Abstract

We demonstrate a plasmonic route to control the collective spontaneous emission of two-level quantum emitters. Superradiance and subradiance effects are observed over distances comparable to the operating wavelength inside plasmonic nanochannels. These plasmonic waveguides can provide an effective epsilon-near-zero operation in their cut-off frequency and Fabry-Pérot resonances at higher frequencies. The related plasmonic resonant modes are found to efficiently enhance the constructive (superradiance) or destructive (subradiance) interference between different quantum emitters located inside the waveguides. By increasing the number of emitters located in the elongated plasmonic channel, the superradiance effect is enhanced at the epsilon-near-zero operation, leading to a strong coherent increase in the collective spontaneous emission rate. In addition, the separation distance between neighboring emitters and their emission wavelengths can be changed to dynamically control the collective emission properties of the plasmonic system. It is envisioned that the dynamic modification between quantum superradiant and subradiant modes will find applications in quantum entanglement of qubits, low-threshold nanolasers and efficient sensors.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum optical properties of a dipole emitter coupled to an ɛ-near-zero nanoscale waveguide

Ruzan Sokhoyan and Harry A. Atwater
Opt. Express 21(26) 32279-32290 (2013)

Non-exponential spontaneous emission dynamics for emitters in a time-dependent optical cavity

Henri Thyrrestrup, Alex Hartsuiker, Jean-Michel Gérard, and Willem L. Vos
Opt. Express 21(20) 23130-23144 (2013)

Numerical studies of the modification of photodynamic processes by film-coupled plasmonic nanoparticles

Cristian Ciracì, Alec Rose, Christos Argyropoulos, and David R. Smith
J. Opt. Soc. Am. B 31(11) 2601-2607 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  2. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]
  3. E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in erbium-doped single-mode fibers,” J. Lightwave Technol. 7(5), 835–845 (1989).
    [Crossref]
  4. A. C. Pease, D. Solas, E. J. Sullivan, M. T. Cronin, C. P. Holmes, and S. P. Fodor, “Light-generated oligonucleotide arrays for rapid DNA sequence analysis,” Proc. Natl. Acad. Sci. U.S.A. 91(11), 5022–5026 (1994).
    [Crossref] [PubMed]
  5. J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
    [Crossref]
  6. E. Betzig and R. J. Chichester, “Single Molecules Observed by Near-Field Scanning Optical Microscopy,” Science 262(5138), 1422–1425 (1993).
    [Crossref] [PubMed]
  7. K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
    [Crossref]
  8. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
    [Crossref]
  9. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic Enhancement of Molecular Fluorescence,” Nano Lett. 7(2), 496–501 (2007).
    [Crossref] [PubMed]
  10. R. Sokhoyan and H. A. Atwater, “Quantum optical properties of a dipole emitter coupled to an ɛ-near-zero nanoscale waveguide,” Opt. Express 21(26), 32279–32290 (2013).
    [Crossref] [PubMed]
  11. T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
    [Crossref] [PubMed]
  12. M. O. Scully and A. A. Svidzinsky, “Physics. The super of superradiance,” Science 325(5947), 1510–1511 (2009).
    [Crossref] [PubMed]
  13. B. Casabone, K. Friebe, B. Brandstätter, K. Schüppert, R. Blatt, and T. E. Northup, “Enhanced quantum interface with collective ion-cavity coupling,” Phys. Rev. Lett. 114(2), 023602 (2015).
    [Crossref] [PubMed]
  14. J. G. Bohnet, Z. Chen, J. M. Weiner, D. Meiser, M. J. Holland, and J. K. Thompson, “A steady-state superradiant laser with less than one intracavity photon,” Nature 484(7392), 78–81 (2012).
    [Crossref] [PubMed]
  15. S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, J. Stenger, D. E. Pritchard, and W. Ketterle, “Superradiant rayleigh scattering from a bose-einstein condensate,” Science 285(5427), 571–574 (1999).
    [Crossref] [PubMed]
  16. M. Zhou, S. Yi, T. S. Luk, Q. Gan, S. Fan, and Z. Yu, “Analog of superradiant emission in thermal emitters,” Phys. Rev. B 92(2), 024302 (2015).
    [Crossref]
  17. R. H. Dicke, “Coherence in Spontaneous Radiation Processes,” Phys. Rev. 93(1), 99–110 (1954).
    [Crossref]
  18. V. V. Temnov and U. Woggon, “Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity,” Phys. Rev. Lett. 95(24), 243602 (2005).
    [Crossref] [PubMed]
  19. J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81(4), 041101 (2010).
    [Crossref]
  20. J. J. Choquette, K.-P. Marzlin, and B. C. Sanders, “Superradiance, subradiance, and suppressed superradiance of dipoles near a metal interface,” Phys. Rev. A 82(2), 023827 (2010).
    [Crossref]
  21. D. Martín-Cano, L. Martín-Moreno, F. J. García-Vidal, and E. Moreno, “Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides,” Nano Lett. 10(8), 3129–3134 (2010).
    [Crossref] [PubMed]
  22. R. Fleury and A. Alù, “Enhanced superradiance in epsilon-near-zero plasmonic channels,” Phys. Rev. B 87(20), 201101 (2013).
    [Crossref]
  23. J. Kästel and M. Fleischhauer, “Suppression of spontaneous emission and superradiance over macroscopic distances in media with negative refraction,” Phys. Rev. A 71(1), 011804 (2005).
    [Crossref]
  24. D. Pavolini, A. Crubellier, P. Pillet, L. Cabaret, and S. Liberman, “Experimental evidence for subradiance,” Phys. Rev. Lett. 54(17), 1917–1920 (1985).
    [Crossref] [PubMed]
  25. T. Bienaimé, N. Piovella, and R. Kaiser, “Controlled Dicke Subradiance from a Large Cloud of Two-Level Systems,” Phys. Rev. Lett. 108(12), 123602 (2012).
    [Crossref] [PubMed]
  26. E. Shahmoon and G. Kurizki, “Nonradiative interaction and entanglement between distant atoms,” Phys. Rev. A 87(3), 033831 (2013).
    [Crossref]
  27. W. Guerin, M. O. Araújo, and R. Kaiser, “Subradiance in a Large Cloud of Cold Atoms,” Phys. Rev. Lett. 116(8), 083601 (2016).
    [Crossref] [PubMed]
  28. R. G. DeVoe and R. G. Brewer, “Observation of superradiant and subradiant spontaneous emission of two trapped ions,” Phys. Rev. Lett. 76(12), 2049–2052 (1996).
    [Crossref] [PubMed]
  29. M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
    [Crossref]
  30. M. O. Scully, “Single Photon Subradiance: Quantum Control of Spontaneous Emission and Ultrafast Readout,” Phys. Rev. Lett. 115(24), 243602 (2015).
    [Crossref] [PubMed]
  31. I. M. Mirza and T. Begzjav, “Fano-Agarwal couplings and non-rotating wave approximation in single-photon timed Dicke subradiance,” Europhys. Lett. 114(2), 24004 (2016).
  32. A. A. Kalachev and V. V. Samartsev, “Quantum memory and quantum computations in the optical subradiance regime,” Quantum Electron. 35(8), 679–682 (2005).
    [Crossref]
  33. A. Kalachev and S. Kröll, “Coherent control of collective spontaneous emission in an extended atomic ensemble and quantum storage,” Phys. Rev. A 74(2), 023814 (2006).
    [Crossref]
  34. A. Kalachev, “Quantum storage on subradiant states in an extended atomic ensemble,” Phys. Rev. A 76(4), 043812 (2007).
    [Crossref]
  35. H. A. M. Leymann, A. Foerster, F. Jahnke, J. Wiersig, and C. Gies, “Sub- and Superradiance in Nanolasers,” Phys. Rev. Appl. 4(4), 044018 (2015).
    [Crossref]
  36. M. Silveirinha and N. Engheta, “Tunneling of Electromagnetic Energy Through Subwavelength Channels and Bends Using ε-Near-Zero Materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
    [Crossref] [PubMed]
  37. M. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).
    [Crossref]
  38. A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ε -near-zero-filled narrow channels,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1), 016604 (2008).
    [Crossref] [PubMed]
  39. A. Alù and N. Engheta, “Light squeezing through arbitrarily shaped plasmonic channels and sharp bends,” Phys. Rev. B 78(3), 035440 (2008).
    [Crossref]
  40. E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
    [Crossref] [PubMed]
  41. A. Alù and N. Engheta, “All Optical Metamaterial Circuit Board at the Nanoscale,” Phys. Rev. Lett. 103(14), 143902 (2009).
    [Crossref] [PubMed]
  42. A. Alù and N. Engheta, “Emission Enhancement in a Plasmonic Waveguide at Cut-Off,” Materials (Basel) 4(12), 141–152 (2011).
    [Crossref]
  43. C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε -near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
    [Crossref]
  44. C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, and A. Alù, “Temporal soliton excitation in an ε-near-zero plasmonic metamaterial,” Opt. Lett. 39(19), 5566–5569 (2014).
    [Crossref] [PubMed]
  45. C. Argyropoulos, G. D’Aguanno, and A. Alù, “Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial,” Phys. Rev. B 89(23), 235401 (2014).
    [Crossref]
  46. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [Crossref] [PubMed]
  47. V. N. Pustovit and T. V. Shahbazyan, “Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: the plasmonic Dicke effect,” Phys. Rev. Lett. 102(7), 077401 (2009).
    [Crossref] [PubMed]
  48. C.-Y. Chen, I.-W. Un, N.-H. Tai, and T.-J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express 17(17), 15372–15380 (2009).
    [Crossref] [PubMed]
  49. Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
    [Crossref] [PubMed]
  50. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  51. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006), Chap. 8.
  52. C. Ciracì, A. Rose, C. Argyropoulos, and D. R. Smith, “Numerical studies of the modification of photodynamic processes by film-coupled plasmonic nanoparticles,” J. Opt. Soc. Am. B 31(11), 2601 (2014).
    [Crossref]
  53. G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
    [Crossref] [PubMed]
  54. G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
    [Crossref]
  55. A. V. Andreev, V. I. Emel’yanov, and Y. A. Il’inskiĭ, “Collective spontaneous emission (Dicke superradiance),” Sov. Phys. Usp. 23(8), 493–514 (1980).
    [Crossref]
  56. M. G. Benedict and E. D. Trifonov, Laser Fundamentals. Part 2 (Springer, 2006), Chap. 6.
  57. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [Crossref]
  58. G. M. Akselrod, E. R. Young, K. W. Stone, A. Palatnik, V. Bulović, and Y. R. Tischler, “Reduced lasing threshold from organic dye microcavities,” Phys. Rev. B 90(3), 035209 (2014).
    [Crossref]
  59. G.-Y. Chen, Y.-N. Chen, and D.-S. Chuu, “Spontaneous emission of quantum dot excitons into surface plasmons in a nanowire,” Opt. Lett. 33(19), 2212–2214 (2008).
    [Crossref] [PubMed]
  60. A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
    [Crossref] [PubMed]

2016 (2)

W. Guerin, M. O. Araújo, and R. Kaiser, “Subradiance in a Large Cloud of Cold Atoms,” Phys. Rev. Lett. 116(8), 083601 (2016).
[Crossref] [PubMed]

I. M. Mirza and T. Begzjav, “Fano-Agarwal couplings and non-rotating wave approximation in single-photon timed Dicke subradiance,” Europhys. Lett. 114(2), 24004 (2016).

2015 (6)

M. O. Scully, “Single Photon Subradiance: Quantum Control of Spontaneous Emission and Ultrafast Readout,” Phys. Rev. Lett. 115(24), 243602 (2015).
[Crossref] [PubMed]

H. A. M. Leymann, A. Foerster, F. Jahnke, J. Wiersig, and C. Gies, “Sub- and Superradiance in Nanolasers,” Phys. Rev. Appl. 4(4), 044018 (2015).
[Crossref]

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

B. Casabone, K. Friebe, B. Brandstätter, K. Schüppert, R. Blatt, and T. E. Northup, “Enhanced quantum interface with collective ion-cavity coupling,” Phys. Rev. Lett. 114(2), 023602 (2015).
[Crossref] [PubMed]

M. Zhou, S. Yi, T. S. Luk, Q. Gan, S. Fan, and Z. Yu, “Analog of superradiant emission in thermal emitters,” Phys. Rev. B 92(2), 024302 (2015).
[Crossref]

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

2014 (5)

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

C. Ciracì, A. Rose, C. Argyropoulos, and D. R. Smith, “Numerical studies of the modification of photodynamic processes by film-coupled plasmonic nanoparticles,” J. Opt. Soc. Am. B 31(11), 2601 (2014).
[Crossref]

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, and A. Alù, “Temporal soliton excitation in an ε-near-zero plasmonic metamaterial,” Opt. Lett. 39(19), 5566–5569 (2014).
[Crossref] [PubMed]

C. Argyropoulos, G. D’Aguanno, and A. Alù, “Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial,” Phys. Rev. B 89(23), 235401 (2014).
[Crossref]

G. M. Akselrod, E. R. Young, K. W. Stone, A. Palatnik, V. Bulović, and Y. R. Tischler, “Reduced lasing threshold from organic dye microcavities,” Phys. Rev. B 90(3), 035209 (2014).
[Crossref]

2013 (4)

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

R. Sokhoyan and H. A. Atwater, “Quantum optical properties of a dipole emitter coupled to an ɛ-near-zero nanoscale waveguide,” Opt. Express 21(26), 32279–32290 (2013).
[Crossref] [PubMed]

E. Shahmoon and G. Kurizki, “Nonradiative interaction and entanglement between distant atoms,” Phys. Rev. A 87(3), 033831 (2013).
[Crossref]

R. Fleury and A. Alù, “Enhanced superradiance in epsilon-near-zero plasmonic channels,” Phys. Rev. B 87(20), 201101 (2013).
[Crossref]

2012 (4)

T. Bienaimé, N. Piovella, and R. Kaiser, “Controlled Dicke Subradiance from a Large Cloud of Two-Level Systems,” Phys. Rev. Lett. 108(12), 123602 (2012).
[Crossref] [PubMed]

J. G. Bohnet, Z. Chen, J. M. Weiner, D. Meiser, M. J. Holland, and J. K. Thompson, “A steady-state superradiant laser with less than one intracavity photon,” Nature 484(7392), 78–81 (2012).
[Crossref] [PubMed]

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε -near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

2011 (3)

A. Alù and N. Engheta, “Emission Enhancement in a Plasmonic Waveguide at Cut-Off,” Materials (Basel) 4(12), 141–152 (2011).
[Crossref]

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[Crossref] [PubMed]

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

2010 (4)

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81(4), 041101 (2010).
[Crossref]

J. J. Choquette, K.-P. Marzlin, and B. C. Sanders, “Superradiance, subradiance, and suppressed superradiance of dipoles near a metal interface,” Phys. Rev. A 82(2), 023827 (2010).
[Crossref]

D. Martín-Cano, L. Martín-Moreno, F. J. García-Vidal, and E. Moreno, “Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides,” Nano Lett. 10(8), 3129–3134 (2010).
[Crossref] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

2009 (5)

V. N. Pustovit and T. V. Shahbazyan, “Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: the plasmonic Dicke effect,” Phys. Rev. Lett. 102(7), 077401 (2009).
[Crossref] [PubMed]

C.-Y. Chen, I.-W. Un, N.-H. Tai, and T.-J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express 17(17), 15372–15380 (2009).
[Crossref] [PubMed]

A. Alù and N. Engheta, “All Optical Metamaterial Circuit Board at the Nanoscale,” Phys. Rev. Lett. 103(14), 143902 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

M. O. Scully and A. A. Svidzinsky, “Physics. The super of superradiance,” Science 325(5947), 1510–1511 (2009).
[Crossref] [PubMed]

2008 (4)

A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ε -near-zero-filled narrow channels,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1), 016604 (2008).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Light squeezing through arbitrarily shaped plasmonic channels and sharp bends,” Phys. Rev. B 78(3), 035440 (2008).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

G.-Y. Chen, Y.-N. Chen, and D.-S. Chuu, “Spontaneous emission of quantum dot excitons into surface plasmons in a nanowire,” Opt. Lett. 33(19), 2212–2214 (2008).
[Crossref] [PubMed]

2007 (5)

M. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).
[Crossref]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic Enhancement of Molecular Fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

A. Kalachev, “Quantum storage on subradiant states in an extended atomic ensemble,” Phys. Rev. A 76(4), 043812 (2007).
[Crossref]

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

2006 (3)

A. Kalachev and S. Kröll, “Coherent control of collective spontaneous emission in an extended atomic ensemble and quantum storage,” Phys. Rev. A 74(2), 023814 (2006).
[Crossref]

M. Silveirinha and N. Engheta, “Tunneling of Electromagnetic Energy Through Subwavelength Channels and Bends Using ε-Near-Zero Materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

2005 (3)

A. A. Kalachev and V. V. Samartsev, “Quantum memory and quantum computations in the optical subradiance regime,” Quantum Electron. 35(8), 679–682 (2005).
[Crossref]

J. Kästel and M. Fleischhauer, “Suppression of spontaneous emission and superradiance over macroscopic distances in media with negative refraction,” Phys. Rev. A 71(1), 011804 (2005).
[Crossref]

V. V. Temnov and U. Woggon, “Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity,” Phys. Rev. Lett. 95(24), 243602 (2005).
[Crossref] [PubMed]

1999 (1)

S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, J. Stenger, D. E. Pritchard, and W. Ketterle, “Superradiant rayleigh scattering from a bose-einstein condensate,” Science 285(5427), 571–574 (1999).
[Crossref] [PubMed]

1996 (1)

R. G. DeVoe and R. G. Brewer, “Observation of superradiant and subradiant spontaneous emission of two trapped ions,” Phys. Rev. Lett. 76(12), 2049–2052 (1996).
[Crossref] [PubMed]

1994 (1)

A. C. Pease, D. Solas, E. J. Sullivan, M. T. Cronin, C. P. Holmes, and S. P. Fodor, “Light-generated oligonucleotide arrays for rapid DNA sequence analysis,” Proc. Natl. Acad. Sci. U.S.A. 91(11), 5022–5026 (1994).
[Crossref] [PubMed]

1993 (1)

E. Betzig and R. J. Chichester, “Single Molecules Observed by Near-Field Scanning Optical Microscopy,” Science 262(5138), 1422–1425 (1993).
[Crossref] [PubMed]

1989 (1)

E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in erbium-doped single-mode fibers,” J. Lightwave Technol. 7(5), 835–845 (1989).
[Crossref]

1985 (1)

D. Pavolini, A. Crubellier, P. Pillet, L. Cabaret, and S. Liberman, “Experimental evidence for subradiance,” Phys. Rev. Lett. 54(17), 1917–1920 (1985).
[Crossref] [PubMed]

1980 (1)

A. V. Andreev, V. I. Emel’yanov, and Y. A. Il’inskiĭ, “Collective spontaneous emission (Dicke superradiance),” Sov. Phys. Usp. 23(8), 493–514 (1980).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1954 (1)

R. H. Dicke, “Coherence in Spontaneous Radiation Processes,” Phys. Rev. 93(1), 99–110 (1954).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Akselrod, G. M.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

G. M. Akselrod, E. R. Young, K. W. Stone, A. Palatnik, V. Bulović, and Y. R. Tischler, “Reduced lasing threshold from organic dye microcavities,” Phys. Rev. B 90(3), 035209 (2014).
[Crossref]

Alù, A.

C. Argyropoulos, G. D’Aguanno, and A. Alù, “Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial,” Phys. Rev. B 89(23), 235401 (2014).
[Crossref]

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, and A. Alù, “Temporal soliton excitation in an ε-near-zero plasmonic metamaterial,” Opt. Lett. 39(19), 5566–5569 (2014).
[Crossref] [PubMed]

R. Fleury and A. Alù, “Enhanced superradiance in epsilon-near-zero plasmonic channels,” Phys. Rev. B 87(20), 201101 (2013).
[Crossref]

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε -near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

A. Alù and N. Engheta, “Emission Enhancement in a Plasmonic Waveguide at Cut-Off,” Materials (Basel) 4(12), 141–152 (2011).
[Crossref]

A. Alù and N. Engheta, “All Optical Metamaterial Circuit Board at the Nanoscale,” Phys. Rev. Lett. 103(14), 143902 (2009).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Light squeezing through arbitrarily shaped plasmonic channels and sharp bends,” Phys. Rev. B 78(3), 035440 (2008).
[Crossref]

A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ε -near-zero-filled narrow channels,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1), 016604 (2008).
[Crossref] [PubMed]

Andreev, A. V.

A. V. Andreev, V. I. Emel’yanov, and Y. A. Il’inskiĭ, “Collective spontaneous emission (Dicke superradiance),” Sov. Phys. Usp. 23(8), 493–514 (1980).
[Crossref]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Araújo, M. O.

W. Guerin, M. O. Araújo, and R. Kaiser, “Subradiance in a Large Cloud of Cold Atoms,” Phys. Rev. Lett. 116(8), 083601 (2016).
[Crossref] [PubMed]

Argyropoulos, C.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

C. Argyropoulos, G. D’Aguanno, and A. Alù, “Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial,” Phys. Rev. B 89(23), 235401 (2014).
[Crossref]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, and A. Alù, “Temporal soliton excitation in an ε-near-zero plasmonic metamaterial,” Opt. Lett. 39(19), 5566–5569 (2014).
[Crossref] [PubMed]

C. Ciracì, A. Rose, C. Argyropoulos, and D. R. Smith, “Numerical studies of the modification of photodynamic processes by film-coupled plasmonic nanoparticles,” J. Opt. Soc. Am. B 31(11), 2601 (2014).
[Crossref]

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε -near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

Asano, T.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

Atwater, H. A.

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Babinec, T. M.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

Bacher, G.

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Begzjav, T.

I. M. Mirza and T. Begzjav, “Fano-Agarwal couplings and non-rotating wave approximation in single-photon timed Dicke subradiance,” Europhys. Lett. 114(2), 24004 (2016).

Betzig, E.

E. Betzig and R. J. Chichester, “Single Molecules Observed by Near-Field Scanning Optical Microscopy,” Science 262(5138), 1422–1425 (1993).
[Crossref] [PubMed]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Bienaimé, T.

T. Bienaimé, N. Piovella, and R. Kaiser, “Controlled Dicke Subradiance from a Large Cloud of Two-Level Systems,” Phys. Rev. Lett. 108(12), 123602 (2012).
[Crossref] [PubMed]

Blatt, R.

B. Casabone, K. Friebe, B. Brandstätter, K. Schüppert, R. Blatt, and T. E. Northup, “Enhanced quantum interface with collective ion-cavity coupling,” Phys. Rev. Lett. 114(2), 023602 (2015).
[Crossref] [PubMed]

Bohnet, J. G.

J. G. Bohnet, Z. Chen, J. M. Weiner, D. Meiser, M. J. Holland, and J. K. Thompson, “A steady-state superradiant laser with less than one intracavity photon,” Nature 484(7392), 78–81 (2012).
[Crossref] [PubMed]

Brandstätter, B.

B. Casabone, K. Friebe, B. Brandstätter, K. Schüppert, R. Blatt, and T. E. Northup, “Enhanced quantum interface with collective ion-cavity coupling,” Phys. Rev. Lett. 114(2), 023602 (2015).
[Crossref] [PubMed]

Brewer, R. G.

R. G. DeVoe and R. G. Brewer, “Observation of superradiant and subradiant spontaneous emission of two trapped ions,” Phys. Rev. Lett. 76(12), 2049–2052 (1996).
[Crossref] [PubMed]

Bulovic, V.

G. M. Akselrod, E. R. Young, K. W. Stone, A. Palatnik, V. Bulović, and Y. R. Tischler, “Reduced lasing threshold from organic dye microcavities,” Phys. Rev. B 90(3), 035209 (2014).
[Crossref]

Bulu, I.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

Cabaret, L.

D. Pavolini, A. Crubellier, P. Pillet, L. Cabaret, and S. Liberman, “Experimental evidence for subradiance,” Phys. Rev. Lett. 54(17), 1917–1920 (1985).
[Crossref] [PubMed]

Caglayan, H.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

Casabone, B.

B. Casabone, K. Friebe, B. Brandstätter, K. Schüppert, R. Blatt, and T. E. Northup, “Enhanced quantum interface with collective ion-cavity coupling,” Phys. Rev. Lett. 114(2), 023602 (2015).
[Crossref] [PubMed]

Chen, C.-Y.

Chen, G.-Y.

Chen, P.-Y.

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, and A. Alù, “Temporal soliton excitation in an ε-near-zero plasmonic metamaterial,” Opt. Lett. 39(19), 5566–5569 (2014).
[Crossref] [PubMed]

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε -near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

Chen, Y.-N.

Chen, Z.

J. G. Bohnet, Z. Chen, J. M. Weiner, D. Meiser, M. J. Holland, and J. K. Thompson, “A steady-state superradiant laser with less than one intracavity photon,” Nature 484(7392), 78–81 (2012).
[Crossref] [PubMed]

Chichester, R. J.

E. Betzig and R. J. Chichester, “Single Molecules Observed by Near-Field Scanning Optical Microscopy,” Science 262(5138), 1422–1425 (1993).
[Crossref] [PubMed]

Chikkatur, A. P.

S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, J. Stenger, D. E. Pritchard, and W. Ketterle, “Superradiant rayleigh scattering from a bose-einstein condensate,” Science 285(5427), 571–574 (1999).
[Crossref] [PubMed]

Choquette, J. J.

J. J. Choquette, K.-P. Marzlin, and B. C. Sanders, “Superradiance, subradiance, and suppressed superradiance of dipoles near a metal interface,” Phys. Rev. A 82(2), 023827 (2010).
[Crossref]

Choy, J. T.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chuu, D.-S.

Ciracì, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

C. Ciracì, A. Rose, C. Argyropoulos, and D. R. Smith, “Numerical studies of the modification of photodynamic processes by film-coupled plasmonic nanoparticles,” J. Opt. Soc. Am. B 31(11), 2601 (2014).
[Crossref]

Coenen, T.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

Cronin, M. T.

A. C. Pease, D. Solas, E. J. Sullivan, M. T. Cronin, C. P. Holmes, and S. P. Fodor, “Light-generated oligonucleotide arrays for rapid DNA sequence analysis,” Proc. Natl. Acad. Sci. U.S.A. 91(11), 5022–5026 (1994).
[Crossref] [PubMed]

Crubellier, A.

D. Pavolini, A. Crubellier, P. Pillet, L. Cabaret, and S. Liberman, “Experimental evidence for subradiance,” Phys. Rev. Lett. 54(17), 1917–1920 (1985).
[Crossref] [PubMed]

Cui, S.

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

D’Aguanno, G.

C. Argyropoulos, G. D’Aguanno, and A. Alù, “Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial,” Phys. Rev. B 89(23), 235401 (2014).
[Crossref]

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, and A. Alù, “Temporal soliton excitation in an ε-near-zero plasmonic metamaterial,” Opt. Lett. 39(19), 5566–5569 (2014).
[Crossref] [PubMed]

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε -near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Desurvire, E.

E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in erbium-doped single-mode fibers,” J. Lightwave Technol. 7(5), 835–845 (1989).
[Crossref]

DeVoe, R. G.

R. G. DeVoe and R. G. Brewer, “Observation of superradiant and subradiant spontaneous emission of two trapped ions,” Phys. Rev. Lett. 76(12), 2049–2052 (1996).
[Crossref] [PubMed]

Dicke, R. H.

R. H. Dicke, “Coherence in Spontaneous Radiation Processes,” Phys. Rev. 93(1), 99–110 (1954).
[Crossref]

Emel’yanov, V. I.

A. V. Andreev, V. I. Emel’yanov, and Y. A. Il’inskiĭ, “Collective spontaneous emission (Dicke superradiance),” Sov. Phys. Usp. 23(8), 493–514 (1980).
[Crossref]

Engheta, N.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε -near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

A. Alù and N. Engheta, “Emission Enhancement in a Plasmonic Waveguide at Cut-Off,” Materials (Basel) 4(12), 141–152 (2011).
[Crossref]

A. Alù and N. Engheta, “All Optical Metamaterial Circuit Board at the Nanoscale,” Phys. Rev. Lett. 103(14), 143902 (2009).
[Crossref] [PubMed]

A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ε -near-zero-filled narrow channels,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1), 016604 (2008).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Light squeezing through arbitrarily shaped plasmonic channels and sharp bends,” Phys. Rev. B 78(3), 035440 (2008).
[Crossref]

M. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).
[Crossref]

M. Silveirinha and N. Engheta, “Tunneling of Electromagnetic Energy Through Subwavelength Channels and Bends Using ε-Near-Zero Materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

Fan, S.

M. Zhou, S. Yi, T. S. Luk, Q. Gan, S. Fan, and Z. Yu, “Analog of superradiant emission in thermal emitters,” Phys. Rev. B 92(2), 024302 (2015).
[Crossref]

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81(4), 041101 (2010).
[Crossref]

Fang, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Fejer, M. M.

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81(4), 041101 (2010).
[Crossref]

Fleischhauer, M.

J. Kästel and M. Fleischhauer, “Suppression of spontaneous emission and superradiance over macroscopic distances in media with negative refraction,” Phys. Rev. A 71(1), 011804 (2005).
[Crossref]

Fleury, R.

R. Fleury and A. Alù, “Enhanced superradiance in epsilon-near-zero plasmonic channels,” Phys. Rev. B 87(20), 201101 (2013).
[Crossref]

Fodor, S. P.

A. C. Pease, D. Solas, E. J. Sullivan, M. T. Cronin, C. P. Holmes, and S. P. Fodor, “Light-generated oligonucleotide arrays for rapid DNA sequence analysis,” Proc. Natl. Acad. Sci. U.S.A. 91(11), 5022–5026 (1994).
[Crossref] [PubMed]

Foerster, A.

H. A. M. Leymann, A. Foerster, F. Jahnke, J. Wiersig, and C. Gies, “Sub- and Superradiance in Nanolasers,” Phys. Rev. Appl. 4(4), 044018 (2015).
[Crossref]

Forchel, A.

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

Friebe, K.

B. Casabone, K. Friebe, B. Brandstätter, K. Schüppert, R. Blatt, and T. E. Northup, “Enhanced quantum interface with collective ion-cavity coupling,” Phys. Rev. Lett. 114(2), 023602 (2015).
[Crossref] [PubMed]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

Gan, Q.

M. Zhou, S. Yi, T. S. Luk, Q. Gan, S. Fan, and Z. Yu, “Analog of superradiant emission in thermal emitters,” Phys. Rev. B 92(2), 024302 (2015).
[Crossref]

Garcia-Vidal, F. J.

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[Crossref] [PubMed]

García-Vidal, F. J.

D. Martín-Cano, L. Martín-Moreno, F. J. García-Vidal, and E. Moreno, “Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides,” Nano Lett. 10(8), 3129–3134 (2010).
[Crossref] [PubMed]

Gies, C.

H. A. M. Leymann, A. Foerster, F. Jahnke, J. Wiersig, and C. Gies, “Sub- and Superradiance in Nanolasers,” Phys. Rev. Appl. 4(4), 044018 (2015).
[Crossref]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Gonzalez-Tudela, A.

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[Crossref] [PubMed]

Goodrich, G. P.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic Enhancement of Molecular Fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Guerin, W.

W. Guerin, M. O. Araújo, and R. Kaiser, “Subradiance in a Large Cloud of Cold Atoms,” Phys. Rev. Lett. 116(8), 083601 (2016).
[Crossref] [PubMed]

Halas, N. J.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic Enhancement of Molecular Fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Harris, J. S.

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81(4), 041101 (2010).
[Crossref]

Hausmann, B. J. M.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

Hoang, T. B.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Holland, M. J.

J. G. Bohnet, Z. Chen, J. M. Weiner, D. Meiser, M. J. Holland, and J. K. Thompson, “A steady-state superradiant laser with less than one intracavity photon,” Nature 484(7392), 78–81 (2012).
[Crossref] [PubMed]

Holmes, C. P.

A. C. Pease, D. Solas, E. J. Sullivan, M. T. Cronin, C. P. Holmes, and S. P. Fodor, “Light-generated oligonucleotide arrays for rapid DNA sequence analysis,” Proc. Natl. Acad. Sci. U.S.A. 91(11), 5022–5026 (1994).
[Crossref] [PubMed]

Hommel, D.

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

Hu, E. L.

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

Huang, J.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Huo, Y.

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81(4), 041101 (2010).
[Crossref]

Il’inskii, Y. A.

A. V. Andreev, V. I. Emel’yanov, and Y. A. Il’inskiĭ, “Collective spontaneous emission (Dicke superradiance),” Sov. Phys. Usp. 23(8), 493–514 (1980).
[Crossref]

Inouye, S.

S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, J. Stenger, D. E. Pritchard, and W. Ketterle, “Superradiant rayleigh scattering from a bose-einstein condensate,” Science 285(5427), 571–574 (1999).
[Crossref] [PubMed]

Jahnke, F.

H. A. M. Leymann, A. Foerster, F. Jahnke, J. Wiersig, and C. Gies, “Sub- and Superradiance in Nanolasers,” Phys. Rev. Appl. 4(4), 044018 (2015).
[Crossref]

Johnson, B. R.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic Enhancement of Molecular Fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kaiser, R.

W. Guerin, M. O. Araújo, and R. Kaiser, “Subradiance in a Large Cloud of Cold Atoms,” Phys. Rev. Lett. 116(8), 083601 (2016).
[Crossref] [PubMed]

T. Bienaimé, N. Piovella, and R. Kaiser, “Controlled Dicke Subradiance from a Large Cloud of Two-Level Systems,” Phys. Rev. Lett. 108(12), 123602 (2012).
[Crossref] [PubMed]

Kalachev, A.

A. Kalachev, “Quantum storage on subradiant states in an extended atomic ensemble,” Phys. Rev. A 76(4), 043812 (2007).
[Crossref]

A. Kalachev and S. Kröll, “Coherent control of collective spontaneous emission in an extended atomic ensemble and quantum storage,” Phys. Rev. A 74(2), 023814 (2006).
[Crossref]

Kalachev, A. A.

A. A. Kalachev and V. V. Samartsev, “Quantum memory and quantum computations in the optical subradiance regime,” Quantum Electron. 35(8), 679–682 (2005).
[Crossref]

Kästel, J.

J. Kästel and M. Fleischhauer, “Suppression of spontaneous emission and superradiance over macroscopic distances in media with negative refraction,” Phys. Rev. A 71(1), 011804 (2005).
[Crossref]

Ketterle, W.

S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, J. Stenger, D. E. Pritchard, and W. Ketterle, “Superradiant rayleigh scattering from a bose-einstein condensate,” Science 285(5427), 571–574 (1999).
[Crossref] [PubMed]

Khan, M.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

Kong, J.

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

Kröll, S.

A. Kalachev and S. Kröll, “Coherent control of collective spontaneous emission in an extended atomic ensemble and quantum storage,” Phys. Rev. A 74(2), 023814 (2006).
[Crossref]

Kurizki, G.

E. Shahmoon and G. Kurizki, “Nonradiative interaction and entanglement between distant atoms,” Phys. Rev. A 87(3), 033831 (2013).
[Crossref]

Leymann, H. A. M.

H. A. M. Leymann, A. Foerster, F. Jahnke, J. Wiersig, and C. Gies, “Sub- and Superradiance in Nanolasers,” Phys. Rev. Appl. 4(4), 044018 (2015).
[Crossref]

Liberman, S.

D. Pavolini, A. Crubellier, P. Pillet, L. Cabaret, and S. Liberman, “Experimental evidence for subradiance,” Phys. Rev. Lett. 54(17), 1917–1920 (1985).
[Crossref] [PubMed]

Lin, Y.

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

Ling, X.

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

Liu, T.-L.

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

Loncar, M.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

Luk, T. S.

M. Zhou, S. Yi, T. S. Luk, Q. Gan, S. Fan, and Z. Yu, “Analog of superradiant emission in thermal emitters,” Phys. Rev. B 92(2), 024302 (2015).
[Crossref]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Maier, S. A.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Maletinsky, P.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

Martin-Cano, D.

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[Crossref] [PubMed]

Martín-Cano, D.

D. Martín-Cano, L. Martín-Moreno, F. J. García-Vidal, and E. Moreno, “Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides,” Nano Lett. 10(8), 3129–3134 (2010).
[Crossref] [PubMed]

Martin-Moreno, L.

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[Crossref] [PubMed]

Martín-Moreno, L.

D. Martín-Cano, L. Martín-Moreno, F. J. García-Vidal, and E. Moreno, “Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides,” Nano Lett. 10(8), 3129–3134 (2010).
[Crossref] [PubMed]

Marzlin, K.-P.

J. J. Choquette, K.-P. Marzlin, and B. C. Sanders, “Superradiance, subradiance, and suppressed superradiance of dipoles near a metal interface,” Phys. Rev. A 82(2), 023827 (2010).
[Crossref]

Meiser, D.

J. G. Bohnet, Z. Chen, J. M. Weiner, D. Meiser, M. J. Holland, and J. K. Thompson, “A steady-state superradiant laser with less than one intracavity photon,” Nature 484(7392), 78–81 (2012).
[Crossref] [PubMed]

Mikkelsen, M. H.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Ming, T.

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

Mirza, I. M.

I. M. Mirza and T. Begzjav, “Fano-Agarwal couplings and non-rotating wave approximation in single-photon timed Dicke subradiance,” Europhys. Lett. 114(2), 24004 (2016).

Moreno, E.

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[Crossref] [PubMed]

D. Martín-Cano, L. Martín-Moreno, F. J. García-Vidal, and E. Moreno, “Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides,” Nano Lett. 10(8), 3129–3134 (2010).
[Crossref] [PubMed]

Moshchalkov, V. V.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Noda, S.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

Nordlander, P.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Northup, T. E.

B. Casabone, K. Friebe, B. Brandstätter, K. Schüppert, R. Blatt, and T. E. Northup, “Enhanced quantum interface with collective ion-cavity coupling,” Phys. Rev. Lett. 114(2), 023602 (2015).
[Crossref] [PubMed]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Palatnik, A.

G. M. Akselrod, E. R. Young, K. W. Stone, A. Palatnik, V. Bulović, and Y. R. Tischler, “Reduced lasing threshold from organic dye microcavities,” Phys. Rev. B 90(3), 035209 (2014).
[Crossref]

Pan, J.

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81(4), 041101 (2010).
[Crossref]

Passow, T.

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

Pavolini, D.

D. Pavolini, A. Crubellier, P. Pillet, L. Cabaret, and S. Liberman, “Experimental evidence for subradiance,” Phys. Rev. Lett. 54(17), 1917–1920 (1985).
[Crossref] [PubMed]

Pease, A. C.

A. C. Pease, D. Solas, E. J. Sullivan, M. T. Cronin, C. P. Holmes, and S. P. Fodor, “Light-generated oligonucleotide arrays for rapid DNA sequence analysis,” Proc. Natl. Acad. Sci. U.S.A. 91(11), 5022–5026 (1994).
[Crossref] [PubMed]

Pillet, P.

D. Pavolini, A. Crubellier, P. Pillet, L. Cabaret, and S. Liberman, “Experimental evidence for subradiance,” Phys. Rev. Lett. 54(17), 1917–1920 (1985).
[Crossref] [PubMed]

Piovella, N.

T. Bienaimé, N. Piovella, and R. Kaiser, “Controlled Dicke Subradiance from a Large Cloud of Two-Level Systems,” Phys. Rev. Lett. 108(12), 123602 (2012).
[Crossref] [PubMed]

Polman, A.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

Povinelli, M. L.

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81(4), 041101 (2010).
[Crossref]

Pritchard, D. E.

S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, J. Stenger, D. E. Pritchard, and W. Ketterle, “Superradiant rayleigh scattering from a bose-einstein condensate,” Science 285(5427), 571–574 (1999).
[Crossref] [PubMed]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Pustovit, V. N.

V. N. Pustovit and T. V. Shahbazyan, “Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: the plasmonic Dicke effect,” Phys. Rev. Lett. 102(7), 077401 (2009).
[Crossref] [PubMed]

Rose, A.

Russell, K. J.

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

Samartsev, V. V.

A. A. Kalachev and V. V. Samartsev, “Quantum memory and quantum computations in the optical subradiance regime,” Quantum Electron. 35(8), 679–682 (2005).
[Crossref]

Sanders, B. C.

J. J. Choquette, K.-P. Marzlin, and B. C. Sanders, “Superradiance, subradiance, and suppressed superradiance of dipoles near a metal interface,” Phys. Rev. A 82(2), 023827 (2010).
[Crossref]

Sandhu, S.

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81(4), 041101 (2010).
[Crossref]

Scheibner, M.

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

Schmidt, T.

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

Schüppert, K.

B. Casabone, K. Friebe, B. Brandstätter, K. Schüppert, R. Blatt, and T. E. Northup, “Enhanced quantum interface with collective ion-cavity coupling,” Phys. Rev. Lett. 114(2), 023602 (2015).
[Crossref] [PubMed]

Scully, M. O.

M. O. Scully, “Single Photon Subradiance: Quantum Control of Spontaneous Emission and Ultrafast Readout,” Phys. Rev. Lett. 115(24), 243602 (2015).
[Crossref] [PubMed]

M. O. Scully and A. A. Svidzinsky, “Physics. The super of superradiance,” Science 325(5947), 1510–1511 (2009).
[Crossref] [PubMed]

Shahbazyan, T. V.

V. N. Pustovit and T. V. Shahbazyan, “Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: the plasmonic Dicke effect,” Phys. Rev. Lett. 102(7), 077401 (2009).
[Crossref] [PubMed]

Shahmoon, E.

E. Shahmoon and G. Kurizki, “Nonradiative interaction and entanglement between distant atoms,” Phys. Rev. A 87(3), 033831 (2013).
[Crossref]

Silveirinha, M.

M. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).
[Crossref]

M. Silveirinha and N. Engheta, “Tunneling of Electromagnetic Energy Through Subwavelength Channels and Bends Using ε-Near-Zero Materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

Silveirinha, M. G.

A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ε -near-zero-filled narrow channels,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1), 016604 (2008).
[Crossref] [PubMed]

Simpson, J. R.

E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in erbium-doped single-mode fibers,” J. Lightwave Technol. 7(5), 835–845 (1989).
[Crossref]

Smith, D. R.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

C. Ciracì, A. Rose, C. Argyropoulos, and D. R. Smith, “Numerical studies of the modification of photodynamic processes by film-coupled plasmonic nanoparticles,” J. Opt. Soc. Am. B 31(11), 2601 (2014).
[Crossref]

Sobhani, H.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Sokhoyan, R.

Solas, D.

A. C. Pease, D. Solas, E. J. Sullivan, M. T. Cronin, C. P. Holmes, and S. P. Fodor, “Light-generated oligonucleotide arrays for rapid DNA sequence analysis,” Proc. Natl. Acad. Sci. U.S.A. 91(11), 5022–5026 (1994).
[Crossref] [PubMed]

Sonnefraud, Y.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Stamper-Kurn, D. M.

S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, J. Stenger, D. E. Pritchard, and W. Ketterle, “Superradiant rayleigh scattering from a bose-einstein condensate,” Science 285(5427), 571–574 (1999).
[Crossref] [PubMed]

Stenger, J.

S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, J. Stenger, D. E. Pritchard, and W. Ketterle, “Superradiant rayleigh scattering from a bose-einstein condensate,” Science 285(5427), 571–574 (1999).
[Crossref] [PubMed]

Stone, K. W.

G. M. Akselrod, E. R. Young, K. W. Stone, A. Palatnik, V. Bulović, and Y. R. Tischler, “Reduced lasing threshold from organic dye microcavities,” Phys. Rev. B 90(3), 035209 (2014).
[Crossref]

Stuhrmann, N.

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81(4), 041101 (2010).
[Crossref]

Sullivan, E. J.

A. C. Pease, D. Solas, E. J. Sullivan, M. T. Cronin, C. P. Holmes, and S. P. Fodor, “Light-generated oligonucleotide arrays for rapid DNA sequence analysis,” Proc. Natl. Acad. Sci. U.S.A. 91(11), 5022–5026 (1994).
[Crossref] [PubMed]

Svidzinsky, A. A.

M. O. Scully and A. A. Svidzinsky, “Physics. The super of superradiance,” Science 325(5947), 1510–1511 (2009).
[Crossref] [PubMed]

Tai, N.-H.

Tam, F.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic Enhancement of Molecular Fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Tejedor, C.

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[Crossref] [PubMed]

Temnov, V. V.

V. V. Temnov and U. Woggon, “Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity,” Phys. Rev. Lett. 95(24), 243602 (2005).
[Crossref] [PubMed]

Thompson, J. K.

J. G. Bohnet, Z. Chen, J. M. Weiner, D. Meiser, M. J. Holland, and J. K. Thompson, “A steady-state superradiant laser with less than one intracavity photon,” Nature 484(7392), 78–81 (2012).
[Crossref] [PubMed]

Tischler, Y. R.

G. M. Akselrod, E. R. Young, K. W. Stone, A. Palatnik, V. Bulović, and Y. R. Tischler, “Reduced lasing threshold from organic dye microcavities,” Phys. Rev. B 90(3), 035209 (2014).
[Crossref]

Un, I.-W.

Van Dorpe, P.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Vandenbosch, G. A. E.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Verellen, N.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Vesseur, E. J. R.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

Weiner, J. M.

J. G. Bohnet, Z. Chen, J. M. Weiner, D. Meiser, M. J. Holland, and J. K. Thompson, “A steady-state superradiant laser with less than one intracavity photon,” Nature 484(7392), 78–81 (2012).
[Crossref] [PubMed]

Wiersig, J.

H. A. M. Leymann, A. Foerster, F. Jahnke, J. Wiersig, and C. Gies, “Sub- and Superradiance in Nanolasers,” Phys. Rev. Appl. 4(4), 044018 (2015).
[Crossref]

Woggon, U.

V. V. Temnov and U. Woggon, “Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity,” Phys. Rev. Lett. 95(24), 243602 (2005).
[Crossref] [PubMed]

Worschech, L.

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

Yacoby, A.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

Yen, T.-J.

Yi, S.

M. Zhou, S. Yi, T. S. Luk, Q. Gan, S. Fan, and Z. Yu, “Analog of superradiant emission in thermal emitters,” Phys. Rev. B 92(2), 024302 (2015).
[Crossref]

Young, E. R.

G. M. Akselrod, E. R. Young, K. W. Stone, A. Palatnik, V. Bulović, and Y. R. Tischler, “Reduced lasing threshold from organic dye microcavities,” Phys. Rev. B 90(3), 035209 (2014).
[Crossref]

Yu, Z.

M. Zhou, S. Yi, T. S. Luk, Q. Gan, S. Fan, and Z. Yu, “Analog of superradiant emission in thermal emitters,” Phys. Rev. B 92(2), 024302 (2015).
[Crossref]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhou, M.

M. Zhou, S. Yi, T. S. Luk, Q. Gan, S. Fan, and Z. Yu, “Analog of superradiant emission in thermal emitters,” Phys. Rev. B 92(2), 024302 (2015).
[Crossref]

ACS Nano (1)

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Europhys. Lett. (1)

I. M. Mirza and T. Begzjav, “Fano-Agarwal couplings and non-rotating wave approximation in single-photon timed Dicke subradiance,” Europhys. Lett. 114(2), 24004 (2016).

J. Lightwave Technol. (1)

E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in erbium-doped single-mode fibers,” J. Lightwave Technol. 7(5), 835–845 (1989).
[Crossref]

J. Opt. Soc. Am. B (1)

Materials (Basel) (1)

A. Alù and N. Engheta, “Emission Enhancement in a Plasmonic Waveguide at Cut-Off,” Materials (Basel) 4(12), 141–152 (2011).
[Crossref]

Nano Lett. (3)

G. M. Akselrod, T. Ming, C. Argyropoulos, T. B. Hoang, Y. Lin, X. Ling, D. R. Smith, J. Kong, and M. H. Mikkelsen, “Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors,” Nano Lett. 15(5), 3578–3584 (2015).
[Crossref] [PubMed]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic Enhancement of Molecular Fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

D. Martín-Cano, L. Martín-Moreno, F. J. García-Vidal, and E. Moreno, “Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides,” Nano Lett. 10(8), 3129–3134 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

Nat. Photonics (5)

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Nat. Phys. (1)

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

Nature (2)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

J. G. Bohnet, Z. Chen, J. M. Weiner, D. Meiser, M. J. Holland, and J. K. Thompson, “A steady-state superradiant laser with less than one intracavity photon,” Nature 484(7392), 78–81 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. (2)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

R. H. Dicke, “Coherence in Spontaneous Radiation Processes,” Phys. Rev. 93(1), 99–110 (1954).
[Crossref]

Phys. Rev. A (5)

J. J. Choquette, K.-P. Marzlin, and B. C. Sanders, “Superradiance, subradiance, and suppressed superradiance of dipoles near a metal interface,” Phys. Rev. A 82(2), 023827 (2010).
[Crossref]

J. Kästel and M. Fleischhauer, “Suppression of spontaneous emission and superradiance over macroscopic distances in media with negative refraction,” Phys. Rev. A 71(1), 011804 (2005).
[Crossref]

E. Shahmoon and G. Kurizki, “Nonradiative interaction and entanglement between distant atoms,” Phys. Rev. A 87(3), 033831 (2013).
[Crossref]

A. Kalachev and S. Kröll, “Coherent control of collective spontaneous emission in an extended atomic ensemble and quantum storage,” Phys. Rev. A 74(2), 023814 (2006).
[Crossref]

A. Kalachev, “Quantum storage on subradiant states in an extended atomic ensemble,” Phys. Rev. A 76(4), 043812 (2007).
[Crossref]

Phys. Rev. Appl. (1)

H. A. M. Leymann, A. Foerster, F. Jahnke, J. Wiersig, and C. Gies, “Sub- and Superradiance in Nanolasers,” Phys. Rev. Appl. 4(4), 044018 (2015).
[Crossref]

Phys. Rev. B (9)

R. Fleury and A. Alù, “Enhanced superradiance in epsilon-near-zero plasmonic channels,” Phys. Rev. B 87(20), 201101 (2013).
[Crossref]

J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81(4), 041101 (2010).
[Crossref]

M. Zhou, S. Yi, T. S. Luk, Q. Gan, S. Fan, and Z. Yu, “Analog of superradiant emission in thermal emitters,” Phys. Rev. B 92(2), 024302 (2015).
[Crossref]

C. Argyropoulos, G. D’Aguanno, and A. Alù, “Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial,” Phys. Rev. B 89(23), 235401 (2014).
[Crossref]

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε -near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

A. Alù and N. Engheta, “Light squeezing through arbitrarily shaped plasmonic channels and sharp bends,” Phys. Rev. B 78(3), 035440 (2008).
[Crossref]

M. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).
[Crossref]

G. M. Akselrod, E. R. Young, K. W. Stone, A. Palatnik, V. Bulović, and Y. R. Tischler, “Reduced lasing threshold from organic dye microcavities,” Phys. Rev. B 90(3), 035209 (2014).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ε -near-zero-filled narrow channels,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1), 016604 (2008).
[Crossref] [PubMed]

Phys. Rev. Lett. (13)

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

A. Alù and N. Engheta, “All Optical Metamaterial Circuit Board at the Nanoscale,” Phys. Rev. Lett. 103(14), 143902 (2009).
[Crossref] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

V. N. Pustovit and T. V. Shahbazyan, “Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: the plasmonic Dicke effect,” Phys. Rev. Lett. 102(7), 077401 (2009).
[Crossref] [PubMed]

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[Crossref] [PubMed]

B. Casabone, K. Friebe, B. Brandstätter, K. Schüppert, R. Blatt, and T. E. Northup, “Enhanced quantum interface with collective ion-cavity coupling,” Phys. Rev. Lett. 114(2), 023602 (2015).
[Crossref] [PubMed]

V. V. Temnov and U. Woggon, “Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity,” Phys. Rev. Lett. 95(24), 243602 (2005).
[Crossref] [PubMed]

D. Pavolini, A. Crubellier, P. Pillet, L. Cabaret, and S. Liberman, “Experimental evidence for subradiance,” Phys. Rev. Lett. 54(17), 1917–1920 (1985).
[Crossref] [PubMed]

T. Bienaimé, N. Piovella, and R. Kaiser, “Controlled Dicke Subradiance from a Large Cloud of Two-Level Systems,” Phys. Rev. Lett. 108(12), 123602 (2012).
[Crossref] [PubMed]

M. Silveirinha and N. Engheta, “Tunneling of Electromagnetic Energy Through Subwavelength Channels and Bends Using ε-Near-Zero Materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

W. Guerin, M. O. Araújo, and R. Kaiser, “Subradiance in a Large Cloud of Cold Atoms,” Phys. Rev. Lett. 116(8), 083601 (2016).
[Crossref] [PubMed]

R. G. DeVoe and R. G. Brewer, “Observation of superradiant and subradiant spontaneous emission of two trapped ions,” Phys. Rev. Lett. 76(12), 2049–2052 (1996).
[Crossref] [PubMed]

M. O. Scully, “Single Photon Subradiance: Quantum Control of Spontaneous Emission and Ultrafast Readout,” Phys. Rev. Lett. 115(24), 243602 (2015).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. C. Pease, D. Solas, E. J. Sullivan, M. T. Cronin, C. P. Holmes, and S. P. Fodor, “Light-generated oligonucleotide arrays for rapid DNA sequence analysis,” Proc. Natl. Acad. Sci. U.S.A. 91(11), 5022–5026 (1994).
[Crossref] [PubMed]

Quantum Electron. (1)

A. A. Kalachev and V. V. Samartsev, “Quantum memory and quantum computations in the optical subradiance regime,” Quantum Electron. 35(8), 679–682 (2005).
[Crossref]

Science (3)

E. Betzig and R. J. Chichester, “Single Molecules Observed by Near-Field Scanning Optical Microscopy,” Science 262(5138), 1422–1425 (1993).
[Crossref] [PubMed]

S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, J. Stenger, D. E. Pritchard, and W. Ketterle, “Superradiant rayleigh scattering from a bose-einstein condensate,” Science 285(5427), 571–574 (1999).
[Crossref] [PubMed]

M. O. Scully and A. A. Svidzinsky, “Physics. The super of superradiance,” Science 325(5947), 1510–1511 (2009).
[Crossref] [PubMed]

Sov. Phys. Usp. (1)

A. V. Andreev, V. I. Emel’yanov, and Y. A. Il’inskiĭ, “Collective spontaneous emission (Dicke superradiance),” Sov. Phys. Usp. 23(8), 493–514 (1980).
[Crossref]

Other (2)

M. G. Benedict and E. D. Trifonov, Laser Fundamentals. Part 2 (Springer, 2006), Chap. 6.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006), Chap. 8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Geometry of the silver plasmonic waveguide loaded with glass. A rectangular slit is carved in a silver screen. (a) The device is excited by a plane wave impinging at normal incidence and the transmittance is calculated. (b) Cross-sectional view of the unit cell geometry. (c) A single emitter is placed inside the plasmonic channel to calculate the spontaneous emission rate. (d) A pair of two-level quantum emitters is placed inside the plasmonic channel to investigate the effect of superradiance and subradiance.

Fig. 2
Fig. 2

(a) Transmittance of the plasmonic channel as a function of the incident wavelength. (b) The total electric field enhancement distribution in the channel’s yz-plane operating at the ENZ and FP resonant wavelengths.

Fig. 3
Fig. 3

(a, c) Normalized spontaneous decay rate γ s p / γ s p 0 and (b, d) radiative quantum yield Q Y = γ r / γ s p distributions excited by one emitter located at the channel’s yz-plane and emitting at the (a, b) ENZ and (c, d) FP resonant wavelengths. The y and z axes in these figures scale with the simulated 4 × 50 discrete grid used to place the emitter at the channel’s yz-plane.

Fig. 4
Fig. 4

(a) Normalized radiation pattern in the yz-plane and (b) in the xy-plane for a dipole emitter placed inside the plasmonic waveguide channel at the ENZ resonance. Inset: Three-dimensional radiation pattern.

Fig. 5
Fig. 5

(a) Normalized collective decay factor γ versus the separation distance d at the ENZ (λ = 1012nm/black curve) and FP (λ = 922nm/red curve) resonances. The blue curve shows the variation of γ when the two emitters are placed in free space. The green dashed line depicts the end of the plasmonic channel. (b) Normalized decay factor γ versus the excited wavelength λ for two different emitter separation distances: d = 240 nm (black curve) and d = 480 nm (red curve).

Fig. 6
Fig. 6

Distribution of normalized collective decay factor γ excited by N = 100 emitters at the ENZ resonant wavelength. The emitters are uniformly located at the channel’s yz-plane. The y and z axes scale with the simulated 4 × 25 discrete grid used to place N = 100 emitters along the channel’s yz-plane. Each position on the discrete grid corresponds to one emitter.

Fig. 7
Fig. 7

Normalized time-dependent emission decay curves for the plasmonic waveguide excited by one emitter (red curve), two emitters (blue curve) and 100 emitters (black curve).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

γ s p = π ω 0 3 ε 0 | μ | 2 ρ ( r 0 , ω 0 ) ,
ρ ( r 0 , ω 0 ) = 6 ω 0 π c 2 [ n ^ Im { G ( r , r 0 ) } n ^ ] ,
E ( r ) = ω 0 2 μ 0 μ G ( r , r ) μ ,
γ i j = 2 ω 0 2 ε 0 c 2 Im [ μ i G ( r i , r j ) μ j ] ,
γ = γ 11 + γ 12 + γ 22 + γ 21 γ 11 + γ 22 .
W n ^ ( r , t ) | E e x ( r ) n ^ | 2 γ r ( r ) exp [ γ s p ( r , n ^ ) t ] ,
γ s p ( r , n ^ ) = γ s p ( r , z ^ ) cos 2 θ ,
W ¯ ( r , t ) = 1 4 π 0 2 π 0 π W n ^ ( r , t ) sin θ d θ d ϕ 1 2 | E e x ( r ) | 2 γ r ( r ) 0 π cos 2 θ exp [ γ s p ( r , z ^ ) cos 2 θ t ] sin θ d θ .

Metrics