Abstract

The self-absorption at reduced air pressure for quantitative analysis of Mn and Cu elements in steel using laser-induced breakdown spectroscopy was investigated. The calibration curves of Mn and Cu elements at the air pressures of 100, 80, 50, 20, and 1 kPa were studied. The results show that, the nonlinearity of calibration curves which caused by self-absorption effects at atmosphere could be significantly improved by reducing the air pressure to 1 kPa, and the coefficients of determination (R2) of linear calibration curves of Mn and Cu lines are all higher than 0.99. The further study explored that the reason for the improvement was that the induced plasma became low density and the self-absorption coefficient was close to 1 when the air pressure reduced to 1 kPa.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of the self-absorption effect using time-resolved laser-induced breakdown spectroscopy

Yun Tang, Shixiang Ma, Yanwu Chu, Tao Wu, Yuyang Ma, Zhenlin Hu, Lianbo Guo, Xiaoyan Zeng, Jun Duan, and Yongfeng Lu
Opt. Express 27(4) 4261-4270 (2019)

Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy

L.B. Guo, Z.Q. Hao, M. Shen, W. Xiong, X.N. He, Z.Q. Xie, M. Gao, X.Y. Li, X.Y. Zeng, and Y.F. Lu
Opt. Express 21(15) 18188-18195 (2013)

Multivariate quantitative analysis of metal elements in steel using laser-induced breakdown spectroscopy

Zhi Wang, Yanwu Chu, Feng Chen, Ziqian Sheng, and Lianbo Guo
Appl. Opt. 58(27) 7615-7620 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
    [Crossref] [PubMed]
  2. R. Noll, Laser-induced Breakdown Spectroscopy (Springer, 2012).
  3. J. M. Li, L. B. Guo, C. M. Li, N. Zhao, X. Y. Yang, Z. Q. Hao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Self-absorption reduction in laser-induced breakdown spectroscopy using laser-stimulated absorption,” Opt. Lett. 40(22), 5224–5226 (2015).
    [Crossref] [PubMed]
  4. Z. Q. Hao, C. M. Li, M. Shen, X. Y. Yang, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Acidity measurement of iron ore powders using laser-induced breakdown spectroscopy with partial least squares regression,” Opt. Express 23(6), 7795–7801 (2015).
    [Crossref] [PubMed]
  5. R. X. Yi, L. B. Guo, C. M. Li, X. Y. Yang, J. M. Li, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
    [Crossref]
  6. H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of self-absorption spectral line and ratios of transition probabilities for homogeneous and LTE plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
    [Crossref]
  7. H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the self-absorption for reversed spectral lines: application to two resonance lines of neutral aluminium,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
    [Crossref]
  8. A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
    [Crossref]
  9. R. Hannachi, Y. Cressault, P. Teulet, A. Gleizes, and Z. B. Lakhdar, “Calculation of self-absorption coefficients of calcium resonance lines in the case of a CaCl2–water plasma,” Spectrochim. Acta B At. Spectrosc. 63(10), 1054–1059 (2008).
    [Crossref]
  10. J. B. Ahmed and F. Fouad, “Effect of spectral line self-absorption on the laser-induced plasma diagnostics,” IEEE Trans. Plasma Sci. 42(8), 2073–2078 (2014).
    [Crossref]
  11. V. Lazic, R. Barbini, F. Colao, R. Fantoni, and A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta B At. Spectrosc. 56(6), 807–820 (2001).
    [Crossref]
  12. N. Glumac and G. Elliott, “The effect of ambient pressure on laser-induced plasmas in air,” Opt. Lasers Eng. 45(1), 27–35 (2007).
    [Crossref]
  13. A. J. Effenberger and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors (Basel) 10(5), 4907–4925 (2010).
    [Crossref] [PubMed]
  14. Q. Ma, V. Motto-Ros, W. Lei, M. Boueri, X. Bai, L. Zheng, H. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas,” Spectrochim. Acta B At. Spectrosc. 65(11), 896–907 (2010).
    [Crossref]
  15. N. Farid, S. Bashir, and K. Mahmood, “Effect of ambient gas conditions on laser-induced copper plasma and surface morphology,” Phys. Scr. 85(1), 015702 (2012).
    [Crossref]
  16. M. A. Gondal and A. A. I. Khalil, “Effect of ambient conditions on laser-induced breakdown spectra,” Laser Phys. 22(12), 1771–1779 (2012).
    [Crossref]
  17. D. M. Diaz Pace, C. A. D’Angelo, and G. Bertuccelli, “Study of self-absorption of emission magnesium lines in laser-induced plasmas on calcium hydroxide matrix,” IEEE Trans. Plasma Sci. 40(3), 898–908 (2012).
    [Crossref]
  18. H. R. Griem, Plasma Spectroscopy (McGraw Hill, 1964).
  19. F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
    [Crossref]

2016 (1)

R. X. Yi, L. B. Guo, C. M. Li, X. Y. Yang, J. M. Li, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
[Crossref]

2015 (2)

2014 (1)

J. B. Ahmed and F. Fouad, “Effect of spectral line self-absorption on the laser-induced plasma diagnostics,” IEEE Trans. Plasma Sci. 42(8), 2073–2078 (2014).
[Crossref]

2012 (3)

N. Farid, S. Bashir, and K. Mahmood, “Effect of ambient gas conditions on laser-induced copper plasma and surface morphology,” Phys. Scr. 85(1), 015702 (2012).
[Crossref]

M. A. Gondal and A. A. I. Khalil, “Effect of ambient conditions on laser-induced breakdown spectra,” Laser Phys. 22(12), 1771–1779 (2012).
[Crossref]

D. M. Diaz Pace, C. A. D’Angelo, and G. Bertuccelli, “Study of self-absorption of emission magnesium lines in laser-induced plasmas on calcium hydroxide matrix,” IEEE Trans. Plasma Sci. 40(3), 898–908 (2012).
[Crossref]

2010 (3)

A. J. Effenberger and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors (Basel) 10(5), 4907–4925 (2010).
[Crossref] [PubMed]

Q. Ma, V. Motto-Ros, W. Lei, M. Boueri, X. Bai, L. Zheng, H. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas,” Spectrochim. Acta B At. Spectrosc. 65(11), 896–907 (2010).
[Crossref]

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

2008 (1)

R. Hannachi, Y. Cressault, P. Teulet, A. Gleizes, and Z. B. Lakhdar, “Calculation of self-absorption coefficients of calcium resonance lines in the case of a CaCl2–water plasma,” Spectrochim. Acta B At. Spectrosc. 63(10), 1054–1059 (2008).
[Crossref]

2007 (1)

N. Glumac and G. Elliott, “The effect of ambient pressure on laser-induced plasmas in air,” Opt. Lasers Eng. 45(1), 27–35 (2007).
[Crossref]

2006 (1)

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

2005 (1)

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

2003 (1)

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the self-absorption for reversed spectral lines: application to two resonance lines of neutral aluminium,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

2002 (1)

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of self-absorption spectral line and ratios of transition probabilities for homogeneous and LTE plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
[Crossref]

2001 (1)

V. Lazic, R. Barbini, F. Colao, R. Fantoni, and A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta B At. Spectrosc. 56(6), 807–820 (2001).
[Crossref]

Ahmed, J. B.

J. B. Ahmed and F. Fouad, “Effect of spectral line self-absorption on the laser-induced plasma diagnostics,” IEEE Trans. Plasma Sci. 42(8), 2073–2078 (2014).
[Crossref]

Amamou, H.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the self-absorption for reversed spectral lines: application to two resonance lines of neutral aluminium,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of self-absorption spectral line and ratios of transition probabilities for homogeneous and LTE plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
[Crossref]

Bai, X.

Q. Ma, V. Motto-Ros, W. Lei, M. Boueri, X. Bai, L. Zheng, H. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas,” Spectrochim. Acta B At. Spectrosc. 65(11), 896–907 (2010).
[Crossref]

Barbini, R.

V. Lazic, R. Barbini, F. Colao, R. Fantoni, and A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta B At. Spectrosc. 56(6), 807–820 (2001).
[Crossref]

Bashir, S.

N. Farid, S. Bashir, and K. Mahmood, “Effect of ambient gas conditions on laser-induced copper plasma and surface morphology,” Phys. Scr. 85(1), 015702 (2012).
[Crossref]

Bertuccelli, G.

D. M. Diaz Pace, C. A. D’Angelo, and G. Bertuccelli, “Study of self-absorption of emission magnesium lines in laser-induced plasmas on calcium hydroxide matrix,” IEEE Trans. Plasma Sci. 40(3), 898–908 (2012).
[Crossref]

Bois, A.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the self-absorption for reversed spectral lines: application to two resonance lines of neutral aluminium,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of self-absorption spectral line and ratios of transition probabilities for homogeneous and LTE plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
[Crossref]

Borges, F. O.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

Boueri, M.

Q. Ma, V. Motto-Ros, W. Lei, M. Boueri, X. Bai, L. Zheng, H. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas,” Spectrochim. Acta B At. Spectrosc. 65(11), 896–907 (2010).
[Crossref]

Bredice, F.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

Colao, F.

V. Lazic, R. Barbini, F. Colao, R. Fantoni, and A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta B At. Spectrosc. 56(6), 807–820 (2001).
[Crossref]

Cressault, Y.

R. Hannachi, Y. Cressault, P. Teulet, A. Gleizes, and Z. B. Lakhdar, “Calculation of self-absorption coefficients of calcium resonance lines in the case of a CaCl2–water plasma,” Spectrochim. Acta B At. Spectrosc. 63(10), 1054–1059 (2008).
[Crossref]

Cristoforetti, G.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

D’Angelo, C. A.

D. M. Diaz Pace, C. A. D’Angelo, and G. Bertuccelli, “Study of self-absorption of emission magnesium lines in laser-induced plasmas on calcium hydroxide matrix,” IEEE Trans. Plasma Sci. 40(3), 898–908 (2012).
[Crossref]

Di Rocco, H. O.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

Diaz Pace, D. M.

D. M. Diaz Pace, C. A. D’Angelo, and G. Bertuccelli, “Study of self-absorption of emission magnesium lines in laser-induced plasmas on calcium hydroxide matrix,” IEEE Trans. Plasma Sci. 40(3), 898–908 (2012).
[Crossref]

Effenberger, A. J.

A. J. Effenberger and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors (Basel) 10(5), 4907–4925 (2010).
[Crossref] [PubMed]

El Sherbini, A. M.

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

El Sherbini, T. M.

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Elliott, G.

N. Glumac and G. Elliott, “The effect of ambient pressure on laser-induced plasmas in air,” Opt. Lasers Eng. 45(1), 27–35 (2007).
[Crossref]

Fantoni, R.

V. Lazic, R. Barbini, F. Colao, R. Fantoni, and A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta B At. Spectrosc. 56(6), 807–820 (2001).
[Crossref]

Farid, N.

N. Farid, S. Bashir, and K. Mahmood, “Effect of ambient gas conditions on laser-induced copper plasma and surface morphology,” Phys. Scr. 85(1), 015702 (2012).
[Crossref]

Ferhat, B.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the self-absorption for reversed spectral lines: application to two resonance lines of neutral aluminium,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of self-absorption spectral line and ratios of transition probabilities for homogeneous and LTE plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
[Crossref]

Fouad, F.

J. B. Ahmed and F. Fouad, “Effect of spectral line self-absorption on the laser-induced plasma diagnostics,” IEEE Trans. Plasma Sci. 42(8), 2073–2078 (2014).
[Crossref]

Gleizes, A.

R. Hannachi, Y. Cressault, P. Teulet, A. Gleizes, and Z. B. Lakhdar, “Calculation of self-absorption coefficients of calcium resonance lines in the case of a CaCl2–water plasma,” Spectrochim. Acta B At. Spectrosc. 63(10), 1054–1059 (2008).
[Crossref]

Glumac, N.

N. Glumac and G. Elliott, “The effect of ambient pressure on laser-induced plasmas in air,” Opt. Lasers Eng. 45(1), 27–35 (2007).
[Crossref]

Gondal, M. A.

M. A. Gondal and A. A. I. Khalil, “Effect of ambient conditions on laser-induced breakdown spectra,” Laser Phys. 22(12), 1771–1779 (2012).
[Crossref]

Guo, L. B.

Hahn, D. W.

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

Hannachi, R.

R. Hannachi, Y. Cressault, P. Teulet, A. Gleizes, and Z. B. Lakhdar, “Calculation of self-absorption coefficients of calcium resonance lines in the case of a CaCl2–water plasma,” Spectrochim. Acta B At. Spectrosc. 63(10), 1054–1059 (2008).
[Crossref]

Hao, Z. Q.

Hegazy, H.

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Khalil, A. A. I.

M. A. Gondal and A. A. I. Khalil, “Effect of ambient conditions on laser-induced breakdown spectra,” Laser Phys. 22(12), 1771–1779 (2012).
[Crossref]

Lakhdar, Z. B.

R. Hannachi, Y. Cressault, P. Teulet, A. Gleizes, and Z. B. Lakhdar, “Calculation of self-absorption coefficients of calcium resonance lines in the case of a CaCl2–water plasma,” Spectrochim. Acta B At. Spectrosc. 63(10), 1054–1059 (2008).
[Crossref]

Lazic, V.

V. Lazic, R. Barbini, F. Colao, R. Fantoni, and A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta B At. Spectrosc. 56(6), 807–820 (2001).
[Crossref]

Legnaioli, S.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Lei, W.

Q. Ma, V. Motto-Ros, W. Lei, M. Boueri, X. Bai, L. Zheng, H. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas,” Spectrochim. Acta B At. Spectrosc. 65(11), 896–907 (2010).
[Crossref]

Li, C. M.

Li, J. M.

R. X. Yi, L. B. Guo, C. M. Li, X. Y. Yang, J. M. Li, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
[Crossref]

J. M. Li, L. B. Guo, C. M. Li, N. Zhao, X. Y. Yang, Z. Q. Hao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Self-absorption reduction in laser-induced breakdown spectroscopy using laser-stimulated absorption,” Opt. Lett. 40(22), 5224–5226 (2015).
[Crossref] [PubMed]

Li, K. H.

Li, X. Y.

Lu, Y. F.

Ma, Q.

Q. Ma, V. Motto-Ros, W. Lei, M. Boueri, X. Bai, L. Zheng, H. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas,” Spectrochim. Acta B At. Spectrosc. 65(11), 896–907 (2010).
[Crossref]

Mahmood, K.

N. Farid, S. Bashir, and K. Mahmood, “Effect of ambient gas conditions on laser-induced copper plasma and surface morphology,” Phys. Scr. 85(1), 015702 (2012).
[Crossref]

Matheron, P.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of self-absorption spectral line and ratios of transition probabilities for homogeneous and LTE plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
[Crossref]

Motto-Ros, V.

Q. Ma, V. Motto-Ros, W. Lei, M. Boueri, X. Bai, L. Zheng, H. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas,” Spectrochim. Acta B At. Spectrosc. 65(11), 896–907 (2010).
[Crossref]

Omenetto, N.

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

Palleschi, V.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Palucci, A.

V. Lazic, R. Barbini, F. Colao, R. Fantoni, and A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta B At. Spectrosc. 56(6), 807–820 (2001).
[Crossref]

Pardini, L.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Redon, R.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the self-absorption for reversed spectral lines: application to two resonance lines of neutral aluminium,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of self-absorption spectral line and ratios of transition probabilities for homogeneous and LTE plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
[Crossref]

Ripert, M.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the self-absorption for reversed spectral lines: application to two resonance lines of neutral aluminium,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

Rossetto, B.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the self-absorption for reversed spectral lines: application to two resonance lines of neutral aluminium,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of self-absorption spectral line and ratios of transition probabilities for homogeneous and LTE plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
[Crossref]

Salvetti, A.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Scott, J. R.

A. J. Effenberger and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors (Basel) 10(5), 4907–4925 (2010).
[Crossref] [PubMed]

Shen, M.

Sobral, H.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

Teulet, P.

R. Hannachi, Y. Cressault, P. Teulet, A. Gleizes, and Z. B. Lakhdar, “Calculation of self-absorption coefficients of calcium resonance lines in the case of a CaCl2–water plasma,” Spectrochim. Acta B At. Spectrosc. 63(10), 1054–1059 (2008).
[Crossref]

Tognoni, E.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Villagran-Muniz, M.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

Yang, X. Y.

Yi, R. X.

R. X. Yi, L. B. Guo, C. M. Li, X. Y. Yang, J. M. Li, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
[Crossref]

Yu, J.

Q. Ma, V. Motto-Ros, W. Lei, M. Boueri, X. Bai, L. Zheng, H. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas,” Spectrochim. Acta B At. Spectrosc. 65(11), 896–907 (2010).
[Crossref]

Zeng, H.

Q. Ma, V. Motto-Ros, W. Lei, M. Boueri, X. Bai, L. Zheng, H. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas,” Spectrochim. Acta B At. Spectrosc. 65(11), 896–907 (2010).
[Crossref]

Zeng, X. Y.

Zhao, N.

Zheng, L.

Q. Ma, V. Motto-Ros, W. Lei, M. Boueri, X. Bai, L. Zheng, H. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas,” Spectrochim. Acta B At. Spectrosc. 65(11), 896–907 (2010).
[Crossref]

Appl. Spectrosc. (1)

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

IEEE Trans. Plasma Sci. (2)

J. B. Ahmed and F. Fouad, “Effect of spectral line self-absorption on the laser-induced plasma diagnostics,” IEEE Trans. Plasma Sci. 42(8), 2073–2078 (2014).
[Crossref]

D. M. Diaz Pace, C. A. D’Angelo, and G. Bertuccelli, “Study of self-absorption of emission magnesium lines in laser-induced plasmas on calcium hydroxide matrix,” IEEE Trans. Plasma Sci. 40(3), 898–908 (2012).
[Crossref]

J. Anal. At. Spectrom. (1)

R. X. Yi, L. B. Guo, C. M. Li, X. Y. Yang, J. M. Li, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (2)

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of self-absorption spectral line and ratios of transition probabilities for homogeneous and LTE plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
[Crossref]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the self-absorption for reversed spectral lines: application to two resonance lines of neutral aluminium,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

Laser Phys. (1)

M. A. Gondal and A. A. I. Khalil, “Effect of ambient conditions on laser-induced breakdown spectra,” Laser Phys. 22(12), 1771–1779 (2012).
[Crossref]

Opt. Express (1)

Opt. Lasers Eng. (1)

N. Glumac and G. Elliott, “The effect of ambient pressure on laser-induced plasmas in air,” Opt. Lasers Eng. 45(1), 27–35 (2007).
[Crossref]

Opt. Lett. (1)

Phys. Scr. (1)

N. Farid, S. Bashir, and K. Mahmood, “Effect of ambient gas conditions on laser-induced copper plasma and surface morphology,” Phys. Scr. 85(1), 015702 (2012).
[Crossref]

Sensors (Basel) (1)

A. J. Effenberger and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors (Basel) 10(5), 4907–4925 (2010).
[Crossref] [PubMed]

Spectrochim. Acta B At. Spectrosc. (5)

Q. Ma, V. Motto-Ros, W. Lei, M. Boueri, X. Bai, L. Zheng, H. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas,” Spectrochim. Acta B At. Spectrosc. 65(11), 896–907 (2010).
[Crossref]

V. Lazic, R. Barbini, F. Colao, R. Fantoni, and A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta B At. Spectrosc. 56(6), 807–820 (2001).
[Crossref]

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

R. Hannachi, Y. Cressault, P. Teulet, A. Gleizes, and Z. B. Lakhdar, “Calculation of self-absorption coefficients of calcium resonance lines in the case of a CaCl2–water plasma,” Spectrochim. Acta B At. Spectrosc. 63(10), 1054–1059 (2008).
[Crossref]

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption of manganese emission lines in laser induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

Other (2)

R. Noll, Laser-induced Breakdown Spectroscopy (Springer, 2012).

H. R. Griem, Plasma Spectroscopy (McGraw Hill, 1964).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup.
Fig. 2
Fig. 2 Internal standard calibration curves of Mn I 403.07/Fe I 400.52 (a) and Cu I 327.40/Fe I 328.67 (b) under different air pressures.
Fig. 3
Fig. 3 Internal standard calibration curves of different Mn (a) and Cu (b) emission lines at the air pressure of 1 kPa.
Fig. 4
Fig. 4 Lateral images of the plasma plumes under different delay times and different air pressures.
Fig. 5
Fig. 5 Plasma temperature and electron number density under different air pressures at a delay time of 3 μs and a gate width of 5 μs.
Fig. 6
Fig. 6 Dependence of self-absorption coefficients (SAs) of emission lines (Mn I 403.08 nm and Cu I 327.40 nm) on air pressures.

Tables (1)

Tables Icon

Table 1 Certified concentrations of Mn, Cu, and Fe elements of the low-alloy steel samples (wt.%)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I( λ 0 )=A( 1 e k( λ 0 )l ),
y= A ( 1 e C/t )+ y 0 ,
SA= 1 e k( λ 0 )l k( λ 0 )l .
SA= 1 e C/t C/t .

Metrics