Abstract

Intensified charge coupled device (ICCD) cameras are widely used in vari-ous applications such as microscopy, astronomy, spectroscopy. Often they are used as single-photon detectors, with thresholding being an essential part of the readout. In this paper, we measure the quantum efficiency of an ICCD camera in the single-photon de-tection mode using the Klyshko absolute calibration technique. The quantum efficiency is obtained as a function of the threshold value and of the wavelength of the detected light. In addition, we study the homogeneity of the photon sensitivity over the camera chip area. The experiment is performed in the autonomous regime, without using any additional detectors. We therefore demonstrate the self-calibration of an ICCD camera.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Detection of non-classical space-time correlations with a novel type of single-photon camera

Felix Just, Mykhaylo Filipenko, Andrea Cavanna, Thilo Michel, Thomas Gleixner, Michael Taheri, John Vallerga, Michael Campbell, Timo Tick, Gisela Anton, Maria V. Chekhova, and Gerd Leuchs
Opt. Express 22(14) 17561-17572 (2014)

Absolute calibration of an EMCCD camera by quantum correlation, linking photon counting to the analog regime

A. Avella, I. Ruo-Berchera, I. P. Degiovanni, G. Brida, and M. Genovese
Opt. Lett. 41(8) 1841-1844 (2016)

References

  • View by:
  • |
  • |
  • |

  1. O. H. W. Siegmund, “Microchannel plate detector technologies for next generation UV instruments,” in Ultraviolet-Optical Space Astronomy Beyond HST, Vol. 164 of ASP Conference Series (Astronomical Society of the Pacific, 1999), p. 374.
  2. S. B. Mende, H. Heetderks, H. U. Frey, M. Lampton, S. P. Geller, R. Abiad, O. H. W. Siegmund, A. S. Tremsin, J. Spann, H. Dougani, S. A. Fuselier, A. L. Magoncelli, M. B. Bumala, S. Murphree, and T. Trondsen, “Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging,” Space Sci. Rev. 91(1–2), 271–285 (2000).
    [Crossref]
  3. J. L. A. Fordham, D. A. Bone, P. D. Read, T. J. Norton, P. A. Charles, D. Carter, R. D. Cannon, and A. J. Pickles, “Astronomical performance of a micro-channel plate intensified photon counting detector,” MNRAS 273(3), 513–2521 (1989).
    [Crossref]
  4. M. R. Torr, D. G. Torr, R. Baum, and R. Spielmaker, “Intensified-CCD focal plane detector for space applications: a second generation,” Appl. Opt. 25(16), 2768–2777 (1986).
    [Crossref] [PubMed]
  5. J. G. Timothy, “Microchannel plates for photon detection and imaging in space,” in Observing Photons in Space (Springer, 2013), pp. 391–421.
    [Crossref]
  6. W. Rettig, B. Strehmel, S. Schrader, and H. Seifert, Applied Fluorescence in Chemistry, Biology and Medicine (Springer, 1999).
    [Crossref]
  7. O. Haderka, J. Peřina, M. Hamar, and J. Peřina, “Direct measurement and reconstruction of nonclassical features of twin beams generated in spontaneous parametric down-conversion,” Phys. Rev. A 71(3), 033815 (2005).
    [Crossref]
  8. R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Coincidence Imaging of Photonic Quantum Entanglement with Complex Mode Structures,” in Frontiers in Optics (Optical Society of America, 2013), pp. FW5D–5.
  9. R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 31914 (2013).
  10. R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15(7), 073032 (2013).
    [Crossref]
  11. D. S. Tasca, R. S. Aspden, P. A. Morris, G. Anderson, R. W. Boyd, and M. J. Padgett, “The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered ICCD camera,” Opt. Express 21(25), 30460–30473 (2013).
    [Crossref]
  12. P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 65913 (2015).
  13. O. A. Shcherbina, G. A. Shcherbina, M. Manceau, S. Vezzoli, L. Carbone, M. De Vittorio, A. Bramati, E. Giacobino, M. V. Chekhova, and G. Leuchs, “Photon correlations for colloidal nanocrystals and their clusters,” Opt. Lett. 39(7), 1791–1794 (1999).
    [Crossref]
  14. J. L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of sub-shot-noise correlations of spatial fluctuations in the photon-counting regime,” Phys. Rev. Lett. 101(23), 233604 (2008).
    [Crossref] [PubMed]
  15. M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
    [Crossref] [PubMed]
  16. G. Brida, M. Genovese, and I. Ruo-Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photon. 4(4), 227–230 (2010).
    [Crossref]
  17. A. Avella, I. Ruo-Berchera, I. P. Degiovanni, G. Brida, and M. Genovese, “Absolute calibration of an EMCCD camera by quantum correlation, linking photon counting to the analog regime,” Opt. Lett. 41(8), 1841–1844 (2016).
    [Crossref] [PubMed]
  18. R. Chrapkiewicz, W. Wasilewski, and K. Banaszek, “High-fidelity spatially resolved multiphoton counting for quantum imaging applications,” Opt. Lett. 39(17), 5090–5093 (2014).
    [Crossref] [PubMed]
  19. M. Jachura and R. Chrapkiewicz, “Shot-by-shot imaging of Hong–Ou–Mandel interference with an intensified sCMOS camera,” Opt. Lett. 40(7), 1540–1543 (2015).
    [Crossref] [PubMed]
  20. M. P. Buchin, “Low-Light Imaging-ICCD EMCCD, and sCMOS compete in low-light imaging,” Laser Focus World 47(7), 51 (2011).
  21. U. Schühle, “Intensified solid state sensor cameras: ICCD and IAPS,” in Observing Photons in Space (Springer, 2013), pp. 455–465.
    [Crossref]
  22. D. N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10(9), 1112–1117 (1980).
    [Crossref]
  23. A. A. Malygin, A. N. Penin, and A. V. Sergienko, “Absolute calibration of the sensitivity of photodetectors using a biphotonic field, Sov. Phys. JETP Lett 33, 477 (1981).
  24. M. Ware and A. Migdall, “Single-photon detector characterization using correlated photons: the march from feasibility to metrology,” J. Mod. Opt. 51(9–10), 1549–1557 (2004).
    [Crossref]
  25. S. V. Polyakov and A. L. Migdall, “High accuracy verification of a correlated photon-based method for determining photoncounting detection efficiency,” Opt. Express 15(4), 1390–1404 (2007).
    [Crossref] [PubMed]
  26. F. Just, M. Filipenko, A. Cavanna, T. Michel, T. Gleixner, M. Taheri, J. Vallerga, M. Campbell, T. Tick, G. Anton, M. V. Chekhova, and G. Leuchs, “Detection of non-classical space-time correlations with a novel type of single-photon camera,” Opt. Express 22, 17561–17572 (2014).
    [Crossref] [PubMed]
  27. Jan Perina, Ondrej Haderka, Vaclav Michalek, and Martin Hamar, “Absolute detector calibration using twin beams,” Opt. Lett. 37(13), 2475–2477 (2014).
    [Crossref]
  28. P. G. Kwiat, A. M. Steinberg, R.Y. Chiao, P. H. Eberhard, and M. D. Petroff, “Absolute efficiency and time-response measurement of single-photon detectors,” Appl. Opt. 33(10), 1844–1853 (1994).
    [Crossref] [PubMed]
  29. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429 (1995).
    [Crossref] [PubMed]
  30. R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
    [Crossref] [PubMed]
  31. G. Brida, M. Genovese, and C. Novero, “An application of two-photon entangled states to quantum metrology,” J. Mod. Opt. 47(12), 2099–2104 (2000).
    [Crossref]
  32. PI-MAX3 ICCD camera manual book (Princeton Instruments, 2015), Page 165, Figure 114. link: ftp://ftp.princetoninstruments.com/public/Manuals/Princeton%20Instruments/PI-MAX3%20System%20Manual.pdf.

2016 (1)

2015 (2)

M. Jachura and R. Chrapkiewicz, “Shot-by-shot imaging of Hong–Ou–Mandel interference with an intensified sCMOS camera,” Opt. Lett. 40(7), 1540–1543 (2015).
[Crossref] [PubMed]

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 65913 (2015).

2014 (3)

2013 (3)

D. S. Tasca, R. S. Aspden, P. A. Morris, G. Anderson, R. W. Boyd, and M. J. Padgett, “The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered ICCD camera,” Opt. Express 21(25), 30460–30473 (2013).
[Crossref]

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 31914 (2013).

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15(7), 073032 (2013).
[Crossref]

2012 (1)

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref] [PubMed]

2011 (1)

M. P. Buchin, “Low-Light Imaging-ICCD EMCCD, and sCMOS compete in low-light imaging,” Laser Focus World 47(7), 51 (2011).

2010 (1)

G. Brida, M. Genovese, and I. Ruo-Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photon. 4(4), 227–230 (2010).
[Crossref]

2008 (1)

J. L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of sub-shot-noise correlations of spatial fluctuations in the photon-counting regime,” Phys. Rev. Lett. 101(23), 233604 (2008).
[Crossref] [PubMed]

2007 (1)

2005 (1)

O. Haderka, J. Peřina, M. Hamar, and J. Peřina, “Direct measurement and reconstruction of nonclassical features of twin beams generated in spontaneous parametric down-conversion,” Phys. Rev. A 71(3), 033815 (2005).
[Crossref]

2004 (1)

M. Ware and A. Migdall, “Single-photon detector characterization using correlated photons: the march from feasibility to metrology,” J. Mod. Opt. 51(9–10), 1549–1557 (2004).
[Crossref]

2002 (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref] [PubMed]

2000 (2)

G. Brida, M. Genovese, and C. Novero, “An application of two-photon entangled states to quantum metrology,” J. Mod. Opt. 47(12), 2099–2104 (2000).
[Crossref]

S. B. Mende, H. Heetderks, H. U. Frey, M. Lampton, S. P. Geller, R. Abiad, O. H. W. Siegmund, A. S. Tremsin, J. Spann, H. Dougani, S. A. Fuselier, A. L. Magoncelli, M. B. Bumala, S. Murphree, and T. Trondsen, “Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging,” Space Sci. Rev. 91(1–2), 271–285 (2000).
[Crossref]

1999 (1)

1995 (1)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429 (1995).
[Crossref] [PubMed]

1994 (1)

1989 (1)

J. L. A. Fordham, D. A. Bone, P. D. Read, T. J. Norton, P. A. Charles, D. Carter, R. D. Cannon, and A. J. Pickles, “Astronomical performance of a micro-channel plate intensified photon counting detector,” MNRAS 273(3), 513–2521 (1989).
[Crossref]

1986 (1)

1981 (1)

A. A. Malygin, A. N. Penin, and A. V. Sergienko, “Absolute calibration of the sensitivity of photodetectors using a biphotonic field, Sov. Phys. JETP Lett 33, 477 (1981).

1980 (1)

D. N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10(9), 1112–1117 (1980).
[Crossref]

Abiad, R.

S. B. Mende, H. Heetderks, H. U. Frey, M. Lampton, S. P. Geller, R. Abiad, O. H. W. Siegmund, A. S. Tremsin, J. Spann, H. Dougani, S. A. Fuselier, A. L. Magoncelli, M. B. Bumala, S. Murphree, and T. Trondsen, “Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging,” Space Sci. Rev. 91(1–2), 271–285 (2000).
[Crossref]

Agnew, M.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref] [PubMed]

Anderson, G.

Anton, G.

Aspden, R. S.

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 65913 (2015).

D. S. Tasca, R. S. Aspden, P. A. Morris, G. Anderson, R. W. Boyd, and M. J. Padgett, “The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered ICCD camera,” Opt. Express 21(25), 30460–30473 (2013).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15(7), 073032 (2013).
[Crossref]

Avella, A.

Banaszek, K.

Baum, R.

Bell, J. E. C.

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 65913 (2015).

Bennink, R. S.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref] [PubMed]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref] [PubMed]

Blanchet, J. L.

J. L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of sub-shot-noise correlations of spatial fluctuations in the photon-counting regime,” Phys. Rev. Lett. 101(23), 233604 (2008).
[Crossref] [PubMed]

Bone, D. A.

J. L. A. Fordham, D. A. Bone, P. D. Read, T. J. Norton, P. A. Charles, D. Carter, R. D. Cannon, and A. J. Pickles, “Astronomical performance of a micro-channel plate intensified photon counting detector,” MNRAS 273(3), 513–2521 (1989).
[Crossref]

Boyd, R. W.

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 65913 (2015).

D. S. Tasca, R. S. Aspden, P. A. Morris, G. Anderson, R. W. Boyd, and M. J. Padgett, “The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered ICCD camera,” Opt. Express 21(25), 30460–30473 (2013).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15(7), 073032 (2013).
[Crossref]

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref] [PubMed]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref] [PubMed]

Bramati, A.

Brida, G.

A. Avella, I. Ruo-Berchera, I. P. Degiovanni, G. Brida, and M. Genovese, “Absolute calibration of an EMCCD camera by quantum correlation, linking photon counting to the analog regime,” Opt. Lett. 41(8), 1841–1844 (2016).
[Crossref] [PubMed]

G. Brida, M. Genovese, and I. Ruo-Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photon. 4(4), 227–230 (2010).
[Crossref]

G. Brida, M. Genovese, and C. Novero, “An application of two-photon entangled states to quantum metrology,” J. Mod. Opt. 47(12), 2099–2104 (2000).
[Crossref]

Buchin, M. P.

M. P. Buchin, “Low-Light Imaging-ICCD EMCCD, and sCMOS compete in low-light imaging,” Laser Focus World 47(7), 51 (2011).

Buller, G. S.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref] [PubMed]

Bumala, M. B.

S. B. Mende, H. Heetderks, H. U. Frey, M. Lampton, S. P. Geller, R. Abiad, O. H. W. Siegmund, A. S. Tremsin, J. Spann, H. Dougani, S. A. Fuselier, A. L. Magoncelli, M. B. Bumala, S. Murphree, and T. Trondsen, “Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging,” Space Sci. Rev. 91(1–2), 271–285 (2000).
[Crossref]

Campbell, M.

Cannon, R. D.

J. L. A. Fordham, D. A. Bone, P. D. Read, T. J. Norton, P. A. Charles, D. Carter, R. D. Cannon, and A. J. Pickles, “Astronomical performance of a micro-channel plate intensified photon counting detector,” MNRAS 273(3), 513–2521 (1989).
[Crossref]

Carbone, L.

Carter, D.

J. L. A. Fordham, D. A. Bone, P. D. Read, T. J. Norton, P. A. Charles, D. Carter, R. D. Cannon, and A. J. Pickles, “Astronomical performance of a micro-channel plate intensified photon counting detector,” MNRAS 273(3), 513–2521 (1989).
[Crossref]

Cavanna, A.

Charles, P. A.

J. L. A. Fordham, D. A. Bone, P. D. Read, T. J. Norton, P. A. Charles, D. Carter, R. D. Cannon, and A. J. Pickles, “Astronomical performance of a micro-channel plate intensified photon counting detector,” MNRAS 273(3), 513–2521 (1989).
[Crossref]

Chekhova, M. V.

Chiao, R.Y.

Chrapkiewicz, R.

De Vittorio, M.

Degiovanni, I. P.

Devaux, F.

J. L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of sub-shot-noise correlations of spatial fluctuations in the photon-counting regime,” Phys. Rev. Lett. 101(23), 233604 (2008).
[Crossref] [PubMed]

Dougani, H.

S. B. Mende, H. Heetderks, H. U. Frey, M. Lampton, S. P. Geller, R. Abiad, O. H. W. Siegmund, A. S. Tremsin, J. Spann, H. Dougani, S. A. Fuselier, A. L. Magoncelli, M. B. Bumala, S. Murphree, and T. Trondsen, “Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging,” Space Sci. Rev. 91(1–2), 271–285 (2000).
[Crossref]

Eberhard, P. H.

Edgar, M. P.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref] [PubMed]

Fickler, R.

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 31914 (2013).

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Coincidence Imaging of Photonic Quantum Entanglement with Complex Mode Structures,” in Frontiers in Optics (Optical Society of America, 2013), pp. FW5D–5.

Filipenko, M.

Fordham, J. L. A.

J. L. A. Fordham, D. A. Bone, P. D. Read, T. J. Norton, P. A. Charles, D. Carter, R. D. Cannon, and A. J. Pickles, “Astronomical performance of a micro-channel plate intensified photon counting detector,” MNRAS 273(3), 513–2521 (1989).
[Crossref]

Frey, H. U.

S. B. Mende, H. Heetderks, H. U. Frey, M. Lampton, S. P. Geller, R. Abiad, O. H. W. Siegmund, A. S. Tremsin, J. Spann, H. Dougani, S. A. Fuselier, A. L. Magoncelli, M. B. Bumala, S. Murphree, and T. Trondsen, “Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging,” Space Sci. Rev. 91(1–2), 271–285 (2000).
[Crossref]

Furfaro, L.

J. L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of sub-shot-noise correlations of spatial fluctuations in the photon-counting regime,” Phys. Rev. Lett. 101(23), 233604 (2008).
[Crossref] [PubMed]

Fuselier, S. A.

S. B. Mende, H. Heetderks, H. U. Frey, M. Lampton, S. P. Geller, R. Abiad, O. H. W. Siegmund, A. S. Tremsin, J. Spann, H. Dougani, S. A. Fuselier, A. L. Magoncelli, M. B. Bumala, S. Murphree, and T. Trondsen, “Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging,” Space Sci. Rev. 91(1–2), 271–285 (2000).
[Crossref]

Geller, S. P.

S. B. Mende, H. Heetderks, H. U. Frey, M. Lampton, S. P. Geller, R. Abiad, O. H. W. Siegmund, A. S. Tremsin, J. Spann, H. Dougani, S. A. Fuselier, A. L. Magoncelli, M. B. Bumala, S. Murphree, and T. Trondsen, “Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging,” Space Sci. Rev. 91(1–2), 271–285 (2000).
[Crossref]

Genovese, M.

A. Avella, I. Ruo-Berchera, I. P. Degiovanni, G. Brida, and M. Genovese, “Absolute calibration of an EMCCD camera by quantum correlation, linking photon counting to the analog regime,” Opt. Lett. 41(8), 1841–1844 (2016).
[Crossref] [PubMed]

G. Brida, M. Genovese, and I. Ruo-Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photon. 4(4), 227–230 (2010).
[Crossref]

G. Brida, M. Genovese, and C. Novero, “An application of two-photon entangled states to quantum metrology,” J. Mod. Opt. 47(12), 2099–2104 (2000).
[Crossref]

Giacobino, E.

Gleixner, T.

Haderka, O.

O. Haderka, J. Peřina, M. Hamar, and J. Peřina, “Direct measurement and reconstruction of nonclassical features of twin beams generated in spontaneous parametric down-conversion,” Phys. Rev. A 71(3), 033815 (2005).
[Crossref]

Haderka, Ondrej

Hamar, M.

O. Haderka, J. Peřina, M. Hamar, and J. Peřina, “Direct measurement and reconstruction of nonclassical features of twin beams generated in spontaneous parametric down-conversion,” Phys. Rev. A 71(3), 033815 (2005).
[Crossref]

Hamar, Martin

Heetderks, H.

S. B. Mende, H. Heetderks, H. U. Frey, M. Lampton, S. P. Geller, R. Abiad, O. H. W. Siegmund, A. S. Tremsin, J. Spann, H. Dougani, S. A. Fuselier, A. L. Magoncelli, M. B. Bumala, S. Murphree, and T. Trondsen, “Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging,” Space Sci. Rev. 91(1–2), 271–285 (2000).
[Crossref]

Izdebski, F.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref] [PubMed]

Jachura, M.

Just, F.

Klyshko, D. N.

D. N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10(9), 1112–1117 (1980).
[Crossref]

Krenn, M.

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 31914 (2013).

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Coincidence Imaging of Photonic Quantum Entanglement with Complex Mode Structures,” in Frontiers in Optics (Optical Society of America, 2013), pp. FW5D–5.

Kwiat, P. G.

Lampton, M.

S. B. Mende, H. Heetderks, H. U. Frey, M. Lampton, S. P. Geller, R. Abiad, O. H. W. Siegmund, A. S. Tremsin, J. Spann, H. Dougani, S. A. Fuselier, A. L. Magoncelli, M. B. Bumala, S. Murphree, and T. Trondsen, “Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging,” Space Sci. Rev. 91(1–2), 271–285 (2000).
[Crossref]

Lantz, E.

J. L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of sub-shot-noise correlations of spatial fluctuations in the photon-counting regime,” Phys. Rev. Lett. 101(23), 233604 (2008).
[Crossref] [PubMed]

Lapkiewicz, R.

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 31914 (2013).

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Coincidence Imaging of Photonic Quantum Entanglement with Complex Mode Structures,” in Frontiers in Optics (Optical Society of America, 2013), pp. FW5D–5.

Leach, J.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref] [PubMed]

Leuchs, G.

Magoncelli, A. L.

S. B. Mende, H. Heetderks, H. U. Frey, M. Lampton, S. P. Geller, R. Abiad, O. H. W. Siegmund, A. S. Tremsin, J. Spann, H. Dougani, S. A. Fuselier, A. L. Magoncelli, M. B. Bumala, S. Murphree, and T. Trondsen, “Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging,” Space Sci. Rev. 91(1–2), 271–285 (2000).
[Crossref]

Malygin, A. A.

A. A. Malygin, A. N. Penin, and A. V. Sergienko, “Absolute calibration of the sensitivity of photodetectors using a biphotonic field, Sov. Phys. JETP Lett 33, 477 (1981).

Manceau, M.

Mende, S. B.

S. B. Mende, H. Heetderks, H. U. Frey, M. Lampton, S. P. Geller, R. Abiad, O. H. W. Siegmund, A. S. Tremsin, J. Spann, H. Dougani, S. A. Fuselier, A. L. Magoncelli, M. B. Bumala, S. Murphree, and T. Trondsen, “Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging,” Space Sci. Rev. 91(1–2), 271–285 (2000).
[Crossref]

Michalek, Vaclav

Michel, T.

Migdall, A.

M. Ware and A. Migdall, “Single-photon detector characterization using correlated photons: the march from feasibility to metrology,” J. Mod. Opt. 51(9–10), 1549–1557 (2004).
[Crossref]

Migdall, A. L.

Morris, P. A.

Murphree, S.

S. B. Mende, H. Heetderks, H. U. Frey, M. Lampton, S. P. Geller, R. Abiad, O. H. W. Siegmund, A. S. Tremsin, J. Spann, H. Dougani, S. A. Fuselier, A. L. Magoncelli, M. B. Bumala, S. Murphree, and T. Trondsen, “Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging,” Space Sci. Rev. 91(1–2), 271–285 (2000).
[Crossref]

Norton, T. J.

J. L. A. Fordham, D. A. Bone, P. D. Read, T. J. Norton, P. A. Charles, D. Carter, R. D. Cannon, and A. J. Pickles, “Astronomical performance of a micro-channel plate intensified photon counting detector,” MNRAS 273(3), 513–2521 (1989).
[Crossref]

Novero, C.

G. Brida, M. Genovese, and C. Novero, “An application of two-photon entangled states to quantum metrology,” J. Mod. Opt. 47(12), 2099–2104 (2000).
[Crossref]

Padgett, M. J.

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 65913 (2015).

D. S. Tasca, R. S. Aspden, P. A. Morris, G. Anderson, R. W. Boyd, and M. J. Padgett, “The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered ICCD camera,” Opt. Express 21(25), 30460–30473 (2013).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15(7), 073032 (2013).
[Crossref]

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref] [PubMed]

Penin, A. N.

A. A. Malygin, A. N. Penin, and A. V. Sergienko, “Absolute calibration of the sensitivity of photodetectors using a biphotonic field, Sov. Phys. JETP Lett 33, 477 (1981).

Perina, J.

O. Haderka, J. Peřina, M. Hamar, and J. Peřina, “Direct measurement and reconstruction of nonclassical features of twin beams generated in spontaneous parametric down-conversion,” Phys. Rev. A 71(3), 033815 (2005).
[Crossref]

O. Haderka, J. Peřina, M. Hamar, and J. Peřina, “Direct measurement and reconstruction of nonclassical features of twin beams generated in spontaneous parametric down-conversion,” Phys. Rev. A 71(3), 033815 (2005).
[Crossref]

Perina, Jan

Petroff, M. D.

Pickles, A. J.

J. L. A. Fordham, D. A. Bone, P. D. Read, T. J. Norton, P. A. Charles, D. Carter, R. D. Cannon, and A. J. Pickles, “Astronomical performance of a micro-channel plate intensified photon counting detector,” MNRAS 273(3), 513–2521 (1989).
[Crossref]

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429 (1995).
[Crossref] [PubMed]

Polyakov, S. V.

Ramelow, S.

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 31914 (2013).

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Coincidence Imaging of Photonic Quantum Entanglement with Complex Mode Structures,” in Frontiers in Optics (Optical Society of America, 2013), pp. FW5D–5.

Read, P. D.

J. L. A. Fordham, D. A. Bone, P. D. Read, T. J. Norton, P. A. Charles, D. Carter, R. D. Cannon, and A. J. Pickles, “Astronomical performance of a micro-channel plate intensified photon counting detector,” MNRAS 273(3), 513–2521 (1989).
[Crossref]

Rettig, W.

W. Rettig, B. Strehmel, S. Schrader, and H. Seifert, Applied Fluorescence in Chemistry, Biology and Medicine (Springer, 1999).
[Crossref]

Ruo-Berchera, I.

Schrader, S.

W. Rettig, B. Strehmel, S. Schrader, and H. Seifert, Applied Fluorescence in Chemistry, Biology and Medicine (Springer, 1999).
[Crossref]

Schühle, U.

U. Schühle, “Intensified solid state sensor cameras: ICCD and IAPS,” in Observing Photons in Space (Springer, 2013), pp. 455–465.
[Crossref]

Seifert, H.

W. Rettig, B. Strehmel, S. Schrader, and H. Seifert, Applied Fluorescence in Chemistry, Biology and Medicine (Springer, 1999).
[Crossref]

Sergienko, A. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429 (1995).
[Crossref] [PubMed]

A. A. Malygin, A. N. Penin, and A. V. Sergienko, “Absolute calibration of the sensitivity of photodetectors using a biphotonic field, Sov. Phys. JETP Lett 33, 477 (1981).

Shcherbina, G. A.

Shcherbina, O. A.

Shih, Y. H.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429 (1995).
[Crossref] [PubMed]

Siegmund, O. H. W.

S. B. Mende, H. Heetderks, H. U. Frey, M. Lampton, S. P. Geller, R. Abiad, O. H. W. Siegmund, A. S. Tremsin, J. Spann, H. Dougani, S. A. Fuselier, A. L. Magoncelli, M. B. Bumala, S. Murphree, and T. Trondsen, “Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging,” Space Sci. Rev. 91(1–2), 271–285 (2000).
[Crossref]

O. H. W. Siegmund, “Microchannel plate detector technologies for next generation UV instruments,” in Ultraviolet-Optical Space Astronomy Beyond HST, Vol. 164 of ASP Conference Series (Astronomical Society of the Pacific, 1999), p. 374.

Spann, J.

S. B. Mende, H. Heetderks, H. U. Frey, M. Lampton, S. P. Geller, R. Abiad, O. H. W. Siegmund, A. S. Tremsin, J. Spann, H. Dougani, S. A. Fuselier, A. L. Magoncelli, M. B. Bumala, S. Murphree, and T. Trondsen, “Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging,” Space Sci. Rev. 91(1–2), 271–285 (2000).
[Crossref]

Spielmaker, R.

Steinberg, A. M.

Strehmel, B.

W. Rettig, B. Strehmel, S. Schrader, and H. Seifert, Applied Fluorescence in Chemistry, Biology and Medicine (Springer, 1999).
[Crossref]

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429 (1995).
[Crossref] [PubMed]

Taheri, M.

Tasca, D. S.

D. S. Tasca, R. S. Aspden, P. A. Morris, G. Anderson, R. W. Boyd, and M. J. Padgett, “The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered ICCD camera,” Opt. Express 21(25), 30460–30473 (2013).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15(7), 073032 (2013).
[Crossref]

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref] [PubMed]

Tick, T.

Timothy, J. G.

J. G. Timothy, “Microchannel plates for photon detection and imaging in space,” in Observing Photons in Space (Springer, 2013), pp. 391–421.
[Crossref]

Torr, D. G.

Torr, M. R.

Tremsin, A. S.

S. B. Mende, H. Heetderks, H. U. Frey, M. Lampton, S. P. Geller, R. Abiad, O. H. W. Siegmund, A. S. Tremsin, J. Spann, H. Dougani, S. A. Fuselier, A. L. Magoncelli, M. B. Bumala, S. Murphree, and T. Trondsen, “Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging,” Space Sci. Rev. 91(1–2), 271–285 (2000).
[Crossref]

Trondsen, T.

S. B. Mende, H. Heetderks, H. U. Frey, M. Lampton, S. P. Geller, R. Abiad, O. H. W. Siegmund, A. S. Tremsin, J. Spann, H. Dougani, S. A. Fuselier, A. L. Magoncelli, M. B. Bumala, S. Murphree, and T. Trondsen, “Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging,” Space Sci. Rev. 91(1–2), 271–285 (2000).
[Crossref]

Vallerga, J.

Vezzoli, S.

Warburton, R. E.

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref] [PubMed]

Ware, M.

M. Ware and A. Migdall, “Single-photon detector characterization using correlated photons: the march from feasibility to metrology,” J. Mod. Opt. 51(9–10), 1549–1557 (2004).
[Crossref]

Wasilewski, W.

Zeilinger, A.

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 31914 (2013).

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Coincidence Imaging of Photonic Quantum Entanglement with Complex Mode Structures,” in Frontiers in Optics (Optical Society of America, 2013), pp. FW5D–5.

Appl. Opt. (2)

J. Mod. Opt. (2)

G. Brida, M. Genovese, and C. Novero, “An application of two-photon entangled states to quantum metrology,” J. Mod. Opt. 47(12), 2099–2104 (2000).
[Crossref]

M. Ware and A. Migdall, “Single-photon detector characterization using correlated photons: the march from feasibility to metrology,” J. Mod. Opt. 51(9–10), 1549–1557 (2004).
[Crossref]

Laser Focus World (1)

M. P. Buchin, “Low-Light Imaging-ICCD EMCCD, and sCMOS compete in low-light imaging,” Laser Focus World 47(7), 51 (2011).

MNRAS (1)

J. L. A. Fordham, D. A. Bone, P. D. Read, T. J. Norton, P. A. Charles, D. Carter, R. D. Cannon, and A. J. Pickles, “Astronomical performance of a micro-channel plate intensified photon counting detector,” MNRAS 273(3), 513–2521 (1989).
[Crossref]

Nat. Commun. (2)

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 65913 (2015).

M. P. Edgar, D. S. Tasca, F. Izdebski, R. E. Warburton, J. Leach, M. Agnew, G. S. Buller, R. W. Boyd, and M. J. Padgett, “Imaging high-dimensional spatial entanglement with a camera,” Nat. Commun. 3, 984 (2012).
[Crossref] [PubMed]

Nat. Photon. (1)

G. Brida, M. Genovese, and I. Ruo-Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photon. 4(4), 227–230 (2010).
[Crossref]

New J. Phys. (1)

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15(7), 073032 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Phys. Rev. A (2)

O. Haderka, J. Peřina, M. Hamar, and J. Peřina, “Direct measurement and reconstruction of nonclassical features of twin beams generated in spontaneous parametric down-conversion,” Phys. Rev. A 71(3), 033815 (2005).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429 (1995).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref] [PubMed]

J. L. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, “Measurement of sub-shot-noise correlations of spatial fluctuations in the photon-counting regime,” Phys. Rev. Lett. 101(23), 233604 (2008).
[Crossref] [PubMed]

Sci. Rep. (1)

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 31914 (2013).

Sov. J. Quantum Electron. (1)

D. N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10(9), 1112–1117 (1980).
[Crossref]

Sov. Phys. JETP Lett (1)

A. A. Malygin, A. N. Penin, and A. V. Sergienko, “Absolute calibration of the sensitivity of photodetectors using a biphotonic field, Sov. Phys. JETP Lett 33, 477 (1981).

Space Sci. Rev. (1)

S. B. Mende, H. Heetderks, H. U. Frey, M. Lampton, S. P. Geller, R. Abiad, O. H. W. Siegmund, A. S. Tremsin, J. Spann, H. Dougani, S. A. Fuselier, A. L. Magoncelli, M. B. Bumala, S. Murphree, and T. Trondsen, “Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging,” Space Sci. Rev. 91(1–2), 271–285 (2000).
[Crossref]

Other (6)

O. H. W. Siegmund, “Microchannel plate detector technologies for next generation UV instruments,” in Ultraviolet-Optical Space Astronomy Beyond HST, Vol. 164 of ASP Conference Series (Astronomical Society of the Pacific, 1999), p. 374.

J. G. Timothy, “Microchannel plates for photon detection and imaging in space,” in Observing Photons in Space (Springer, 2013), pp. 391–421.
[Crossref]

W. Rettig, B. Strehmel, S. Schrader, and H. Seifert, Applied Fluorescence in Chemistry, Biology and Medicine (Springer, 1999).
[Crossref]

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Coincidence Imaging of Photonic Quantum Entanglement with Complex Mode Structures,” in Frontiers in Optics (Optical Society of America, 2013), pp. FW5D–5.

U. Schühle, “Intensified solid state sensor cameras: ICCD and IAPS,” in Observing Photons in Space (Springer, 2013), pp. 455–465.
[Crossref]

PI-MAX3 ICCD camera manual book (Princeton Instruments, 2015), Page 165, Figure 114. link: ftp://ftp.princetoninstruments.com/public/Manuals/Princeton%20Instruments/PI-MAX3%20System%20Manual.pdf.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) The readout values of an array of pixels in the ICCD camera (blue solid curve) and the threshold parameter Sth (red dashed line). Every peak that is above the threshold is interpreted as a photon detection event. (b) The mean number of photon detections on an area formed by 9 × 9 pixels per 100ns gate with SPDC radiation (blue solid line) and no radiation (black dashed line) at the input, as functions of the threshold value. Inset: Signal-to-noise ratio (SNR) as a function of the threshold value.
Fig. 2
Fig. 2 (a) Experimental setup: a CW diode laser beam is filtered by a bandpass filter BF1 and pumps SPDC in a BBO crystal; combination of a polarizing beam-splitter (PBS) and a half-wave plate (HWP) is used to measure the noise caused by fluorescence and stray light. A long-pass filter LF1 suppresses the pump beam after the crystal; the SPDC radiation is far-field imaged onto the ICCD camera with a lens. After the lens, a long-pass filter LF2 filters out irrelevant wavelengths, and two bandpass filters (BF2 and BF3) cover different halves of the camera field of view for choosing the ‘reference’ and the ‘DUT’ wavelength bands. (b) Calculated wavelength-angular spectrum for the collinear slightly non-degenerate SPDC. (c) A typical image taken by ICCD by acquiring 4.8 million frames with the gate time 100 ns and the threshold 70, with the ‘reference’ filter BF2 selecting a bandwidth of 10nm around 780nm and the ‘DUT’ filter BF3, a bandwidth of 40nm around 850nm. The pixels inside the red square are chosen as the ‘reference’ detector. (d) The result of the g(2) measurement between the ‘reference’ detector and all the other pixels of the camera, the threshold being 80. The filled red square marks the reference detector (the same as in panel c) and the empty green square shows the chosen ‘DUT’.
Fig. 3
Fig. 3 (a) The QE measured at the wavelength 790nm ± 5nm as a function of the threshold value. Blue triangles are measured through absolute calibration. For reducing the measurement uncertainty, averaging over 43 groups of pixels is performed. Black circles are obtained by measuring the mean number of detected photons for a single DUT pixel, with the noise subtracted, as a function of the threshold value, and assuming that the QE value coincides with the one measured at threshold 100 (shown by red dashed line in panel a) by the absolute method. (b) Measured QE for the threshold value 100 as a function of the wavelength (red triangles). The blue circles show the QE of the photocathode given by the manual. The two datasets show a similar tendency. (c) QE measured for 43 different pixels for the same threshold 60 at the wavelength 790nm ± 5nm. (d) The values of QE (with the error bars) plotted versus the vertical coordinates of the pixels with approximately the same horizontal positions (shown in panel c by red outline).

Tables (1)

Tables Icon

Table 1 Typical MeanValues and Uncertainties of Quantities used in Eq. (1), as well as of the Transmission T of Optical Elements in DUT Channel

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η D U T = N c c N a c c N R e f N n ,

Metrics