PubMed]

Tatebayashi, J.

J. Ho, J. Tatebayashi, S. Sergent, C. F. Fong, Y. Ota, S. Iwamoto, and Y. Arakawa, “A NW-based plasmonic quantum dot laser,” Nano Lett. 16(4), 2845–2850 (2016).
[Crossref] [PubMed]

Tateno, K.

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nat. Mater. 13(3), 279–285 (2014).
[Crossref] [PubMed]

Vezian, S.

B. Damilano, S. Vezian, J. Brault, B. Alloing, and J. Massies, “GaN nanowires grown by molecular beam epitaxy,” Nano Lett. 16, 1863 (2016).
[Crossref] [PubMed]

Wang, C.

C. Wang, Q. Quan, S. Kita, Y. Li, and M. Lončar, “Single nanoparticle detection with slot-mode photonic crystal cavities,” Appl. Phys. Lett. 106(26), 261105 (2015).
[Crossref]

Watanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q PhC nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Yokoo, A.

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nat. Mater. 13(3), 279–285 (2014).
[Crossref] [PubMed]

M. Danang Birowosuto, A. Yokoo, H. Taniyama, E. Kuramochi, M. Takiguchi, and M. Notomi, “Design for ultrahigh-Q position-controlled nanocavities of single semiconductor nanowires in two-dimensional photonic crystals,” J. Appl. Phys. 112(11), 113106 (2012).
[Crossref]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhang, G.

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nat. Mater. 13(3), 279–285 (2014).
[Crossref] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhang, Y.

B. J. M. Hausmann, M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmer, and M. Lončar, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Diamond Related Materials 19, 621 (2010).
[Crossref]

Y. Zhang and M. Lončar, “Ultra-high quality factor optical resonators based on semiconductor nanowires,” Opt. Express 16(22), 17400–17409 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q PhC nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

J. Heo, W. Guo, and P. Bhattacharya, “Monolithic single GaN NW laser with PhC microcavity on silicon,” Appl. Phys. Lett. 98, 021110 (2011).
[Crossref]

C. Wang, Q. Quan, S. Kita, Y. Li, and M. Lončar, “Single nanoparticle detection with slot-mode photonic crystal cavities,” Appl. Phys. Lett. 106(26), 261105 (2015).
[Crossref]

S. Sergent, M. Arita, S. Kako, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-Q AlN photonic crystal nanobeam cavities fabricated by layer transfer,” Appl. Phys. Lett. 101(10), 101106 (2012).
[Crossref]

D. Sam-Giao, D. Néel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett. 100(19), 191104 (2012).
[Crossref]

Diam. Related Mater. (1)

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single crystal diamond,” Diam. Related Mater. 15, 1614 (2006).

Diamond Related Materials (1)

B. J. M. Hausmann, M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmer, and M. Lončar, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Diamond Related Materials 19, 621 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. A. Bertness, N. A. Sanford, and A. V. Davydov, “GaN nanowires grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 17(4), 847–858 (2011) .
[Crossref]

J. Appl. Phys. (1)

M. Danang Birowosuto, A. Yokoo, H. Taniyama, E. Kuramochi, M. Takiguchi, and M. Notomi, “Design for ultrahigh-Q position-controlled nanocavities of single semiconductor nanowires in two-dimensional photonic crystals,” J. Appl. Phys. 112(11), 113106 (2012).
[Crossref]

Nano Lett. (2)

J. Ho, J. Tatebayashi, S. Sergent, C. F. Fong, Y. Ota, S. Iwamoto, and Y. Arakawa, “A NW-based plasmonic quantum dot laser,” Nano Lett. 16(4), 2845–2850 (2016).
[Crossref] [PubMed]

B. Damilano, S. Vezian, J. Brault, B. Alloing, and J. Massies, “GaN nanowires grown by molecular beam epitaxy,” Nano Lett. 16, 1863 (2016).
[Crossref] [PubMed]

Nat. Mater. (2)

M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform,” Nat. Mater. 13(3), 279–285 (2014).
[Crossref] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Nat. Phys. (1)

T. P. H. Sidiropoulos, R. Röder, S. Geburt, O. Hess, S. A. Maier, C. Ronning, and R. F. Oulton, “Ultrafast plasmonic nanowire lasers near the surface plasmon frequency,” Nat. Phys. 10(11), 870–876 (2014).
[Crossref]

Nature (1)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Other (1)

C. E. Wilhelm, M. Iqbal Bakti Utama, Q. Xiong, C. Soci, G. Lehoucq, D. Dolfi, A. De Rossi, and S. Combrié, “Broadband tunable hybrid PhC-NW light emitter,” arXiv:1509.08314 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic view of a grooved 2D PhC embedding a single NW. (b) Representation of the structural parameters of the NW-induced 2D PhC cavity. (c) Band-diagrams of a PhC slab, a grooved PhC waveguide ( n r core =1.0 ) and a NW PhC waveguide ( n r core =2.4 ) as calculated by 3D-FDTD for =a , r=0.25a and h core = w core =0.45a . Insets represent the calculated structures. The white dashed lines correspond to the light line. (d) Representation of the band diagram as a function of z for the 2D PhC structure shown in (a) and reproduced in the bottom inset: the dashed green (resp. purple) line represents the edge of the mode guided in a line-defect PhC with n r core =1.0 (resp. n r core =2.4 ). (e) Edge of the mode guided in a PhC waveguide as a function of the core refractive index, calculated by 3D-FDTD for w WG =0.85 w 0 and h core = w core =0.45a . (f) Edge of the guided modes as a function of the core width w core for a given height h core =0.45a : open circles correspond to n r core =1 , and closed circles correspond to n r core =2.4 . (g) Edge of the guided modes as a function of the waveguide width w WG for h core = w core =0.45a . (h) Edge of the guided mode as a function of the slab thickness for w WG =0.85 w 0 .

Fig. 2
Fig. 2

(a) Magnetic and electric field xz cross-sections of the fundamental NW-induced cavity mode obtained for a square-section NW, L NW =17.5a , w core = h core =0.45a , n r NW =2.4 and n r barrier = n r groove =1 (design #3). For this mode, a/λ=0.391 , Q c =2.5× 10 4 and V m =5.1 (λ/ n r NW ) 3 . (b) Cavity Q c   and V m as a function of the NW length (designs #1 to #4). Other parameters are same as in (a). (c) Cavity Q c   and V m as a function of the barrier refractive index and for n r NW =2.4 and L NW =17.5a (designs #3 and #5 to #15). The vertical dashed line highlights the NW refractive index. Other parameters are same as in (a). (d) Cavity Q c   and V m as a function of the core width and for h NW = h groove =0.45a and n r barrier =1 (designs #3 and #16 to #22). Other parameters are same as in (c).

Fig. 3
Fig. 3

(a) xy section of the normalized electric field x and z components for design #3 investigated in Fig. 2(a). a/λ=0.391 , Q c =2.5× 10 4 and V m =5.1 (λ/ n r NW ) 3 . (b) Same as (a) with w core =0.25a (design #20). a/λ=0.394 , Q c =2.1× 10 4 and V m =6.8 (λ/ n r NW ) 3 . (c) Same as (a) for a circular NW section (design #23). a/λ=0.397 , Q c =3.1× 10 4 and V m =6.6 (λ/ n r NW ) 3 . Lower frames show barrier and cavity cross-sections in the xy plane.

Fig. 5
Fig. 5

(a) Schematic view of a grooved 1D PhC embedding a single NW. (b) Representation of the structural parameters of the NW-induced 1D PhC cavity. (c) Representation of the PBG as a function of z for the 1D PhC structure shown in (a) and reproduced in the bottom inset. (d) Upper and lower edges of the groove PBG (open circles) and lowest guided mode of the NW PhC (closed circles) as a function of w core for the following parameters: t=0.67a , w NB =3a , d x =0.75w , d z =0.25a , a rectangular NW section and h NW = h groove =0.6a . The left (resp. right) inset shows the magnetic field | H y | of the grooved nanobeam with (resp. without) an embedded NW and for w core =0.6a . (e) Same as (d) as a function of the slab thickness t and for h core = w core =0.6a . (f) Same as (e) as a function of w NB and for t=0.67a .

Fig. 6
Fig. 6

(a) Magnetic and electric field xz cross-sections of the fundamental NW-induced cavity mode obtained for a rectangular section NW, L NW =20.5a , w core =0.4a , h core =0.6a , w NB =3a , d x =0.83w , d z =0.25a , t=0.67a (design #33). For this mode, a/λ=0.406 , Q c =1.4× 10 4 and V m =2.6 (λ/ n r NW ) 3 . (b) Cavity Q c and V m as a function of the core width (designs #33 to #36). Other parameters are same as in (a). (c) Cavity Q c and V m as a function of the NW length (design #33 and #37 to #39). Other parameters are same as in (a).

Fig. 7
Fig. 7

(a) Electric field xz cross-sections of the fundamental NW-induced cavity mode featured in Fig. 6(a) (design #33). (b) Electric field xz cross-sections of the fundamental NW-induced cavity mode obtained for a square section NW, L NW =26.5a , w core = h core =0.6a , w NB =4.5a , d x =0.88w , d z =0.25a , t=0.67a (design #40). For this mode a/λ=0.37 , Q c =8.9× 10 4 and V m =3.5 (λ/ n r NW ) 3 . (c) Electric field xz cross-sections of the fundamental NW-induced cavity mode obtained for a circular section NW, L NW =20a , w groove = h groove = δ NW =0.6a , w NB =4a , d x =0.88w , d x =0.88w , t=0.67a (design #41). For this mode a/λ=0.396 , Q c =5.1× 10 4 and V m =1.8 (λ/ n r NW ) 3 .

Fig. 8
Fig. 8

(a) Q c and V m as a function of Δ groove for the cavity described in Fig. 7(b) (designs #40 and #42 to #44). (b) Fourier transform of | E x | for the fundamental NW-induced cavity mode described in Fig. 7(b) (design #40). (c) Same as (b) for a NW shifted by Δ groove =0.15a along the x axis (design #43). a/λ=0.370 , Q c =1.4× 10 4 and V m =3.5 (λ/ n r NW ) 3 . (d) Same as (b) for a NW shifted by a/2 along the z axis (design #45). a/λ=0.370 , Q c =3.9× 10 4 and V m =3.5 (λ/ n r NW ) 3 .

Tables (2)

Tables Icon

Table 1 Summary of the cavity designs investigated in Section 3.

Tables Icon

Table 2 Summary of the cavity designs investigated in Section 4.

Metrics