Abstract

We report on a tunable noise-like pulse (NLP) generation in a mode-locked Tm fiber laser with a SESAM. A tuning range of 1895-1942 nm, while keeping the spectral bandwidth of 10-19 nm under NLP mode-locked operation, was obtained by a tunable filter based on chromatic dispersion of telescope lenses. At the center wavelength of 1928 nm, the maximum output power of 195 mW with the spectral bandwidth of 18.9 nm was obtained. The repetition rate was 20.5 MHz and the corresponding pulse energy was 9.5 nJ. To our knowledge, this is the first report of a tunable NLP mode-locked laser based on chromatic dispersion of a lens system.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coexistence of noise-like pulse and high repetition rate harmonic mode-locking in a dual-wavelength mode-locked Tm-doped fiber laser

Yazhou Wang, Jianfeng Li, Entao Zhang, Kundong Mo, Yanyan Wang, Fei Liu, Xiaojun Zhou, and Yong Liu
Opt. Express 25(15) 17192-17200 (2017)

Ultra-broadband dissipative soliton and noise-like pulse generation from a normal dispersion mode-locked Tm-doped all-fiber laser

Grzegorz Sobon, Jaroslaw Sotor, Tadeusz Martynkien, and Krzysztof M. Abramski
Opt. Express 24(6) 6156-6161 (2016)

All-fiber wavelength-tunable Tm-doped fiber laser mode locked by SESAM with 120  nm tuning range

Zhuo Xu, Zhi-Yuan Dou, Jing Hou, and Xiao-Jun Xu
Appl. Opt. 56(21) 5978-5981 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2-μm Lidar Validation for Atmospheric CO2 Differential Absorption Lidar Applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
  2. I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 mm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
    [Crossref]
  3. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  4. K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” 191–206 (2009) Appl. Phys. Lett. 64(2), 149–151 (1994).
    [Crossref]
  5. K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Opt. Express 16(15), 11453–11458 (2008).
    [Crossref] [PubMed]
  6. C. Huang, C. Wang, W. Shang, N. Yang, Y. Tang, and J. Xu, “Developing high energy dissipative soliton fiber lasers at 2 micron,” Sci. Rep. 5, 13680 (2015).
    [Crossref] [PubMed]
  7. Y. Tang, A. Chong, and F. W. Wise, “Generation of 8 nJ pulses from a normal-dispersion thulium fiber laser,” Opt. Lett. 40(10), 2361–2364 (2015).
    [Crossref] [PubMed]
  8. D. Tang, L. Zhao, and B. Zhao, “Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser,” Opt. Express 13(7), 2289–2294 (2005).
    [Crossref] [PubMed]
  9. G. J. Parker, D. E. Parker, B. Nie, V. Lozovoy, and M. Dantus, “Laser-induced Breakdown Spectroscopy and ablation threshold analysis using a megahertz Yb fiber laser oscillator,” Spectrochim. Acta B At. Spectrosc. 107, 146–151 (2015).
    [Crossref]
  10. J. Li, Z. Zhang, Z. Sun, H. Luo, Y. Liu, Z. Yan, C. Mou, L. Zhang, and S. K. Turitsyn, “All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes,” Opt. Express 22(7), 7875–7882 (2014).
    [Crossref] [PubMed]
  11. U. Brauch, A. Giesen, M. Karszewski, C. Stewen, and A. Voss, “Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053 nm,” Opt. Lett. 20(7), 713–715 (1995).
    [Crossref] [PubMed]
  12. F. D. Nielsen, L. Thrane, K. Hsu, A. Bjarklev, and P. E. Andersen, “Semiconductor optical amplifier based swept wavelength source at 1060 nm using a scanning Fabry–Perot filter and an YDFA-based booster amplifier,” Opt. Commun. 271(1), 197–202 (2007).
    [Crossref]
  13. S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intra-cavity acoustooptic tunable filter,” IEEE J. Sel. Top. Quantum Electron. 3(4), 1087–1096 (1997).
    [Crossref]
  14. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “High-power widely tunable Tm:fibre lasers pumped by an Er,Yb co-doped fibre laser at 1.6 µm,” Opt. Express 14(13), 6084–6090 (2006).
    [Crossref] [PubMed]
  15. Z. Yan, X. Li, Y. Tang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution,” Opt. Express 23(4), 4369–4376 (2015).
    [Crossref] [PubMed]
  16. S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman Soliton Source Using Mode-LockedTm–Ho Fiber Laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
    [Crossref]
  17. Q. Fang and K. Kieu, “An All-Fiber 2- μm Wavelength-Tunable Mode-Locked Laser,” IEEE Photonics Technol. Lett. 22(22), 1656–1658 (2010).
  18. Y. Fujimoto, O. Ishii, and M. Yamazaki, “Design of simple and compact tunable fibre laser,” IEEE Electronics Letters 51(12), 925–926 (2015).
    [Crossref]
  19. J. Li, Z. Zhang, Z. Sun, H. Luo, Y. Liu, Z. Yan, C. Mou, L. Zhang, and S. K. Turitsyn, “All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes,” Opt. Express 22(7), 7875–7882 (2014).
    [Crossref] [PubMed]
  20. Q. Wang, T. Chen, B. Zhang, A. P. Heberle, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,” Opt. Lett. 36(19), 3750–3752 (2011).
    [Crossref] [PubMed]

2015 (5)

C. Huang, C. Wang, W. Shang, N. Yang, Y. Tang, and J. Xu, “Developing high energy dissipative soliton fiber lasers at 2 micron,” Sci. Rep. 5, 13680 (2015).
[Crossref] [PubMed]

Y. Tang, A. Chong, and F. W. Wise, “Generation of 8 nJ pulses from a normal-dispersion thulium fiber laser,” Opt. Lett. 40(10), 2361–2364 (2015).
[Crossref] [PubMed]

G. J. Parker, D. E. Parker, B. Nie, V. Lozovoy, and M. Dantus, “Laser-induced Breakdown Spectroscopy and ablation threshold analysis using a megahertz Yb fiber laser oscillator,” Spectrochim. Acta B At. Spectrosc. 107, 146–151 (2015).
[Crossref]

Z. Yan, X. Li, Y. Tang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution,” Opt. Express 23(4), 4369–4376 (2015).
[Crossref] [PubMed]

Y. Fujimoto, O. Ishii, and M. Yamazaki, “Design of simple and compact tunable fibre laser,” IEEE Electronics Letters 51(12), 925–926 (2015).
[Crossref]

2014 (2)

2012 (1)

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 mm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

2011 (2)

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2-μm Lidar Validation for Atmospheric CO2 Differential Absorption Lidar Applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).

Q. Wang, T. Chen, B. Zhang, A. P. Heberle, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,” Opt. Lett. 36(19), 3750–3752 (2011).
[Crossref] [PubMed]

2010 (1)

Q. Fang and K. Kieu, “An All-Fiber 2- μm Wavelength-Tunable Mode-Locked Laser,” IEEE Photonics Technol. Lett. 22(22), 1656–1658 (2010).

2008 (2)

K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Opt. Express 16(15), 11453–11458 (2008).
[Crossref] [PubMed]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2007 (2)

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman Soliton Source Using Mode-LockedTm–Ho Fiber Laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

F. D. Nielsen, L. Thrane, K. Hsu, A. Bjarklev, and P. E. Andersen, “Semiconductor optical amplifier based swept wavelength source at 1060 nm using a scanning Fabry–Perot filter and an YDFA-based booster amplifier,” Opt. Commun. 271(1), 197–202 (2007).
[Crossref]

2006 (1)

2005 (1)

1997 (1)

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intra-cavity acoustooptic tunable filter,” IEEE J. Sel. Top. Quantum Electron. 3(4), 1087–1096 (1997).
[Crossref]

1995 (1)

1994 (1)

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” 191–206 (2009) Appl. Phys. Lett. 64(2), 149–151 (1994).
[Crossref]

Abedin, M. N.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2-μm Lidar Validation for Atmospheric CO2 Differential Absorption Lidar Applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).

Andersen, P. E.

F. D. Nielsen, L. Thrane, K. Hsu, A. Bjarklev, and P. E. Andersen, “Semiconductor optical amplifier based swept wavelength source at 1060 nm using a scanning Fabry–Perot filter and an YDFA-based booster amplifier,” Opt. Commun. 271(1), 197–202 (2007).
[Crossref]

Bjarklev, A.

F. D. Nielsen, L. Thrane, K. Hsu, A. Bjarklev, and P. E. Andersen, “Semiconductor optical amplifier based swept wavelength source at 1060 nm using a scanning Fabry–Perot filter and an YDFA-based booster amplifier,” Opt. Commun. 271(1), 197–202 (2007).
[Crossref]

Brauch, U.

Chen, K. P.

Chen, T.

Choi, Y.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2-μm Lidar Validation for Atmospheric CO2 Differential Absorption Lidar Applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).

Chong, A.

Clarkson, W. A.

Collins, J. E.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2-μm Lidar Validation for Atmospheric CO2 Differential Absorption Lidar Applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).

Culverhouse, D. O.

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intra-cavity acoustooptic tunable filter,” IEEE J. Sel. Top. Quantum Electron. 3(4), 1087–1096 (1997).
[Crossref]

Dantus, M.

G. J. Parker, D. E. Parker, B. Nie, V. Lozovoy, and M. Dantus, “Laser-induced Breakdown Spectroscopy and ablation threshold analysis using a megahertz Yb fiber laser oscillator,” Spectrochim. Acta B At. Spectrosc. 107, 146–151 (2015).
[Crossref]

Fang, Q.

Q. Fang and K. Kieu, “An All-Fiber 2- μm Wavelength-Tunable Mode-Locked Laser,” IEEE Photonics Technol. Lett. 22(22), 1656–1658 (2010).

Fujimoto, Y.

Y. Fujimoto, O. Ishii, and M. Yamazaki, “Design of simple and compact tunable fibre laser,” IEEE Electronics Letters 51(12), 925–926 (2015).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Giesen, A.

Guina, M.

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman Soliton Source Using Mode-LockedTm–Ho Fiber Laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Hakulinen, T.

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman Soliton Source Using Mode-LockedTm–Ho Fiber Laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Haus, H. A.

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” 191–206 (2009) Appl. Phys. Lett. 64(2), 149–151 (1994).
[Crossref]

Heberle, A. P.

Hsu, K.

F. D. Nielsen, L. Thrane, K. Hsu, A. Bjarklev, and P. E. Andersen, “Semiconductor optical amplifier based swept wavelength source at 1060 nm using a scanning Fabry–Perot filter and an YDFA-based booster amplifier,” Opt. Commun. 271(1), 197–202 (2007).
[Crossref]

Huang, C.

C. Huang, C. Wang, W. Shang, N. Yang, Y. Tang, and J. Xu, “Developing high energy dissipative soliton fiber lasers at 2 micron,” Sci. Rep. 5, 13680 (2015).
[Crossref] [PubMed]

Ippen, E. P.

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” 191–206 (2009) Appl. Phys. Lett. 64(2), 149–151 (1994).
[Crossref]

Ishii, O.

Y. Fujimoto, O. Ishii, and M. Yamazaki, “Design of simple and compact tunable fibre laser,” IEEE Electronics Letters 51(12), 925–926 (2015).
[Crossref]

Ismail, S.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2-μm Lidar Validation for Atmospheric CO2 Differential Absorption Lidar Applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).

Kadwani, P.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 mm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Karszewski, M.

Kieu, K.

Q. Fang and K. Kieu, “An All-Fiber 2- μm Wavelength-Tunable Mode-Locked Laser,” IEEE Photonics Technol. Lett. 22(22), 1656–1658 (2010).

K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Opt. Express 16(15), 11453–11458 (2008).
[Crossref] [PubMed]

Kim, B. Y.

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intra-cavity acoustooptic tunable filter,” IEEE J. Sel. Top. Quantum Electron. 3(4), 1087–1096 (1997).
[Crossref]

Kivistö, S.

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman Soliton Source Using Mode-LockedTm–Ho Fiber Laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Koch, G. J.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2-μm Lidar Validation for Atmospheric CO2 Differential Absorption Lidar Applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).

Lewis, J.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2-μm Lidar Validation for Atmospheric CO2 Differential Absorption Lidar Applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).

Li, J.

Li, X.

Liu, Y.

Lozovoy, V.

G. J. Parker, D. E. Parker, B. Nie, V. Lozovoy, and M. Dantus, “Laser-induced Breakdown Spectroscopy and ablation threshold analysis using a megahertz Yb fiber laser oscillator,” Spectrochim. Acta B At. Spectrosc. 107, 146–151 (2015).
[Crossref]

Luo, H.

Mack, T. L.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2-μm Lidar Validation for Atmospheric CO2 Differential Absorption Lidar Applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Mingareev, I.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 mm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Mou, C.

Nelson, L. E.

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” 191–206 (2009) Appl. Phys. Lett. 64(2), 149–151 (1994).
[Crossref]

Nie, B.

G. J. Parker, D. E. Parker, B. Nie, V. Lozovoy, and M. Dantus, “Laser-induced Breakdown Spectroscopy and ablation threshold analysis using a megahertz Yb fiber laser oscillator,” Spectrochim. Acta B At. Spectrosc. 107, 146–151 (2015).
[Crossref]

Nielsen, F. D.

F. D. Nielsen, L. Thrane, K. Hsu, A. Bjarklev, and P. E. Andersen, “Semiconductor optical amplifier based swept wavelength source at 1060 nm using a scanning Fabry–Perot filter and an YDFA-based booster amplifier,” Opt. Commun. 271(1), 197–202 (2007).
[Crossref]

Notari, A.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2-μm Lidar Validation for Atmospheric CO2 Differential Absorption Lidar Applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).

Okhotnikov, O. G.

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman Soliton Source Using Mode-LockedTm–Ho Fiber Laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Olowinsky, A.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 mm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Parker, D. E.

G. J. Parker, D. E. Parker, B. Nie, V. Lozovoy, and M. Dantus, “Laser-induced Breakdown Spectroscopy and ablation threshold analysis using a megahertz Yb fiber laser oscillator,” Spectrochim. Acta B At. Spectrosc. 107, 146–151 (2015).
[Crossref]

Parker, G. J.

G. J. Parker, D. E. Parker, B. Nie, V. Lozovoy, and M. Dantus, “Laser-induced Breakdown Spectroscopy and ablation threshold analysis using a megahertz Yb fiber laser oscillator,” Spectrochim. Acta B At. Spectrosc. 107, 146–151 (2015).
[Crossref]

Refaat, T. F.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2-μm Lidar Validation for Atmospheric CO2 Differential Absorption Lidar Applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).

Richardson, D. J.

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intra-cavity acoustooptic tunable filter,” IEEE J. Sel. Top. Quantum Electron. 3(4), 1087–1096 (1997).
[Crossref]

Richardson, M.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 mm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Rubio, M.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2-μm Lidar Validation for Atmospheric CO2 Differential Absorption Lidar Applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).

Sahu, J. K.

Shah, L.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 mm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Shang, W.

C. Huang, C. Wang, W. Shang, N. Yang, Y. Tang, and J. Xu, “Developing high energy dissipative soliton fiber lasers at 2 micron,” Sci. Rep. 5, 13680 (2015).
[Crossref] [PubMed]

Shen, D. Y.

Shum, P. P.

Singh, U. N.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2-μm Lidar Validation for Atmospheric CO2 Differential Absorption Lidar Applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).

Stewen, C.

Sun, Z.

Tamura, K.

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” 191–206 (2009) Appl. Phys. Lett. 64(2), 149–151 (1994).
[Crossref]

Tang, D.

Tang, Y.

Thrane, L.

F. D. Nielsen, L. Thrane, K. Hsu, A. Bjarklev, and P. E. Andersen, “Semiconductor optical amplifier based swept wavelength source at 1060 nm using a scanning Fabry–Perot filter and an YDFA-based booster amplifier,” Opt. Commun. 271(1), 197–202 (2007).
[Crossref]

Turitsyn, S. K.

Voss, A.

Wang, C.

C. Huang, C. Wang, W. Shang, N. Yang, Y. Tang, and J. Xu, “Developing high energy dissipative soliton fiber lasers at 2 micron,” Sci. Rep. 5, 13680 (2015).
[Crossref] [PubMed]

Wang, Q.

Wang, Q. J.

Weirauch, F.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 mm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Wise, F. W.

Xu, J.

C. Huang, C. Wang, W. Shang, N. Yang, Y. Tang, and J. Xu, “Developing high energy dissipative soliton fiber lasers at 2 micron,” Sci. Rep. 5, 13680 (2015).
[Crossref] [PubMed]

Yamazaki, M.

Y. Fujimoto, O. Ishii, and M. Yamazaki, “Design of simple and compact tunable fibre laser,” IEEE Electronics Letters 51(12), 925–926 (2015).
[Crossref]

Yan, Z.

Yang, N.

C. Huang, C. Wang, W. Shang, N. Yang, Y. Tang, and J. Xu, “Developing high energy dissipative soliton fiber lasers at 2 micron,” Sci. Rep. 5, 13680 (2015).
[Crossref] [PubMed]

Young, R. D.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2-μm Lidar Validation for Atmospheric CO2 Differential Absorption Lidar Applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).

Yu, X.

Yun, S. H.

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intra-cavity acoustooptic tunable filter,” IEEE J. Sel. Top. Quantum Electron. 3(4), 1087–1096 (1997).
[Crossref]

Zhang, B.

Zhang, L.

Zhang, Y.

Zhang, Z.

Zhao, B.

Zhao, L.

Appl. Phys. Lett. (1)

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” 191–206 (2009) Appl. Phys. Lett. 64(2), 149–151 (1994).
[Crossref]

IEEE Electronics Letters (1)

Y. Fujimoto, O. Ishii, and M. Yamazaki, “Design of simple and compact tunable fibre laser,” IEEE Electronics Letters 51(12), 925–926 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intra-cavity acoustooptic tunable filter,” IEEE J. Sel. Top. Quantum Electron. 3(4), 1087–1096 (1997).
[Crossref]

IEEE Photonics Technol. Lett. (2)

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman Soliton Source Using Mode-LockedTm–Ho Fiber Laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Q. Fang and K. Kieu, “An All-Fiber 2- μm Wavelength-Tunable Mode-Locked Laser,” IEEE Photonics Technol. Lett. 22(22), 1656–1658 (2010).

IEEE Trans. Geosci. Remote Sens. (1)

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2-μm Lidar Validation for Atmospheric CO2 Differential Absorption Lidar Applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Commun. (1)

F. D. Nielsen, L. Thrane, K. Hsu, A. Bjarklev, and P. E. Andersen, “Semiconductor optical amplifier based swept wavelength source at 1060 nm using a scanning Fabry–Perot filter and an YDFA-based booster amplifier,” Opt. Commun. 271(1), 197–202 (2007).
[Crossref]

Opt. Express (6)

Opt. Laser Technol. (1)

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 mm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Opt. Lett. (3)

Sci. Rep. (1)

C. Huang, C. Wang, W. Shang, N. Yang, Y. Tang, and J. Xu, “Developing high energy dissipative soliton fiber lasers at 2 micron,” Sci. Rep. 5, 13680 (2015).
[Crossref] [PubMed]

Spectrochim. Acta B At. Spectrosc. (1)

G. J. Parker, D. E. Parker, B. Nie, V. Lozovoy, and M. Dantus, “Laser-induced Breakdown Spectroscopy and ablation threshold analysis using a megahertz Yb fiber laser oscillator,” Spectrochim. Acta B At. Spectrosc. 107, 146–151 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 schematic picture of tunable NLP mode-locked Tm fiber laser. The SESAM has modulation depth of 20%, non-saturable loss of 16%, relaxation time of 10 ps, and saturation fluence of 50 μJ/cm2. The Tm fiber has a core diameter of 10 μm, NA of 0.13 and Tm doping level of 0.2 wt.%. The fiber, telescope lenses and the end mirror at the right side also work as a tunable bandpass filter.
Fig. 2
Fig. 2 (a) Calculated filter property at specific mirror position for the lenses of focal length of 15 mm (circles), 30 mm (squares) and 60 mm (triangles) and (b) for the lenses made of N-BK7 (circles) and CaF2 (squares).
Fig. 3
Fig. 3 (a) Power properties. (b) Spectra in mode-locked pulse with SESAM
Fig. 4
Fig. 4 Temporal profile of mode-locked operation measured by 7 GHz oscilloscope. (a) 10 μs time window (b) 200 ns time window (c) 2 ns time window.
Fig. 5
Fig. 5 autocorrelation traces. (a) Short term and (b) long term measurement.
Fig. 6
Fig. 6 Tunable spectral property as a function of the position of the mirror. (a) CW operation with the HR mirror. (b) NLP mode-locked operation with the SESAM. (b). The insets indicate the relative positions of the mirror.
Fig. 7
Fig. 7 Average power and center wavelength as a function of the relative position of the mirror (a) CW operation with HR mirror. (b) NLP Mode-locked operation with SESAM. The circles and solid curve are measured output power and fitting. The squares and doted curve are measured peak wavelength and fitting. The triangles and dashed line is calculated peak wavelength of the tunable filter and fitting.

Tables (1)

Tables Icon

Table 1 Calculated FWHM of the filter for different lens combinations.

Metrics