Abstract

We demonstrate a robust, all-fiber, two-wavelength time-lens source for background-free coherent anti-Stokes Raman scattering imaging. The time-lens source generates two picosecond pulse trains simultaneously: one at 1064 nm and the other tunable between 1040 nm and 1075 nm (~400 mW for each wavelength). When synchronized to a mode-locked Ti:Sapphire laser, the two wavelengths are used to obtain on- and off-resonance coherent anti-Stokes Raman scattering images. Real-time subtraction of the nonresonant background in the coherent anti-Stokes Raman scattering image is achieved by the synchronization of the pixel clock and the time-lens source. Background-free coherent anti-Stokes Raman scattering imaging of sebaceous glands in ex vivo mouse tissue is demonstrated.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Synchronized time-lens source for coherent Raman scattering microscopy

Ke Wang, Christian W. Freudiger, Jennifer H. Lee, Brian G. Saar, X. Sunney Xie, and Chris Xu
Opt. Express 18(23) 24019-24024 (2010)

Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths

Sangeeta Murugkar, Craig Brideau, Andrew Ridsdale, Majid Naji, Peter K. Stys, and Hanan Anis
Opt. Express 15(21) 14028-14037 (2007)

References

  • View by:
  • |
  • |
  • |

  1. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [Crossref]
  2. M. Müller and A. Zumbusch, “Coherent anti-Stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2156–2170 (2007).
    [Crossref] [PubMed]
  3. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref] [PubMed]
  4. J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
    [Crossref] [PubMed]
  5. S. Akhmanov, A. Bunkin, S. Ivanov, and N. Koroteev, “Coherent ellipsometry of Raman scattering of light,” J. Exp. Theor. Phys. 25, 416 (1977).
  6. J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
    [Crossref]
  7. J.-X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
    [Crossref] [PubMed]
  8. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
    [Crossref]
  9. C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett. 29(24), 2923–2925 (2004).
    [Crossref] [PubMed]
  10. G. W. Wurpel, J. M. Schins, and M. Müller, “Direct measurement of chain order in single phospholipid mono-and bilayers with multiplex CARS,” J. Phys. Chem. B 108(11), 3400–3403 (2004).
    [Crossref]
  11. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
    [Crossref] [PubMed]
  12. B. von Vacano, T. Buckup, and M. Motzkus, “Highly sensitive single-beam heterodyne coherent anti-Stokes Raman scattering,” Opt. Lett. 31(16), 2495–2497 (2006).
    [Crossref] [PubMed]
  13. E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006).
    [Crossref] [PubMed]
  14. H. A. Rinia, M. Bonn, M. Müller, and E. M. Vartiainen, “Quantitative CARS spectroscopy using the maximum entropy method: the main lipid phase transition,” ChemPhysChem 8(2), 279–287 (2007).
    [Crossref] [PubMed]
  15. S. Postma, A. C. van Rhijn, J. P. Korterik, P. Gross, J. L. Herek, and H. L. Offerhaus, “Application of spectral phase shaping to high resolution CARS spectroscopy,” Opt. Express 16(11), 7985–7996 (2008).
    [Crossref] [PubMed]
  16. J. Lin, F. Lu, H. Wang, W. Zheng, C. J. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95(13), 133703 (2009).
    [Crossref]
  17. M. Duncan, J. Reintjes, and T. Manuccia, “Imaging biological compounds using the coherent anti-Stokes Raman scattering microscope,” Opt. Eng. 24(2), 242352 (1985).
    [Crossref]
  18. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
    [Crossref] [PubMed]
  19. L. Li, H. Wang, and J.-X. Cheng, “Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in coexisting domains,” Biophys. J. 89(5), 3480–3490 (2005).
    [Crossref] [PubMed]
  20. M. Zimmerley, C.-Y. Lin, D. C. Oertel, J. M. Marsh, J. L. Ward, and E. O. Potma, “Quantitative detection of chemical compounds in human hair with coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 14(4), 044019 (2009).
    [Crossref] [PubMed]
  21. C. Fang, F. Lu, W. Zheng, and Z. Huang, “Triple-frequency symmetric subtraction scheme for nonresonant background suppression in coherent anti-Stokes Raman scattering (CARS) microscopy,” Opt. Express 18(15), 15714–15724 (2010).
    [Crossref] [PubMed]
  22. A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
    [Crossref] [PubMed]
  23. K. Chen, T. Wu, H. Wei, T. Zhou, and Y. Li, “Quantitative chemical imaging with background-free multiplex coherent anti-Stokes Raman scattering by dual-soliton Stokes pulses,” Biomed. Opt. Express 7(10), 3927–3939 (2016).
    [Crossref]
  24. M. Andreana, M.-A. Houle, D. J. Moffatt, A. Ridsdale, E. Buettner, F. Légaré, and A. Stolow, “Amplitude and polarization modulated hyperspectral Stimulated Raman Scattering Microscopy,” Opt. Express 23(22), 28119–28131 (2015).
    [Crossref] [PubMed]
  25. O. Burkacky, A. Zumbusch, C. Brackmann, and A. Enejder, “Dual-pump coherent anti-Stokes-Raman scattering microscopy,” Opt. Lett. 31(24), 3656–3658 (2006).
    [Crossref] [PubMed]
  26. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
    [Crossref] [PubMed]
  27. E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett. 27(13), 1168–1170 (2002).
    [Crossref] [PubMed]
  28. Y. Ozeki, Y. Kitagawa, K. Sumimura, N. Nishizawa, W. Umemura, S. Kajiyama, K. Fukui, and K. Itoh, “Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses,” Opt. Express 18(13), 13708–13719 (2010).
    [Crossref] [PubMed]
  29. K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, “High-power picosecond fiber source for coherent Raman microscopy,” Opt. Lett. 34(13), 2051–2053 (2009).
    [Crossref] [PubMed]
  30. F. Svedberg, C. Brackmann, T. Hellerer, and A. Enejder, “Nonlinear microscopy with fiber laser continuum excitation,” J. Biomed. Opt. 15(2), 026026 (2010).
    [Crossref] [PubMed]
  31. G. Krauss, T. Hanke, A. Sell, D. Träutlein, A. Leitenstorfer, R. Selm, M. Winterhalder, and A. Zumbusch, “Compact coherent anti-Stokes Raman scattering microscope based on a picosecond two-color Er:fiber laser system,” Opt. Lett. 34(18), 2847–2849 (2009).
    [Crossref] [PubMed]
  32. S. Bégin, B. Burgoyne, V. Mercier, A. Villeneuve, R. Vallée, and D. Côté, “Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system,” Biomed. Opt. Express 2(5), 1296–1306 (2011).
    [Crossref] [PubMed]
  33. K. Wang, C. W. Freudiger, J. H. Lee, B. G. Saar, X. S. Xie, and C. Xu, “Synchronized time-lens source for coherent Raman scattering microscopy,” Opt. Express 18(23), 24019–24024 (2010).
    [Crossref] [PubMed]
  34. K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J.-X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J. Biophotonics 6(10), 815–820 (2013).
    [PubMed]
  35. E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
    [Crossref]
  36. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951 (1994).
    [Crossref]
  37. B. Li, M. Li, S. Lou, and J. Azaña, “Linear optical pulse compression based on temporal zone plates,” Opt. Express 21(14), 16814–16830 (2013).
    [Crossref] [PubMed]

2016 (1)

2015 (2)

2014 (1)

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

2013 (2)

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J.-X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J. Biophotonics 6(10), 815–820 (2013).
[PubMed]

B. Li, M. Li, S. Lou, and J. Azaña, “Linear optical pulse compression based on temporal zone plates,” Opt. Express 21(14), 16814–16830 (2013).
[Crossref] [PubMed]

2011 (1)

2010 (4)

2009 (4)

K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, “High-power picosecond fiber source for coherent Raman microscopy,” Opt. Lett. 34(13), 2051–2053 (2009).
[Crossref] [PubMed]

G. Krauss, T. Hanke, A. Sell, D. Träutlein, A. Leitenstorfer, R. Selm, M. Winterhalder, and A. Zumbusch, “Compact coherent anti-Stokes Raman scattering microscope based on a picosecond two-color Er:fiber laser system,” Opt. Lett. 34(18), 2847–2849 (2009).
[Crossref] [PubMed]

M. Zimmerley, C.-Y. Lin, D. C. Oertel, J. M. Marsh, J. L. Ward, and E. O. Potma, “Quantitative detection of chemical compounds in human hair with coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 14(4), 044019 (2009).
[Crossref] [PubMed]

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95(13), 133703 (2009).
[Crossref]

2008 (2)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

S. Postma, A. C. van Rhijn, J. P. Korterik, P. Gross, J. L. Herek, and H. L. Offerhaus, “Application of spectral phase shaping to high resolution CARS spectroscopy,” Opt. Express 16(11), 7985–7996 (2008).
[Crossref] [PubMed]

2007 (2)

M. Müller and A. Zumbusch, “Coherent anti-Stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2156–2170 (2007).
[Crossref] [PubMed]

H. A. Rinia, M. Bonn, M. Müller, and E. M. Vartiainen, “Quantitative CARS spectroscopy using the maximum entropy method: the main lipid phase transition,” ChemPhysChem 8(2), 279–287 (2007).
[Crossref] [PubMed]

2006 (4)

2005 (2)

L. Li, H. Wang, and J.-X. Cheng, “Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in coexisting domains,” Biophys. J. 89(5), 3480–3490 (2005).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

2004 (2)

2002 (3)

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[Crossref]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett. 27(13), 1168–1170 (2002).
[Crossref] [PubMed]

2001 (2)

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[Crossref]

J.-X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[Crossref] [PubMed]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

1994 (1)

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951 (1994).
[Crossref]

1985 (1)

M. Duncan, J. Reintjes, and T. Manuccia, “Imaging biological compounds using the coherent anti-Stokes Raman scattering microscope,” Opt. Eng. 24(2), 242352 (1985).
[Crossref]

1977 (1)

S. Akhmanov, A. Bunkin, S. Ivanov, and N. Koroteev, “Coherent ellipsometry of Raman scattering of light,” J. Exp. Theor. Phys. 25, 416 (1977).

1969 (1)

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

Akhmanov, S.

S. Akhmanov, A. Bunkin, S. Ivanov, and N. Koroteev, “Coherent ellipsometry of Raman scattering of light,” J. Exp. Theor. Phys. 25, 416 (1977).

Andreana, M.

Azaña, J.

Bégin, S.

Bonn, M.

H. A. Rinia, M. Bonn, M. Müller, and E. M. Vartiainen, “Quantitative CARS spectroscopy using the maximum entropy method: the main lipid phase transition,” ChemPhysChem 8(2), 279–287 (2007).
[Crossref] [PubMed]

Book, L. D.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[Crossref]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[Crossref]

J.-X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[Crossref] [PubMed]

Brackmann, C.

F. Svedberg, C. Brackmann, T. Hellerer, and A. Enejder, “Nonlinear microscopy with fiber laser continuum excitation,” J. Biomed. Opt. 15(2), 026026 (2010).
[Crossref] [PubMed]

O. Burkacky, A. Zumbusch, C. Brackmann, and A. Enejder, “Dual-pump coherent anti-Stokes-Raman scattering microscopy,” Opt. Lett. 31(24), 3656–3658 (2006).
[Crossref] [PubMed]

Buckup, T.

Buettner, E.

Bunkin, A.

S. Akhmanov, A. Bunkin, S. Ivanov, and N. Koroteev, “Coherent ellipsometry of Raman scattering of light,” J. Exp. Theor. Phys. 25, 416 (1977).

Burgoyne, B.

Burkacky, O.

Charan, K.

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J.-X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J. Biophotonics 6(10), 815–820 (2013).
[PubMed]

Chen, K.

Cheng, J.-X.

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
[Crossref] [PubMed]

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J.-X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J. Biophotonics 6(10), 815–820 (2013).
[PubMed]

L. Li, H. Wang, and J.-X. Cheng, “Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in coexisting domains,” Biophys. J. 89(5), 3480–3490 (2005).
[Crossref] [PubMed]

E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett. 27(13), 1168–1170 (2002).
[Crossref] [PubMed]

J.-X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[Crossref] [PubMed]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[Crossref]

Côté, D.

S. Bégin, B. Burgoyne, V. Mercier, A. Villeneuve, R. Vallée, and D. Côté, “Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system,” Biomed. Opt. Express 2(5), 1296–1306 (2011).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

Duncan, M.

M. Duncan, J. Reintjes, and T. Manuccia, “Imaging biological compounds using the coherent anti-Stokes Raman scattering microscope,” Opt. Eng. 24(2), 242352 (1985).
[Crossref]

Enejder, A.

F. Svedberg, C. Brackmann, T. Hellerer, and A. Enejder, “Nonlinear microscopy with fiber laser continuum excitation,” J. Biomed. Opt. 15(2), 026026 (2010).
[Crossref] [PubMed]

O. Burkacky, A. Zumbusch, C. Brackmann, and A. Enejder, “Dual-pump coherent anti-Stokes-Raman scattering microscopy,” Opt. Lett. 31(24), 3656–3658 (2006).
[Crossref] [PubMed]

Evans, C. L.

Fang, C.

Freudiger, C. W.

K. Wang, C. W. Freudiger, J. H. Lee, B. G. Saar, X. S. Xie, and C. Xu, “Synchronized time-lens source for coherent Raman scattering microscopy,” Opt. Express 18(23), 24019–24024 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Fukui, K.

Ganikhanov, F.

Gross, P.

Hanke, T.

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Hellerer, T.

F. Svedberg, C. Brackmann, T. Hellerer, and A. Enejder, “Nonlinear microscopy with fiber laser continuum excitation,” J. Biomed. Opt. 15(2), 026026 (2010).
[Crossref] [PubMed]

Herek, J. L.

Holtom, G. R.

K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, “High-power picosecond fiber source for coherent Raman microscopy,” Opt. Lett. 34(13), 2051–2053 (2009).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Houle, M.-A.

Huang, Z.

C. Fang, F. Lu, W. Zheng, and Z. Huang, “Triple-frequency symmetric subtraction scheme for nonresonant background suppression in coherent anti-Stokes Raman scattering (CARS) microscopy,” Opt. Express 18(15), 15714–15724 (2010).
[Crossref] [PubMed]

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95(13), 133703 (2009).
[Crossref]

Itoh, K.

Ivanov, S.

S. Akhmanov, A. Bunkin, S. Ivanov, and N. Koroteev, “Coherent ellipsometry of Raman scattering of light,” J. Exp. Theor. Phys. 25, 416 (1977).

Jones, D. J.

Kajiyama, S.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Kieu, K.

Kitagawa, Y.

Kolner, B. H.

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951 (1994).
[Crossref]

Koroteev, N.

S. Akhmanov, A. Bunkin, S. Ivanov, and N. Koroteev, “Coherent ellipsometry of Raman scattering of light,” J. Exp. Theor. Phys. 25, 416 (1977).

Korterik, J. P.

Krauss, G.

Lee, J. H.

Légaré, F.

Leitenstorfer, A.

Li, B.

Li, L.

L. Li, H. Wang, and J.-X. Cheng, “Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in coexisting domains,” Biophys. J. 89(5), 3480–3490 (2005).
[Crossref] [PubMed]

Li, M.

Li, Y.

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Lin, C.-Y.

M. Zimmerley, C.-Y. Lin, D. C. Oertel, J. M. Marsh, J. L. Ward, and E. O. Potma, “Quantitative detection of chemical compounds in human hair with coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 14(4), 044019 (2009).
[Crossref] [PubMed]

Lin, J.

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95(13), 133703 (2009).
[Crossref]

Lou, S.

Lu, F.

C. Fang, F. Lu, W. Zheng, and Z. Huang, “Triple-frequency symmetric subtraction scheme for nonresonant background suppression in coherent anti-Stokes Raman scattering (CARS) microscopy,” Opt. Express 18(15), 15714–15724 (2010).
[Crossref] [PubMed]

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95(13), 133703 (2009).
[Crossref]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Manuccia, T.

M. Duncan, J. Reintjes, and T. Manuccia, “Imaging biological compounds using the coherent anti-Stokes Raman scattering microscope,” Opt. Eng. 24(2), 242352 (1985).
[Crossref]

Marsh, J. M.

M. Zimmerley, C.-Y. Lin, D. C. Oertel, J. M. Marsh, J. L. Ward, and E. O. Potma, “Quantitative detection of chemical compounds in human hair with coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 14(4), 044019 (2009).
[Crossref] [PubMed]

Mercier, V.

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Moffatt, D. J.

M. Andreana, M.-A. Houle, D. J. Moffatt, A. Ridsdale, E. Buettner, F. Légaré, and A. Stolow, “Amplitude and polarization modulated hyperspectral Stimulated Raman Scattering Microscopy,” Opt. Express 23(22), 28119–28131 (2015).
[Crossref] [PubMed]

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

Motzkus, M.

Müller, M.

M. Müller and A. Zumbusch, “Coherent anti-Stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2156–2170 (2007).
[Crossref] [PubMed]

H. A. Rinia, M. Bonn, M. Müller, and E. M. Vartiainen, “Quantitative CARS spectroscopy using the maximum entropy method: the main lipid phase transition,” ChemPhysChem 8(2), 279–287 (2007).
[Crossref] [PubMed]

G. W. Wurpel, J. M. Schins, and M. Müller, “Direct measurement of chain order in single phospholipid mono-and bilayers with multiplex CARS,” J. Phys. Chem. B 108(11), 3400–3403 (2004).
[Crossref]

Nishizawa, N.

Oertel, D. C.

M. Zimmerley, C.-Y. Lin, D. C. Oertel, J. M. Marsh, J. L. Ward, and E. O. Potma, “Quantitative detection of chemical compounds in human hair with coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 14(4), 044019 (2009).
[Crossref] [PubMed]

Offerhaus, H. L.

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

Ozeki, Y.

Pegoraro, A. F.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

Postma, S.

Potma, E. O.

M. Zimmerley, C.-Y. Lin, D. C. Oertel, J. M. Marsh, J. L. Ward, and E. O. Potma, “Quantitative detection of chemical compounds in human hair with coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 14(4), 044019 (2009).
[Crossref] [PubMed]

E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett. 29(24), 2923–2925 (2004).
[Crossref] [PubMed]

E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett. 27(13), 1168–1170 (2002).
[Crossref] [PubMed]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Reintjes, J.

M. Duncan, J. Reintjes, and T. Manuccia, “Imaging biological compounds using the coherent anti-Stokes Raman scattering microscope,” Opt. Eng. 24(2), 242352 (1985).
[Crossref]

Ridsdale, A.

M. Andreana, M.-A. Houle, D. J. Moffatt, A. Ridsdale, E. Buettner, F. Légaré, and A. Stolow, “Amplitude and polarization modulated hyperspectral Stimulated Raman Scattering Microscopy,” Opt. Express 23(22), 28119–28131 (2015).
[Crossref] [PubMed]

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

Rinia, H. A.

H. A. Rinia, M. Bonn, M. Müller, and E. M. Vartiainen, “Quantitative CARS spectroscopy using the maximum entropy method: the main lipid phase transition,” ChemPhysChem 8(2), 279–287 (2007).
[Crossref] [PubMed]

Saar, B. G.

Schins, J. M.

G. W. Wurpel, J. M. Schins, and M. Müller, “Direct measurement of chain order in single phospholipid mono-and bilayers with multiplex CARS,” J. Phys. Chem. B 108(11), 3400–3403 (2004).
[Crossref]

Sell, A.

Selm, R.

Sheppard, C. J.

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95(13), 133703 (2009).
[Crossref]

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

Slepkov, A. D.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

Slipchenko, M. N.

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J.-X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J. Biophotonics 6(10), 815–820 (2013).
[PubMed]

Stolow, A.

M. Andreana, M.-A. Houle, D. J. Moffatt, A. Ridsdale, E. Buettner, F. Légaré, and A. Stolow, “Amplitude and polarization modulated hyperspectral Stimulated Raman Scattering Microscopy,” Opt. Express 23(22), 28119–28131 (2015).
[Crossref] [PubMed]

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

Sumimura, K.

Svedberg, F.

F. Svedberg, C. Brackmann, T. Hellerer, and A. Enejder, “Nonlinear microscopy with fiber laser continuum excitation,” J. Biomed. Opt. 15(2), 026026 (2010).
[Crossref] [PubMed]

Träutlein, D.

Treacy, E.

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Umemura, W.

Vallée, R.

van Rhijn, A. C.

Vartiainen, E. M.

H. A. Rinia, M. Bonn, M. Müller, and E. M. Vartiainen, “Quantitative CARS spectroscopy using the maximum entropy method: the main lipid phase transition,” ChemPhysChem 8(2), 279–287 (2007).
[Crossref] [PubMed]

Villeneuve, A.

Volkmer, A.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[Crossref]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[Crossref]

von Vacano, B.

Wang, H.

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95(13), 133703 (2009).
[Crossref]

L. Li, H. Wang, and J.-X. Cheng, “Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in coexisting domains,” Biophys. J. 89(5), 3480–3490 (2005).
[Crossref] [PubMed]

Wang, K.

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J.-X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J. Biophotonics 6(10), 815–820 (2013).
[PubMed]

K. Wang, C. W. Freudiger, J. H. Lee, B. G. Saar, X. S. Xie, and C. Xu, “Synchronized time-lens source for coherent Raman scattering microscopy,” Opt. Express 18(23), 24019–24024 (2010).
[Crossref] [PubMed]

Wang, P.

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J.-X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J. Biophotonics 6(10), 815–820 (2013).
[PubMed]

Ward, J. L.

M. Zimmerley, C.-Y. Lin, D. C. Oertel, J. M. Marsh, J. L. Ward, and E. O. Potma, “Quantitative detection of chemical compounds in human hair with coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 14(4), 044019 (2009).
[Crossref] [PubMed]

Wei, H.

Winterhalder, M.

Wise, F. W.

Wu, T.

Wurpel, G. W.

G. W. Wurpel, J. M. Schins, and M. Müller, “Direct measurement of chain order in single phospholipid mono-and bilayers with multiplex CARS,” J. Phys. Chem. B 108(11), 3400–3403 (2004).
[Crossref]

Xie, X. S.

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
[Crossref] [PubMed]

K. Wang, C. W. Freudiger, J. H. Lee, B. G. Saar, X. S. Xie, and C. Xu, “Synchronized time-lens source for coherent Raman scattering microscopy,” Opt. Express 18(23), 24019–24024 (2010).
[Crossref] [PubMed]

K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, “High-power picosecond fiber source for coherent Raman microscopy,” Opt. Lett. 34(13), 2051–2053 (2009).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
[Crossref] [PubMed]

E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett. 29(24), 2923–2925 (2004).
[Crossref] [PubMed]

E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett. 27(13), 1168–1170 (2002).
[Crossref] [PubMed]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[Crossref]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[Crossref]

J.-X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Xu, C.

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J.-X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J. Biophotonics 6(10), 815–820 (2013).
[PubMed]

K. Wang, C. W. Freudiger, J. H. Lee, B. G. Saar, X. S. Xie, and C. Xu, “Synchronized time-lens source for coherent Raman scattering microscopy,” Opt. Express 18(23), 24019–24024 (2010).
[Crossref] [PubMed]

Ye, J.

Zhang, D.

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J.-X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J. Biophotonics 6(10), 815–820 (2013).
[PubMed]

Zheng, W.

C. Fang, F. Lu, W. Zheng, and Z. Huang, “Triple-frequency symmetric subtraction scheme for nonresonant background suppression in coherent anti-Stokes Raman scattering (CARS) microscopy,” Opt. Express 18(15), 15714–15724 (2010).
[Crossref] [PubMed]

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95(13), 133703 (2009).
[Crossref]

Zhou, T.

Zimmerley, M.

M. Zimmerley, C.-Y. Lin, D. C. Oertel, J. M. Marsh, J. L. Ward, and E. O. Potma, “Quantitative detection of chemical compounds in human hair with coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 14(4), 044019 (2009).
[Crossref] [PubMed]

Zumbusch, A.

Appl. Phys. Lett. (2)

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[Crossref]

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95(13), 133703 (2009).
[Crossref]

Biomed. Opt. Express (2)

Biophys. J. (1)

L. Li, H. Wang, and J.-X. Cheng, “Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in coexisting domains,” Biophys. J. 89(5), 3480–3490 (2005).
[Crossref] [PubMed]

ChemPhysChem (2)

H. A. Rinia, M. Bonn, M. Müller, and E. M. Vartiainen, “Quantitative CARS spectroscopy using the maximum entropy method: the main lipid phase transition,” ChemPhysChem 8(2), 279–287 (2007).
[Crossref] [PubMed]

M. Müller and A. Zumbusch, “Coherent anti-Stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2156–2170 (2007).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (2)

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951 (1994).
[Crossref]

J. Biomed. Opt. (2)

F. Svedberg, C. Brackmann, T. Hellerer, and A. Enejder, “Nonlinear microscopy with fiber laser continuum excitation,” J. Biomed. Opt. 15(2), 026026 (2010).
[Crossref] [PubMed]

M. Zimmerley, C.-Y. Lin, D. C. Oertel, J. M. Marsh, J. L. Ward, and E. O. Potma, “Quantitative detection of chemical compounds in human hair with coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 14(4), 044019 (2009).
[Crossref] [PubMed]

J. Biophotonics (2)

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J.-X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J. Biophotonics 6(10), 815–820 (2013).
[PubMed]

J. Exp. Theor. Phys. (1)

S. Akhmanov, A. Bunkin, S. Ivanov, and N. Koroteev, “Coherent ellipsometry of Raman scattering of light,” J. Exp. Theor. Phys. 25, 416 (1977).

J. Phys. Chem. B (2)

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[Crossref]

G. W. Wurpel, J. M. Schins, and M. Müller, “Direct measurement of chain order in single phospholipid mono-and bilayers with multiplex CARS,” J. Phys. Chem. B 108(11), 3400–3403 (2004).
[Crossref]

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

Opt. Eng. (1)

M. Duncan, J. Reintjes, and T. Manuccia, “Imaging biological compounds using the coherent anti-Stokes Raman scattering microscope,” Opt. Eng. 24(2), 242352 (1985).
[Crossref]

Opt. Express (6)

Opt. Lett. (9)

O. Burkacky, A. Zumbusch, C. Brackmann, and A. Enejder, “Dual-pump coherent anti-Stokes-Raman scattering microscopy,” Opt. Lett. 31(24), 3656–3658 (2006).
[Crossref] [PubMed]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
[Crossref] [PubMed]

E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett. 27(13), 1168–1170 (2002).
[Crossref] [PubMed]

K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, “High-power picosecond fiber source for coherent Raman microscopy,” Opt. Lett. 34(13), 2051–2053 (2009).
[Crossref] [PubMed]

G. Krauss, T. Hanke, A. Sell, D. Träutlein, A. Leitenstorfer, R. Selm, M. Winterhalder, and A. Zumbusch, “Compact coherent anti-Stokes Raman scattering microscope based on a picosecond two-color Er:fiber laser system,” Opt. Lett. 34(18), 2847–2849 (2009).
[Crossref] [PubMed]

B. von Vacano, T. Buckup, and M. Motzkus, “Highly sensitive single-beam heterodyne coherent anti-Stokes Raman scattering,” Opt. Lett. 31(16), 2495–2497 (2006).
[Crossref] [PubMed]

E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett. 29(24), 2923–2925 (2004).
[Crossref] [PubMed]

J.-X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Science (2)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup of the two-wavelength time-lens source (Stokes) synchronized to a mode-locked Ti:Sa laser (pump). BS, beam sampler; M, mirror; G, grating (T-1400-800s-2415-94, 1400 line/mm, Lightsmyth); SU, scanning unit; PMT, photomultiplier tube; NB, narrowband; BB, broadband; WDM, Wavelength-division multiplexer; PM, phase modulator; IM, intensity modulator; G2, grating (T-1600-1060s, 1600 line/mm, Lightsmyth).

Fig. 2
Fig. 2

Characterization of the lasers for CARS imaging. (a) Spectrum of the pump laser. (b, c) Spectra of the time-lens source at ~1056 nm and ~1063.6 nm, respectively. (d) Second order interferometric autocorrelation of the pump laser. The de-convolved FWHM of the pulse is approximately 1 ps. (e) Second order cross-correlation trace between the 1.9 ps pulse at 1056 nm (b) and the 100 fs pulses from the mode-locked Ti:Sa laser. (f) Second order cross-correlation trace between the 1.9 ps pulse at 1063.6 nm (c) and the 100 fs pulses from the mode-locked Ti:Sa laser. The insets in (e) and (f) show the measured sum-frequency signal at the half-maximum of the cross-correlation traces over 350 s (sampled at 1 kHz).

Fig. 3
Fig. 3

Pixel-to-pixel synchronization of the microscope and the two-wavelength time-lens source. (a) Pixel clock extracted from the microscope. (b) Intensity of the modulated CW lasers for the time-lens source at 1056 nm (solid blue) and 1063.6 nm (dotted red). (c) CARS image of Dodecane (CH2 stretching frequency at 2845 cm−1, 64 × 64 pixels, 2 μs/pixel). The scale bar is 25 μm. (d) A zoomed-in view of (c), where 4 pixels are displayed. Pixels in columns 8 and 10 correspond to the signal excited by the pump and the nonresonant Stokes at 1056 nm, and are dark as a result of the small CARS signal; while pixels in columns 7 and 9 excited by the pump and the resonant Stokes at 1063.6 nm are bright.

Fig. 4
Fig. 4

CARS images of sebaceous glands in ex vivo mouse ear tissue, with the source tuned to the CH2 stretching frequency. 800 × 800 pixels, 2 μs/pixel, no average. (a) Image formed from the on-resonant pixels (all odd columns). (b) Image formed from the off-resonant pixels (all even columns). (c) Image after the subtraction of the nonresonant background (b) from the resonant signal (a). Note that the brightness of the image is increased by ~2 times to match the brightness scale of (a). (d) Image taken when the pump and Stokes beams do not overlap in time (an RF delay of 80 ps was introduced). (e-h) show the corresponding intensity profiles along the lines indicated in the images (a-d). For comparison, the intensity profile in (a) (dashed red line) is also shown in (g).

Fig. 5
Fig. 5

CARS images of cotton fibers in water, with the source tuned to the CH2 stretching frequency. 512 × 512 pixels, 2 μs/pixel, averaged for 8 times. (a) Image formed from the on-resonant pixels (all odd columns). (b) Image formed from the off-resonant pixels (all even columns). (c) Image after the subtraction of the nonresonant background (b) from the resonant signal (a). Note that the brightness of the image is increased by ~3 times to match the brightness scale of (a). (d) Image taken when the pump and Stokes beams do not overlap in time (an RF delay of 80 ps was introduced). (e-h) show the corresponding intensity profiles along the lines indicated in the images (a-d). For comparison, the intensity profile in (a) (dashed red line) is also shown in (g).

Metrics