Abstract

We demonstrate highly germania doped fibers for mid-infrared supercontinuum generation. Experiments ensure a highest output power of 1.44 W for a broadest spectrum from 700 nm to 3200 nm and 6.4 W for 800 nm to 2700 nm from these fibers, while being pumped by a broadband Erbium-Ytterbium doped fiber based master oscillator power amplifier. The effect of repetition frequency of pump source and length of germania-doped fiber has also been investigated. Further, germania doped fiber has been pumped by conventional supercontinuum source based on silica photonic crystal fiber supercontinuum source. At low power, a considerable broadening of 200-300 nm was observed. Further broadening of spectrum was limited due to limited power of pump source. Our investigations reveal the unexploited potential of germania doped fiber for mid-infrared supercontinuum generation. These measurements ensure the potential of germania based photonic crystal fiber or a step-index fiber supercontinuum source for high power ultra-broad band emission being by pumped a 1060 nm or a 1550 nm laser source. To the best of our knowledge, this is the record power, ultra-broadband, and all-fiberized supercontinuum light source based on silica and germania fiber ever demonstrated to the date.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Scaling power, bandwidth, and efficiency of mid-infrared supercontinuum source based on a GeO2-doped silica fiber

D. Jain, R. Sidharthan, G. Woyessa, P. M. Moselund, P. Bowen, S. Yoo, and O. Bang
J. Opt. Soc. Am. B 36(2) A86-A92 (2019)

0.6-3.2 μm supercontinuum generation in a step-index germania-core fiber using a 4.4 kW peak-power pump laser

Linyong Yang, Bin Zhang, Ke Yin, Jinmei Yao, Guangchen Liu, and Jing Hou
Opt. Express 24(12) 12600-12606 (2016)

High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system

Weiqiang Yang, Bin Zhang, Ke Yin, Xuanfeng Zhou, and Jing Hou
Opt. Express 21(17) 19732-19742 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
    [Crossref] [PubMed]
  2. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  3. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
    [Crossref]
  4. R. D. Maurer and P. C. Schultz, “Germania containing optical waveguide,” U. S. Patent 3884550 (1975).
  5. T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1385–1391 (1999).
    [Crossref]
  6. J. W. Nicholson, A. K. Abeeluck, C. Headly, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
    [Crossref]
  7. J. Nicholson, A. Yablon, P. Westbrook, K. Feder, and M. Yan, “High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation,” Opt. Express 12(13), 3025–3034 (2004).
    [Crossref] [PubMed]
  8. P. S. Westbrook, J. W. Nicholson, K. Feder, and A. D. Yablon, “UV processing of highly nonlinear fibers for enhanced supercontinuum generation,” in Optical Fiber Communication Conference, (Optical Society of America, 2004), paper PDP27.
  9. C. Xia, M. Kumar, M. Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007).
    [Crossref]
  10. V. M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, and M. Y. Salgansky, “Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification,” Opt. Lett. 29(22), 2596–2598 (2004).
    [Crossref] [PubMed]
  11. E. M. Dianov and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23(11), 3500–3508 (2005).
    [Crossref]
  12. A. N. Gur’yanov, M. Yu. Salganskii, V. F. Khopin, M. M. Bubnov, and M. E. Likhachev, “GeO2-rich low-loss single-mode optical fibers,” Inorg. Mater. 44(3), 278–284 (2008).
    [Crossref]
  13. B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, “2.1 microm continuous-wave Raman laser in GeO2 fiber,” Opt. Lett. 32(13), 1848–1850 (2007).
    [Crossref] [PubMed]
  14. E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur’yanov, V. F. Khopin, and M. V. Yashkov, “Raman fiber lasers emitting at a wavelength above 2 μm,” Quantum Electron. 34(8), 695–697 (2004).
    [Crossref]
  15. V. A. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 μm in the germanate-glass-core and silica-glass-cladding fiber,” Laser Phys. Lett. 9(3), 219–222 (2012).
    [Crossref]
  16. E. A. Anashkina, A. V. Andrianov, M. Yu. Koptev, V. M. Mashinsky, S. V. Muravyev, and A. V. Kim, “Generating tunable optical pulses over the ultrabroad range of 1.6-2.5 μm in GeO2-doped silica fibers with an Er:fiber laser source,” Opt. Express 20(24), 27102–27107 (2012).
    [Crossref] [PubMed]
  17. M. Zhang, E. J. R. Kelleher, T. H. Runcorn, V. M. Mashinsky, O. I. Medvedkov, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21(20), 23261–23271 (2013).
    [Crossref] [PubMed]
  18. V. V. Dvoyrin and T. Sorokina, “All-fiber optical supercontinuum sources in 1.7-3.2 μm range,” Proc. SPIE 8961, 89611C (2014).
    [Crossref]
  19. L. Yang, B. Zhang, K. Yin, J. Yao, G. Liu, and J. Hou, “0.6-3.2 μm supercontinuum generation in a step-index germania-core fiber using a 4.4 kW peak-power pump laser,” Opt. Express 24(12), 12600–12606 (2016).
    [Crossref] [PubMed]
  20. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984).
    [Crossref] [PubMed]
  21. G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron. 10(7), 900–902 (1980).
    [Crossref]
  22. R. Sidharthan, S. Yoo, D. Ho, L. Zhang, W. Qi, M. S. Yue, L. Zhu, X. Dong, and S. C. Tjin, “Stress-loss correlation and dispersion control in highly GeO2-doped Fibers,” IEEE Photonics Technol. Lett. 28(14), 1521–1524 (2016).
    [Crossref]
  23. I. Kubat, C. S. Agger, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 4.5 μm in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550 nm,” J. Opt. Soc. Am. B 30(10), 2743–2757 (2013).
    [Crossref]
  24. V. G. Plotnichenko, V. O. Sokolov, V. M. Mashinsky, V. A. Sidorov, A. N. Guryanov, V. F. Khopin, and E. M. Dianov, “Hydroxyl groups in germania glass,” J. Non-Cryst. Solids 296(1-2), 88–92 (2001).
    [Crossref]
  25. C. Agger, S. T. Sørensen, C. L. Thomsen, S. R. Keiding, and O. Bang, “Nonlinear soliton matching between optical fibers,” Opt. Lett. 36(13), 2596–2598 (2011).
    [Crossref] [PubMed]
  26. K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007).
    [Crossref]
  27. J. Cascante-Vindas, S. Torres-Peiro, A. Diez, and M. V. Andres, “Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber,” Appl. Phys. B 98(2-3), 371–376 (2010).
    [Crossref]
  28. G. Mélin, D. Labat, L. Galkovsky, A. Fleureau, S. Lempereur, A. Mussot, and A. Kudlinski, “Highly-nonlinear photonic crystal fibre with high figure of merit around 1 μm,” Electron. Lett. 48(4), 232–234 (2012).
    [Crossref]
  29. A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett. 34(23), 3631–3633 (2009).
    [Crossref] [PubMed]

2016 (2)

R. Sidharthan, S. Yoo, D. Ho, L. Zhang, W. Qi, M. S. Yue, L. Zhu, X. Dong, and S. C. Tjin, “Stress-loss correlation and dispersion control in highly GeO2-doped Fibers,” IEEE Photonics Technol. Lett. 28(14), 1521–1524 (2016).
[Crossref]

L. Yang, B. Zhang, K. Yin, J. Yao, G. Liu, and J. Hou, “0.6-3.2 μm supercontinuum generation in a step-index germania-core fiber using a 4.4 kW peak-power pump laser,” Opt. Express 24(12), 12600–12606 (2016).
[Crossref] [PubMed]

2014 (1)

V. V. Dvoyrin and T. Sorokina, “All-fiber optical supercontinuum sources in 1.7-3.2 μm range,” Proc. SPIE 8961, 89611C (2014).
[Crossref]

2013 (2)

2012 (3)

E. A. Anashkina, A. V. Andrianov, M. Yu. Koptev, V. M. Mashinsky, S. V. Muravyev, and A. V. Kim, “Generating tunable optical pulses over the ultrabroad range of 1.6-2.5 μm in GeO2-doped silica fibers with an Er:fiber laser source,” Opt. Express 20(24), 27102–27107 (2012).
[Crossref] [PubMed]

V. A. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 μm in the germanate-glass-core and silica-glass-cladding fiber,” Laser Phys. Lett. 9(3), 219–222 (2012).
[Crossref]

G. Mélin, D. Labat, L. Galkovsky, A. Fleureau, S. Lempereur, A. Mussot, and A. Kudlinski, “Highly-nonlinear photonic crystal fibre with high figure of merit around 1 μm,” Electron. Lett. 48(4), 232–234 (2012).
[Crossref]

2011 (1)

2010 (1)

J. Cascante-Vindas, S. Torres-Peiro, A. Diez, and M. V. Andres, “Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber,” Appl. Phys. B 98(2-3), 371–376 (2010).
[Crossref]

2009 (1)

2008 (1)

A. N. Gur’yanov, M. Yu. Salganskii, V. F. Khopin, M. M. Bubnov, and M. E. Likhachev, “GeO2-rich low-loss single-mode optical fibers,” Inorg. Mater. 44(3), 278–284 (2008).
[Crossref]

2007 (3)

C. Xia, M. Kumar, M. Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007).
[Crossref]

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007).
[Crossref]

B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, “2.1 microm continuous-wave Raman laser in GeO2 fiber,” Opt. Lett. 32(13), 1848–1850 (2007).
[Crossref] [PubMed]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2005 (1)

2004 (3)

2003 (1)

J. W. Nicholson, A. K. Abeeluck, C. Headly, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[Crossref]

2001 (1)

V. G. Plotnichenko, V. O. Sokolov, V. M. Mashinsky, V. A. Sidorov, A. N. Guryanov, V. F. Khopin, and E. M. Dianov, “Hydroxyl groups in germania glass,” J. Non-Cryst. Solids 296(1-2), 88–92 (2001).
[Crossref]

2000 (2)

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
[Crossref] [PubMed]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

1999 (1)

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1385–1391 (1999).
[Crossref]

1984 (1)

1980 (1)

G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron. 10(7), 900–902 (1980).
[Crossref]

Abeeluck, A. K.

J. W. Nicholson, A. K. Abeeluck, C. Headly, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[Crossref]

Agger, C.

Agger, C. S.

Anashkina, E. A.

Andres, M. V.

J. Cascante-Vindas, S. Torres-Peiro, A. Diez, and M. V. Andres, “Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber,” Appl. Phys. B 98(2-3), 371–376 (2010).
[Crossref]

Andrianov, A. V.

Arriaga, J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Bang, O.

Bartelt, H.

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007).
[Crossref]

Bigot, L.

Birks, T. A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Bonaccorso, F.

Bouwmans, G.

Bubnov, M. M.

A. N. Gur’yanov, M. Yu. Salganskii, V. F. Khopin, M. M. Bubnov, and M. E. Likhachev, “GeO2-rich low-loss single-mode optical fibers,” Inorg. Mater. 44(3), 278–284 (2008).
[Crossref]

Bufetov, I. A.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur’yanov, V. F. Khopin, and M. V. Yashkov, “Raman fiber lasers emitting at a wavelength above 2 μm,” Quantum Electron. 34(8), 695–697 (2004).
[Crossref]

V. M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, and M. Y. Salgansky, “Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification,” Opt. Lett. 29(22), 2596–2598 (2004).
[Crossref] [PubMed]

Cascante-Vindas, J.

J. Cascante-Vindas, S. Torres-Peiro, A. Diez, and M. V. Andres, “Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber,” Appl. Phys. B 98(2-3), 371–376 (2010).
[Crossref]

Chapman, B. H.

Cheng, M. Y.

C. Xia, M. Kumar, M. Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007).
[Crossref]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Couderc, V.

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007).
[Crossref]

Cumberland, B. A.

Devyatykh, G. G.

G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron. 10(7), 900–902 (1980).
[Crossref]

Dianov, E. M.

M. Zhang, E. J. R. Kelleher, T. H. Runcorn, V. M. Mashinsky, O. I. Medvedkov, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21(20), 23261–23271 (2013).
[Crossref] [PubMed]

B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, “2.1 microm continuous-wave Raman laser in GeO2 fiber,” Opt. Lett. 32(13), 1848–1850 (2007).
[Crossref] [PubMed]

E. M. Dianov and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23(11), 3500–3508 (2005).
[Crossref]

V. M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, and M. Y. Salgansky, “Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification,” Opt. Lett. 29(22), 2596–2598 (2004).
[Crossref] [PubMed]

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur’yanov, V. F. Khopin, and M. V. Yashkov, “Raman fiber lasers emitting at a wavelength above 2 μm,” Quantum Electron. 34(8), 695–697 (2004).
[Crossref]

V. G. Plotnichenko, V. O. Sokolov, V. M. Mashinsky, V. A. Sidorov, A. N. Guryanov, V. F. Khopin, and E. M. Dianov, “Hydroxyl groups in germania glass,” J. Non-Cryst. Solids 296(1-2), 88–92 (2001).
[Crossref]

G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron. 10(7), 900–902 (1980).
[Crossref]

Diez, A.

J. Cascante-Vindas, S. Torres-Peiro, A. Diez, and M. V. Andres, “Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber,” Appl. Phys. B 98(2-3), 371–376 (2010).
[Crossref]

Dong, X.

R. Sidharthan, S. Yoo, D. Ho, L. Zhang, W. Qi, M. S. Yue, L. Zhu, X. Dong, and S. C. Tjin, “Stress-loss correlation and dispersion control in highly GeO2-doped Fibers,” IEEE Photonics Technol. Lett. 28(14), 1521–1524 (2016).
[Crossref]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dvoyrin, V. V.

Feder, K.

Ferrari, A. C.

Flahaut, E.

Fleming, J. W.

Fleureau, A.

G. Mélin, D. Labat, L. Galkovsky, A. Fleureau, S. Lempereur, A. Mussot, and A. Kudlinski, “Highly-nonlinear photonic crystal fibre with high figure of merit around 1 μm,” Electron. Lett. 48(4), 232–234 (2012).
[Crossref]

Freeman, M. J.

C. Xia, M. Kumar, M. Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007).
[Crossref]

Galkovsky, L.

G. Mélin, D. Labat, L. Galkovsky, A. Fleureau, S. Lempereur, A. Mussot, and A. Kudlinski, “Highly-nonlinear photonic crystal fibre with high figure of merit around 1 μm,” Electron. Lett. 48(4), 232–234 (2012).
[Crossref]

Galvanauskas, A.

C. Xia, M. Kumar, M. Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007).
[Crossref]

Gebhardt, A.

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007).
[Crossref]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Grimm, S.

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007).
[Crossref]

Gur’yanov, A. N.

A. N. Gur’yanov, M. Yu. Salganskii, V. F. Khopin, M. M. Bubnov, and M. E. Likhachev, “GeO2-rich low-loss single-mode optical fibers,” Inorg. Mater. 44(3), 278–284 (2008).
[Crossref]

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur’yanov, V. F. Khopin, and M. V. Yashkov, “Raman fiber lasers emitting at a wavelength above 2 μm,” Quantum Electron. 34(8), 695–697 (2004).
[Crossref]

Guryanov, A. N.

Hasan, T.

Headly, C.

J. W. Nicholson, A. K. Abeeluck, C. Headly, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[Crossref]

Ho, D.

R. Sidharthan, S. Yoo, D. Ho, L. Zhang, W. Qi, M. S. Yue, L. Zhu, X. Dong, and S. C. Tjin, “Stress-loss correlation and dispersion control in highly GeO2-doped Fibers,” IEEE Photonics Technol. Lett. 28(14), 1521–1524 (2016).
[Crossref]

Hou, J.

Ishikawa, S.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1385–1391 (1999).
[Crossref]

Islam, M. N.

C. Xia, M. Kumar, M. Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007).
[Crossref]

Jiang, Z.

Jørgensen, C. G.

J. W. Nicholson, A. K. Abeeluck, C. Headly, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[Crossref]

Kamynin, V. A.

V. A. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 μm in the germanate-glass-core and silica-glass-cladding fiber,” Laser Phys. Lett. 9(3), 219–222 (2012).
[Crossref]

Karpychev, N. S.

G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron. 10(7), 900–902 (1980).
[Crossref]

Kashiwada, T.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1385–1391 (1999).
[Crossref]

Keiding, S. R.

Kelleher, E. J. R.

Khopin, V. F.

A. N. Gur’yanov, M. Yu. Salganskii, V. F. Khopin, M. M. Bubnov, and M. E. Likhachev, “GeO2-rich low-loss single-mode optical fibers,” Inorg. Mater. 44(3), 278–284 (2008).
[Crossref]

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur’yanov, V. F. Khopin, and M. V. Yashkov, “Raman fiber lasers emitting at a wavelength above 2 μm,” Quantum Electron. 34(8), 695–697 (2004).
[Crossref]

V. M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, and M. Y. Salgansky, “Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification,” Opt. Lett. 29(22), 2596–2598 (2004).
[Crossref] [PubMed]

V. G. Plotnichenko, V. O. Sokolov, V. M. Mashinsky, V. A. Sidorov, A. N. Guryanov, V. F. Khopin, and E. M. Dianov, “Hydroxyl groups in germania glass,” J. Non-Cryst. Solids 296(1-2), 88–92 (2001).
[Crossref]

Kim, A. V.

Kirchhof, J.

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007).
[Crossref]

Knight, J. C.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Kobelke, J.

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007).
[Crossref]

Koptev, M. Yu.

Kubat, I.

Kudlinski, A.

G. Mélin, D. Labat, L. Galkovsky, A. Fleureau, S. Lempereur, A. Mussot, and A. Kudlinski, “Highly-nonlinear photonic crystal fibre with high figure of merit around 1 μm,” Electron. Lett. 48(4), 232–234 (2012).
[Crossref]

A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett. 34(23), 3631–3633 (2009).
[Crossref] [PubMed]

Kulkarni, O. P.

C. Xia, M. Kumar, M. Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007).
[Crossref]

Kumar, M.

C. Xia, M. Kumar, M. Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007).
[Crossref]

Kurkov, A. S.

V. A. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 μm in the germanate-glass-core and silica-glass-cladding fiber,” Laser Phys. Lett. 9(3), 219–222 (2012).
[Crossref]

Labat, D.

G. Mélin, D. Labat, L. Galkovsky, A. Fleureau, S. Lempereur, A. Mussot, and A. Kudlinski, “Highly-nonlinear photonic crystal fibre with high figure of merit around 1 μm,” Electron. Lett. 48(4), 232–234 (2012).
[Crossref]

Le Rouge, A.

Lempereur, S.

G. Mélin, D. Labat, L. Galkovsky, A. Fleureau, S. Lempereur, A. Mussot, and A. Kudlinski, “Highly-nonlinear photonic crystal fibre with high figure of merit around 1 μm,” Electron. Lett. 48(4), 232–234 (2012).
[Crossref]

Leproux, P.

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007).
[Crossref]

Likhachev, M. E.

A. N. Gur’yanov, M. Yu. Salganskii, V. F. Khopin, M. M. Bubnov, and M. E. Likhachev, “GeO2-rich low-loss single-mode optical fibers,” Inorg. Mater. 44(3), 278–284 (2008).
[Crossref]

Liu, G.

Mashinskii, V. M.

G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron. 10(7), 900–902 (1980).
[Crossref]

Mashinsky, V. M.

M. Zhang, E. J. R. Kelleher, T. H. Runcorn, V. M. Mashinsky, O. I. Medvedkov, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21(20), 23261–23271 (2013).
[Crossref] [PubMed]

V. A. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 μm in the germanate-glass-core and silica-glass-cladding fiber,” Laser Phys. Lett. 9(3), 219–222 (2012).
[Crossref]

E. A. Anashkina, A. V. Andrianov, M. Yu. Koptev, V. M. Mashinsky, S. V. Muravyev, and A. V. Kim, “Generating tunable optical pulses over the ultrabroad range of 1.6-2.5 μm in GeO2-doped silica fibers with an Er:fiber laser source,” Opt. Express 20(24), 27102–27107 (2012).
[Crossref] [PubMed]

E. M. Dianov and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23(11), 3500–3508 (2005).
[Crossref]

V. M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, and M. Y. Salgansky, “Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification,” Opt. Lett. 29(22), 2596–2598 (2004).
[Crossref] [PubMed]

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur’yanov, V. F. Khopin, and M. V. Yashkov, “Raman fiber lasers emitting at a wavelength above 2 μm,” Quantum Electron. 34(8), 695–697 (2004).
[Crossref]

V. G. Plotnichenko, V. O. Sokolov, V. M. Mashinsky, V. A. Sidorov, A. N. Guryanov, V. F. Khopin, and E. M. Dianov, “Hydroxyl groups in germania glass,” J. Non-Cryst. Solids 296(1-2), 88–92 (2001).
[Crossref]

Mazavin, S. M.

G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron. 10(7), 900–902 (1980).
[Crossref]

Medvedkov, O. I.

Mélin, G.

G. Mélin, D. Labat, L. Galkovsky, A. Fleureau, S. Lempereur, A. Mussot, and A. Kudlinski, “Highly-nonlinear photonic crystal fibre with high figure of merit around 1 μm,” Electron. Lett. 48(4), 232–234 (2012).
[Crossref]

A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett. 34(23), 3631–3633 (2009).
[Crossref] [PubMed]

Melkumov, M. A.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur’yanov, V. F. Khopin, and M. V. Yashkov, “Raman fiber lasers emitting at a wavelength above 2 μm,” Quantum Electron. 34(8), 695–697 (2004).
[Crossref]

Milana, S.

Moselund, P. M.

Muravyev, S. V.

Mussot, A.

G. Mélin, D. Labat, L. Galkovsky, A. Fleureau, S. Lempereur, A. Mussot, and A. Kudlinski, “Highly-nonlinear photonic crystal fibre with high figure of merit around 1 μm,” Electron. Lett. 48(4), 232–234 (2012).
[Crossref]

A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett. 34(23), 3631–3633 (2009).
[Crossref] [PubMed]

Neustruev, V. B.

V. M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, and M. Y. Salgansky, “Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification,” Opt. Lett. 29(22), 2596–2598 (2004).
[Crossref] [PubMed]

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur’yanov, V. F. Khopin, and M. V. Yashkov, “Raman fiber lasers emitting at a wavelength above 2 μm,” Quantum Electron. 34(8), 695–697 (2004).
[Crossref]

G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron. 10(7), 900–902 (1980).
[Crossref]

Nicholson, J.

Nicholson, J. W.

J. W. Nicholson, A. K. Abeeluck, C. Headly, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[Crossref]

Nikolaichik, A. V.

G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron. 10(7), 900–902 (1980).
[Crossref]

Nishimura, M.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1385–1391 (1999).
[Crossref]

Nolan, D. A.

C. Xia, M. Kumar, M. Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007).
[Crossref]

Okuno, T.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1385–1391 (1999).
[Crossref]

Onishi, M.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1385–1391 (1999).
[Crossref]

Ortigosa-Blanch, A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Plotnichenko, V. G.

V. G. Plotnichenko, V. O. Sokolov, V. M. Mashinsky, V. A. Sidorov, A. N. Guryanov, V. F. Khopin, and E. M. Dianov, “Hydroxyl groups in germania glass,” J. Non-Cryst. Solids 296(1-2), 88–92 (2001).
[Crossref]

Popa, D.

Popov, S. V.

Prokhorov, A. M.

G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron. 10(7), 900–902 (1980).
[Crossref]

Qi, W.

R. Sidharthan, S. Yoo, D. Ho, L. Zhang, W. Qi, M. S. Yue, L. Zhu, X. Dong, and S. C. Tjin, “Stress-loss correlation and dispersion control in highly GeO2-doped Fibers,” IEEE Photonics Technol. Lett. 28(14), 1521–1524 (2016).
[Crossref]

Quiquempois, Y.

Ranka, J. K.

Ritus, A. I.

G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron. 10(7), 900–902 (1980).
[Crossref]

Runcorn, T. H.

Russell, P. St. J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Salganskii, M. Yu.

A. N. Gur’yanov, M. Yu. Salganskii, V. F. Khopin, M. M. Bubnov, and M. E. Likhachev, “GeO2-rich low-loss single-mode optical fibers,” Inorg. Mater. 44(3), 278–284 (2008).
[Crossref]

Salgansky, M. Y.

Schuster, K.

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007).
[Crossref]

Schwuchow, A.

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007).
[Crossref]

Shubin, A. V.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur’yanov, V. F. Khopin, and M. V. Yashkov, “Raman fiber lasers emitting at a wavelength above 2 μm,” Quantum Electron. 34(8), 695–697 (2004).
[Crossref]

V. M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, and M. Y. Salgansky, “Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification,” Opt. Lett. 29(22), 2596–2598 (2004).
[Crossref] [PubMed]

Sidharthan, R.

R. Sidharthan, S. Yoo, D. Ho, L. Zhang, W. Qi, M. S. Yue, L. Zhu, X. Dong, and S. C. Tjin, “Stress-loss correlation and dispersion control in highly GeO2-doped Fibers,” IEEE Photonics Technol. Lett. 28(14), 1521–1524 (2016).
[Crossref]

Sidorov, V. A.

V. G. Plotnichenko, V. O. Sokolov, V. M. Mashinsky, V. A. Sidorov, A. N. Guryanov, V. F. Khopin, and E. M. Dianov, “Hydroxyl groups in germania glass,” J. Non-Cryst. Solids 296(1-2), 88–92 (2001).
[Crossref]

Sokolov, N. I.

G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron. 10(7), 900–902 (1980).
[Crossref]

Sokolov, V. O.

V. G. Plotnichenko, V. O. Sokolov, V. M. Mashinsky, V. A. Sidorov, A. N. Guryanov, V. F. Khopin, and E. M. Dianov, “Hydroxyl groups in germania glass,” J. Non-Cryst. Solids 296(1-2), 88–92 (2001).
[Crossref]

Sørensen, S. T.

Sorokina, T.

V. V. Dvoyrin and T. Sorokina, “All-fiber optical supercontinuum sources in 1.7-3.2 μm range,” Proc. SPIE 8961, 89611C (2014).
[Crossref]

Stentz, A. J.

Sun, Z.

Taylor, J. R.

Terry, F. L.

C. Xia, M. Kumar, M. Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007).
[Crossref]

Thomsen, C. L.

Tjin, S. C.

R. Sidharthan, S. Yoo, D. Ho, L. Zhang, W. Qi, M. S. Yue, L. Zhu, X. Dong, and S. C. Tjin, “Stress-loss correlation and dispersion control in highly GeO2-doped Fibers,” IEEE Photonics Technol. Lett. 28(14), 1521–1524 (2016).
[Crossref]

Torres-Peiro, S.

J. Cascante-Vindas, S. Torres-Peiro, A. Diez, and M. V. Andres, “Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber,” Appl. Phys. B 98(2-3), 371–376 (2010).
[Crossref]

Urbanczyk, W.

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007).
[Crossref]

Vanvincq, O.

Vasiliev, S. A.

Wadsworth, W. J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Westbrook, P.

Windeler, R. S.

Wood, W. A.

C. Xia, M. Kumar, M. Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007).
[Crossref]

Xia, C.

C. Xia, M. Kumar, M. Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007).
[Crossref]

Yablon, A.

Yan, M.

Yan, M. F.

J. W. Nicholson, A. K. Abeeluck, C. Headly, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[Crossref]

Yang, L.

Yao, J.

Yashkov, M. V.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur’yanov, V. F. Khopin, and M. V. Yashkov, “Raman fiber lasers emitting at a wavelength above 2 μm,” Quantum Electron. 34(8), 695–697 (2004).
[Crossref]

Yin, K.

Yoo, S.

R. Sidharthan, S. Yoo, D. Ho, L. Zhang, W. Qi, M. S. Yue, L. Zhu, X. Dong, and S. C. Tjin, “Stress-loss correlation and dispersion control in highly GeO2-doped Fibers,” IEEE Photonics Technol. Lett. 28(14), 1521–1524 (2016).
[Crossref]

Yue, M. S.

R. Sidharthan, S. Yoo, D. Ho, L. Zhang, W. Qi, M. S. Yue, L. Zhu, X. Dong, and S. C. Tjin, “Stress-loss correlation and dispersion control in highly GeO2-doped Fibers,” IEEE Photonics Technol. Lett. 28(14), 1521–1524 (2016).
[Crossref]

Yushin, A. S.

G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron. 10(7), 900–902 (1980).
[Crossref]

Zhang, B.

Zhang, L.

R. Sidharthan, S. Yoo, D. Ho, L. Zhang, W. Qi, M. S. Yue, L. Zhu, X. Dong, and S. C. Tjin, “Stress-loss correlation and dispersion control in highly GeO2-doped Fibers,” IEEE Photonics Technol. Lett. 28(14), 1521–1524 (2016).
[Crossref]

Zhang, M.

Zhu, L.

R. Sidharthan, S. Yoo, D. Ho, L. Zhang, W. Qi, M. S. Yue, L. Zhu, X. Dong, and S. C. Tjin, “Stress-loss correlation and dispersion control in highly GeO2-doped Fibers,” IEEE Photonics Technol. Lett. 28(14), 1521–1524 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

J. Cascante-Vindas, S. Torres-Peiro, A. Diez, and M. V. Andres, “Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber,” Appl. Phys. B 98(2-3), 371–376 (2010).
[Crossref]

J. W. Nicholson, A. K. Abeeluck, C. Headly, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[Crossref]

Electron. Lett. (1)

G. Mélin, D. Labat, L. Galkovsky, A. Fleureau, S. Lempereur, A. Mussot, and A. Kudlinski, “Highly-nonlinear photonic crystal fibre with high figure of merit around 1 μm,” Electron. Lett. 48(4), 232–234 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

C. Xia, M. Kumar, M. Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007).
[Crossref]

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1385–1391 (1999).
[Crossref]

IEEE Photonics Technol. Lett. (2)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

R. Sidharthan, S. Yoo, D. Ho, L. Zhang, W. Qi, M. S. Yue, L. Zhu, X. Dong, and S. C. Tjin, “Stress-loss correlation and dispersion control in highly GeO2-doped Fibers,” IEEE Photonics Technol. Lett. 28(14), 1521–1524 (2016).
[Crossref]

Inorg. Mater. (1)

A. N. Gur’yanov, M. Yu. Salganskii, V. F. Khopin, M. M. Bubnov, and M. E. Likhachev, “GeO2-rich low-loss single-mode optical fibers,” Inorg. Mater. 44(3), 278–284 (2008).
[Crossref]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (1)

V. G. Plotnichenko, V. O. Sokolov, V. M. Mashinsky, V. A. Sidorov, A. N. Guryanov, V. F. Khopin, and E. M. Dianov, “Hydroxyl groups in germania glass,” J. Non-Cryst. Solids 296(1-2), 88–92 (2001).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

V. A. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 μm in the germanate-glass-core and silica-glass-cladding fiber,” Laser Phys. Lett. 9(3), 219–222 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Opt. Quantum Electron. (1)

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007).
[Crossref]

Proc. SPIE (1)

V. V. Dvoyrin and T. Sorokina, “All-fiber optical supercontinuum sources in 1.7-3.2 μm range,” Proc. SPIE 8961, 89611C (2014).
[Crossref]

Quantum Electron. (1)

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur’yanov, V. F. Khopin, and M. V. Yashkov, “Raman fiber lasers emitting at a wavelength above 2 μm,” Quantum Electron. 34(8), 695–697 (2004).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Sov. J. Quantum Electron. (1)

G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron. 10(7), 900–902 (1980).
[Crossref]

Other (2)

R. D. Maurer and P. C. Schultz, “Germania containing optical waveguide,” U. S. Patent 3884550 (1975).

P. S. Westbrook, J. W. Nicholson, K. Feder, and A. D. Yablon, “UV processing of highly nonlinear fibers for enhanced supercontinuum generation,” in Optical Fiber Communication Conference, (Optical Society of America, 2004), paper PDP27.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Output power and pump power with respect to pump current for a 4-stage Er-fiber based MOPA at 10 MHz repetition frequency (b) output spectrum of Er-MOPA at different output power at 10 MHz repetition frequency (c) measured refractive index profile of both fibers (d) schematic of SC experiments.
Fig. 2
Fig. 2 (a) Output spectrum of SC source at 4 A pump current (corresponding to output power 6.39 W at 10 MHz repetition frequency) for different repetition frequencies and different length of GeO2 doped fiber (a) 22 m (b) 5 m (c) 0.9 m long fiber.
Fig. 3
Fig. 3 Output power of the full spectrum, above 1650 nm, and 2400 nm SC source for different pump currents and different repetition frequencies, and different lengths of GeO2 doped fiber.
Fig. 4
Fig. 4 Different spectra of SC source at 4 A pump current (corresponding to output power 6.39 W at 10 MHz repetition frequency) for different lengths of GeO2 doped fiber.
Fig. 5
Fig. 5 (a), (b), and (c) show the measured power of full spectrum, above 1650 nm, and above 2400 nm, respectively, for different pump currents and repetition frequencies (d) full spectrum at 6 A and 1 MHz (e) measured spectra for different repetition frequencies at 6 A pump current. The length of fiber is 1.2 m.
Fig. 6
Fig. 6 measured spectra for different length of fibers (120 cm, 60 cm, and 25 cm) at different repetition frequencies. Straight: 120cm, Dot: 60 cm, Dash: 25cm.
Fig. 7
Fig. 7 measured power of full spectrum (a), power above 1650 nm (b), and power above 2400 nm (c) at different currents and different repetition frequencies. The length of fiber is 60 cm.
Fig. 8
Fig. 8 (a) Output spectrum of SC source and GeO2-SC at different seed current (b) Output power of full spectrum and (c) above 1650 nm for both SC source and GeO2-SC source.

Metrics