Abstract

We investigate the dynamics of chiral microparticles in a dual-beam optical trap. The chiral particles have the structure of spherical chiral microresonators, with a reflectance deriving from the supramolecular helicoidal arrangement. Due to the strong asymmetric response of the particles to light with a specific helicity and wavelength, their trapping position and rotational frequency can be controlled by proper combination of the polarization state of the two light beams. Here symmetric and asymmetric polarization configurations of dual- interfering beam traps have been investigated. Based on the polarization controlled asymmetric transmission of the chiral particles, a tunable wash-board potential is created enabling the control of the trapping position along the beams axis. Asymmetric configurations display polarization controlled rotation of the trapped particles. Optical binding of rotating particles exhibits a complex dynamics.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Complex rotational dynamics of multiple spheroidal particles in a circularly polarized, dual beam trap

Oto Brzobohatý, Alejandro V. Arzola, Martin Šiler, Lukáš Chvátal, Petr Jákl, Stephen Simpson, and Pavel Zemánek
Opt. Express 23(6) 7273-7287 (2015)

Characteristics of the orbital rotation in dual-beam fiber-optic trap with transverse offset

Xinlin Chen, Guangzong Xiao, Kaiyong Yang, Wei Xiong, and Hui Luo
Opt. Express 24(15) 16952-16960 (2016)

Optical trapping of spheroidal particles in Gaussian beams

Stephen H. Simpson and Simon Hanna
J. Opt. Soc. Am. A 24(2) 430-443 (2007)

References

  • View by:
  • |
  • |
  • |

  1. Y. Kim, B. Yeom, O. Arteaga, S. JoYoo, S.-G. Lee, J.-G. Kim, and N. A. Kotov, “Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale,” Nat. Mater. 15, 461–468 (2016).
    [Crossref] [PubMed]
  2. S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
    [Crossref] [PubMed]
  3. J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
    [Crossref] [PubMed]
  4. Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332, 333–336 (2011).
    [Crossref] [PubMed]
  5. U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science 333, 62–65 (2011).
    [Crossref] [PubMed]
  6. Y. Wang and Q. Li, “Light-driven chiral molecular switches or motors in liquid crystals,” Adv. Mater. 24, 1926–1945 (2012).
    [Crossref] [PubMed]
  7. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676–685 (2010).
    [Crossref]
  8. S. J. Asshoff, S. Sukas, T. Yamaguchi, C. A. Hommersom, S. Le Gac, and N. Katsonis, “Superstructures of chiral nematic microspheres as all-optical switchable distributors of light,” Sci. Rep. 5, 14183 (2015).
    [Crossref]
  9. Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, “High-fidelity spherical cholesteric liquid crystal bragg reflectors generating unclonable patterns for secure authentication,” Sci. Rep. 6, 26840 (2016).
    [Crossref] [PubMed]
  10. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
    [Crossref] [PubMed]
  11. L. M. Blinov, Structure and Properties of Liquid Crystals (SpringerNetherlands, 2011).
    [Crossref]
  12. M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
    [Crossref] [PubMed]
  13. R. J. Hernandez, A. Mazzulla, A. Pane, K. Volke-Sepulveda, and G. Cipparrone, “Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers,” Lab. Chip 13, 459–467 (2013).
    [Crossref]
  14. R. J. Hernandez, A. Mazzulla, C. Provenzano, P. Pagliusi, and G. Cipparrone, “Chiral resolution of spin angular momentum in linearly polarized and unpolarized light,” Sci. Rep. 5, 16926 (2015).
    [Crossref] [PubMed]
  15. G. Tkachenko and E. Brasselet, “Spin controlled optical radiation pressure,” Phys. Rev. Lett. 111, 033605 (2013).
    [Crossref] [PubMed]
  16. G. Tkachenko and E. Brasselet, “Optofluidic sorting of material chirality by chiral light,” Nat. Commun. 5, 3577 (2014).
    [Crossref] [PubMed]
  17. G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5, 4491 (2014).
    [Crossref] [PubMed]
  18. R. J. Hernández, C. Provenzano, A. Mazzulla, P. Pagliusi, M. Viola, and G. Cipparrone, “Cholesteric solid spherical microparticles: chiral optomechanics and microphotonics,” Liq. Cryst. Rev. 4, 59–79 (2016).
    [Crossref]
  19. T. Čižmár, M. Šiler, and P. Zemánek, “An optical nanotrap array movable over a milimetre range,” Appl. Phys. B 84, 197–203 (2006).
    [Crossref]
  20. T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
    [Crossref]
  21. V. Karásek, T. Čižmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101, 143601 (2008).
    [Crossref] [PubMed]
  22. O. Brzobohatý, T. Čižmár, V. Karásek, M. Šiler, K. Dholakia, and P. Zemánek, “Experimental and theoretical determination of optical binding forces,” Opt. Express 18, 25389–25402 (2010).
    [Crossref] [PubMed]
  23. P. Zemánek, A. Jonáš, and M. Liška, “Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave,” J. Opt. Soc. Am. A 19, 1025–1034 (2002).
    [Crossref]
  24. P. Zemánek, A. Jonáš, P. Jákl, M. Šerý, J. Ježek, and M. Liška, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220, 401–412 (2003).
    [Crossref]
  25. P. Zemánek, V. Karásek, and A. Sasso, “Optical forces acting on Rayleigh particle placed into interference field,” Opt. Commun. 240, 401–415 (2004).
    [Crossref]
  26. M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination,” New. J. Phys. 10, 113010 (2008).
    [Crossref]
  27. T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
    [Crossref]
  28. M. Šiler and P. Zemánek, “Particle jumps between optical traps in a one-dimensional optical lattice,” New. J. Phys. 12, 083001 (2010).
    [Crossref]
  29. T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
    [Crossref]
  30. O. Brzobohatý, V. Karásek, T. Čižmár, and P. Zemánek, “Dynamic size tuning of multidimensional optically bound matter,” Appl. Phys. Lett. 99, 101105 (2011).
    [Crossref]
  31. J. L. Sanders, Y. Yang, M. R. Dickinson, and H. F. Gleeson, “Pushing, pulling and twisting liquid crystal systems: exploring new directions with laser manipulation,” Phil. Trans. R. Soc. A371 (2013).
    [Crossref] [PubMed]
  32. O. Brzobohatý, A. V. Arzola, M. Šiler, L. Chvátal, P. Jákl, S. Simpson, and P. Zemánek, “Complex rotational dynamics of multiple spheroidal particles in a circularly polarized, dual beam trap,” Opt. Express 23, 7273–7287 (2015).
    [Crossref] [PubMed]
  33. D. Fernandez and G. M. Silveirinha, “Single beam optical conveyor belt for chiral particles,” arXiv (2016).
  34. W. Liang, Y. Xu, Y. Huang, A. Yariv, J. G. Fleming, and S.-Y. Lin, “Mie scattering analysis of spherical bragg “onion” resonators,” Opt. Express 12, 657–669 (2004).
    [Crossref] [PubMed]

2016 (3)

Y. Kim, B. Yeom, O. Arteaga, S. JoYoo, S.-G. Lee, J.-G. Kim, and N. A. Kotov, “Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale,” Nat. Mater. 15, 461–468 (2016).
[Crossref] [PubMed]

Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, “High-fidelity spherical cholesteric liquid crystal bragg reflectors generating unclonable patterns for secure authentication,” Sci. Rep. 6, 26840 (2016).
[Crossref] [PubMed]

R. J. Hernández, C. Provenzano, A. Mazzulla, P. Pagliusi, M. Viola, and G. Cipparrone, “Cholesteric solid spherical microparticles: chiral optomechanics and microphotonics,” Liq. Cryst. Rev. 4, 59–79 (2016).
[Crossref]

2015 (3)

R. J. Hernandez, A. Mazzulla, C. Provenzano, P. Pagliusi, and G. Cipparrone, “Chiral resolution of spin angular momentum in linearly polarized and unpolarized light,” Sci. Rep. 5, 16926 (2015).
[Crossref] [PubMed]

S. J. Asshoff, S. Sukas, T. Yamaguchi, C. A. Hommersom, S. Le Gac, and N. Katsonis, “Superstructures of chiral nematic microspheres as all-optical switchable distributors of light,” Sci. Rep. 5, 14183 (2015).
[Crossref]

O. Brzobohatý, A. V. Arzola, M. Šiler, L. Chvátal, P. Jákl, S. Simpson, and P. Zemánek, “Complex rotational dynamics of multiple spheroidal particles in a circularly polarized, dual beam trap,” Opt. Express 23, 7273–7287 (2015).
[Crossref] [PubMed]

2014 (3)

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

G. Tkachenko and E. Brasselet, “Optofluidic sorting of material chirality by chiral light,” Nat. Commun. 5, 3577 (2014).
[Crossref] [PubMed]

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5, 4491 (2014).
[Crossref] [PubMed]

2013 (2)

R. J. Hernandez, A. Mazzulla, A. Pane, K. Volke-Sepulveda, and G. Cipparrone, “Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers,” Lab. Chip 13, 459–467 (2013).
[Crossref]

G. Tkachenko and E. Brasselet, “Spin controlled optical radiation pressure,” Phys. Rev. Lett. 111, 033605 (2013).
[Crossref] [PubMed]

2012 (1)

Y. Wang and Q. Li, “Light-driven chiral molecular switches or motors in liquid crystals,” Adv. Mater. 24, 1926–1945 (2012).
[Crossref] [PubMed]

2011 (4)

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332, 333–336 (2011).
[Crossref] [PubMed]

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science 333, 62–65 (2011).
[Crossref] [PubMed]

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[Crossref]

O. Brzobohatý, V. Karásek, T. Čižmár, and P. Zemánek, “Dynamic size tuning of multidimensional optically bound matter,” Appl. Phys. Lett. 99, 101105 (2011).
[Crossref]

2010 (3)

O. Brzobohatý, T. Čižmár, V. Karásek, M. Šiler, K. Dholakia, and P. Zemánek, “Experimental and theoretical determination of optical binding forces,” Opt. Express 18, 25389–25402 (2010).
[Crossref] [PubMed]

M. Šiler and P. Zemánek, “Particle jumps between optical traps in a one-dimensional optical lattice,” New. J. Phys. 12, 083001 (2010).
[Crossref]

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676–685 (2010).
[Crossref]

2009 (1)

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[Crossref] [PubMed]

2008 (2)

M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination,” New. J. Phys. 10, 113010 (2008).
[Crossref]

V. Karásek, T. Čižmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101, 143601 (2008).
[Crossref] [PubMed]

2006 (3)

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

T. Čižmár, M. Šiler, and P. Zemánek, “An optical nanotrap array movable over a milimetre range,” Appl. Phys. B 84, 197–203 (2006).
[Crossref]

2005 (1)

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[Crossref]

2004 (3)

J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[Crossref] [PubMed]

P. Zemánek, V. Karásek, and A. Sasso, “Optical forces acting on Rayleigh particle placed into interference field,” Opt. Commun. 240, 401–415 (2004).
[Crossref]

W. Liang, Y. Xu, Y. Huang, A. Yariv, J. G. Fleming, and S.-Y. Lin, “Mie scattering analysis of spherical bragg “onion” resonators,” Opt. Express 12, 657–669 (2004).
[Crossref] [PubMed]

2003 (1)

P. Zemánek, A. Jonáš, P. Jákl, M. Šerý, J. Ježek, and M. Liška, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220, 401–412 (2003).
[Crossref]

2002 (1)

Arteaga, O.

Y. Kim, B. Yeom, O. Arteaga, S. JoYoo, S.-G. Lee, J.-G. Kim, and N. A. Kotov, “Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale,” Nat. Mater. 15, 461–468 (2016).
[Crossref] [PubMed]

Arzola, A. V.

Asshoff, S. J.

S. J. Asshoff, S. Sukas, T. Yamaguchi, C. A. Hommersom, S. Le Gac, and N. Katsonis, “Superstructures of chiral nematic microspheres as all-optical switchable distributors of light,” Sci. Rep. 5, 14183 (2015).
[Crossref]

Bartolino, R.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

Blinov, L. M.

L. M. Blinov, Structure and Properties of Liquid Crystals (SpringerNetherlands, 2011).
[Crossref]

Brasselet, E.

G. Tkachenko and E. Brasselet, “Optofluidic sorting of material chirality by chiral light,” Nat. Commun. 5, 3577 (2014).
[Crossref] [PubMed]

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5, 4491 (2014).
[Crossref] [PubMed]

G. Tkachenko and E. Brasselet, “Spin controlled optical radiation pressure,” Phys. Rev. Lett. 111, 033605 (2013).
[Crossref] [PubMed]

Brzobohatý, O.

O. Brzobohatý, A. V. Arzola, M. Šiler, L. Chvátal, P. Jákl, S. Simpson, and P. Zemánek, “Complex rotational dynamics of multiple spheroidal particles in a circularly polarized, dual beam trap,” Opt. Express 23, 7273–7287 (2015).
[Crossref] [PubMed]

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[Crossref]

O. Brzobohatý, V. Karásek, T. Čižmár, and P. Zemánek, “Dynamic size tuning of multidimensional optically bound matter,” Appl. Phys. Lett. 99, 101105 (2011).
[Crossref]

O. Brzobohatý, T. Čižmár, V. Karásek, M. Šiler, K. Dholakia, and P. Zemánek, “Experimental and theoretical determination of optical binding forces,” Opt. Express 18, 25389–25402 (2010).
[Crossref] [PubMed]

V. Karásek, T. Čižmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101, 143601 (2008).
[Crossref] [PubMed]

Chen, Y.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

Chvátal, L.

Cipparrone, G.

R. J. Hernández, C. Provenzano, A. Mazzulla, P. Pagliusi, M. Viola, and G. Cipparrone, “Cholesteric solid spherical microparticles: chiral optomechanics and microphotonics,” Liq. Cryst. Rev. 4, 59–79 (2016).
[Crossref]

R. J. Hernandez, A. Mazzulla, C. Provenzano, P. Pagliusi, and G. Cipparrone, “Chiral resolution of spin angular momentum in linearly polarized and unpolarized light,” Sci. Rep. 5, 16926 (2015).
[Crossref] [PubMed]

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

R. J. Hernandez, A. Mazzulla, A. Pane, K. Volke-Sepulveda, and G. Cipparrone, “Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers,” Lab. Chip 13, 459–467 (2013).
[Crossref]

Cižmár, T.

O. Brzobohatý, V. Karásek, T. Čižmár, and P. Zemánek, “Dynamic size tuning of multidimensional optically bound matter,” Appl. Phys. Lett. 99, 101105 (2011).
[Crossref]

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[Crossref]

O. Brzobohatý, T. Čižmár, V. Karásek, M. Šiler, K. Dholakia, and P. Zemánek, “Experimental and theoretical determination of optical binding forces,” Opt. Express 18, 25389–25402 (2010).
[Crossref] [PubMed]

V. Karásek, T. Čižmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101, 143601 (2008).
[Crossref] [PubMed]

M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination,” New. J. Phys. 10, 113010 (2008).
[Crossref]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[Crossref]

T. Čižmár, M. Šiler, and P. Zemánek, “An optical nanotrap array movable over a milimetre range,” Appl. Phys. B 84, 197–203 (2006).
[Crossref]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[Crossref]

Cohen, A. E.

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332, 333–336 (2011).
[Crossref] [PubMed]

Coles, H.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676–685 (2010).
[Crossref]

Copar, S.

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science 333, 62–65 (2011).
[Crossref] [PubMed]

Dholakia, K.

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[Crossref]

O. Brzobohatý, T. Čižmár, V. Karásek, M. Šiler, K. Dholakia, and P. Zemánek, “Experimental and theoretical determination of optical binding forces,” Opt. Express 18, 25389–25402 (2010).
[Crossref] [PubMed]

V. Karásek, T. Čižmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101, 143601 (2008).
[Crossref] [PubMed]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[Crossref]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[Crossref]

Dickinson, M. R.

J. L. Sanders, Y. Yang, M. R. Dickinson, and H. F. Gleeson, “Pushing, pulling and twisting liquid crystal systems: exploring new directions with laser manipulation,” Phil. Trans. R. Soc. A371 (2013).
[Crossref] [PubMed]

Donato, M. G.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

Drevensek-Olenik, I.

Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, “High-fidelity spherical cholesteric liquid crystal bragg reflectors generating unclonable patterns for secure authentication,” Sci. Rep. 6, 26840 (2016).
[Crossref] [PubMed]

Fedotov, V. A.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

Fernandez, D.

D. Fernandez and G. M. Silveirinha, “Single beam optical conveyor belt for chiral particles,” arXiv (2016).

Fleming, J. G.

Garcés-Chávez, V.

V. Karásek, T. Čižmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101, 143601 (2008).
[Crossref] [PubMed]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[Crossref]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[Crossref]

Geng, Y.

Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, “High-fidelity spherical cholesteric liquid crystal bragg reflectors generating unclonable patterns for secure authentication,” Sci. Rep. 6, 26840 (2016).
[Crossref] [PubMed]

Gleeson, H. F.

J. L. Sanders, Y. Yang, M. R. Dickinson, and H. F. Gleeson, “Pushing, pulling and twisting liquid crystal systems: exploring new directions with laser manipulation,” Phil. Trans. R. Soc. A371 (2013).
[Crossref] [PubMed]

Gucciardi, P. G.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

Hernandez, J.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

Hernandez, R. J.

R. J. Hernandez, A. Mazzulla, C. Provenzano, P. Pagliusi, and G. Cipparrone, “Chiral resolution of spin angular momentum in linearly polarized and unpolarized light,” Sci. Rep. 5, 16926 (2015).
[Crossref] [PubMed]

R. J. Hernandez, A. Mazzulla, A. Pane, K. Volke-Sepulveda, and G. Cipparrone, “Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers,” Lab. Chip 13, 459–467 (2013).
[Crossref]

Hernández, R. J.

R. J. Hernández, C. Provenzano, A. Mazzulla, P. Pagliusi, M. Viola, and G. Cipparrone, “Cholesteric solid spherical microparticles: chiral optomechanics and microphotonics,” Liq. Cryst. Rev. 4, 59–79 (2016).
[Crossref]

Hommersom, C. A.

S. J. Asshoff, S. Sukas, T. Yamaguchi, C. A. Hommersom, S. Le Gac, and N. Katsonis, “Superstructures of chiral nematic microspheres as all-optical switchable distributors of light,” Sci. Rep. 5, 14183 (2015).
[Crossref]

Huang, Y.

Jákl, P.

O. Brzobohatý, A. V. Arzola, M. Šiler, L. Chvátal, P. Jákl, S. Simpson, and P. Zemánek, “Complex rotational dynamics of multiple spheroidal particles in a circularly polarized, dual beam trap,” Opt. Express 23, 7273–7287 (2015).
[Crossref] [PubMed]

P. Zemánek, A. Jonáš, P. Jákl, M. Šerý, J. Ježek, and M. Liška, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220, 401–412 (2003).
[Crossref]

Ježek, J.

P. Zemánek, A. Jonáš, P. Jákl, M. Šerý, J. Ježek, and M. Liška, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220, 401–412 (2003).
[Crossref]

Jonáš, A.

M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination,” New. J. Phys. 10, 113010 (2008).
[Crossref]

P. Zemánek, A. Jonáš, P. Jákl, M. Šerý, J. Ježek, and M. Liška, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220, 401–412 (2003).
[Crossref]

P. Zemánek, A. Jonáš, and M. Liška, “Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave,” J. Opt. Soc. Am. A 19, 1025–1034 (2002).
[Crossref]

JoYoo, S.

Y. Kim, B. Yeom, O. Arteaga, S. JoYoo, S.-G. Lee, J.-G. Kim, and N. A. Kotov, “Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale,” Nat. Mater. 15, 461–468 (2016).
[Crossref] [PubMed]

Karásek, V.

O. Brzobohatý, V. Karásek, T. Čižmár, and P. Zemánek, “Dynamic size tuning of multidimensional optically bound matter,” Appl. Phys. Lett. 99, 101105 (2011).
[Crossref]

O. Brzobohatý, T. Čižmár, V. Karásek, M. Šiler, K. Dholakia, and P. Zemánek, “Experimental and theoretical determination of optical binding forces,” Opt. Express 18, 25389–25402 (2010).
[Crossref] [PubMed]

V. Karásek, T. Čižmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101, 143601 (2008).
[Crossref] [PubMed]

P. Zemánek, V. Karásek, and A. Sasso, “Optical forces acting on Rayleigh particle placed into interference field,” Opt. Commun. 240, 401–415 (2004).
[Crossref]

Katsonis, N.

S. J. Asshoff, S. Sukas, T. Yamaguchi, C. A. Hommersom, S. Le Gac, and N. Katsonis, “Superstructures of chiral nematic microspheres as all-optical switchable distributors of light,” Sci. Rep. 5, 14183 (2015).
[Crossref]

Kim, J.-G.

Y. Kim, B. Yeom, O. Arteaga, S. JoYoo, S.-G. Lee, J.-G. Kim, and N. A. Kotov, “Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale,” Nat. Mater. 15, 461–468 (2016).
[Crossref] [PubMed]

Kim, Y.

Y. Kim, B. Yeom, O. Arteaga, S. JoYoo, S.-G. Lee, J.-G. Kim, and N. A. Kotov, “Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale,” Nat. Mater. 15, 461–468 (2016).
[Crossref] [PubMed]

Kotov, N. A.

Y. Kim, B. Yeom, O. Arteaga, S. JoYoo, S.-G. Lee, J.-G. Kim, and N. A. Kotov, “Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale,” Nat. Mater. 15, 461–468 (2016).
[Crossref] [PubMed]

Lagerwall, J. P. F.

Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, “High-fidelity spherical cholesteric liquid crystal bragg reflectors generating unclonable patterns for secure authentication,” Sci. Rep. 6, 26840 (2016).
[Crossref] [PubMed]

Le Gac, S.

S. J. Asshoff, S. Sukas, T. Yamaguchi, C. A. Hommersom, S. Le Gac, and N. Katsonis, “Superstructures of chiral nematic microspheres as all-optical switchable distributors of light,” Sci. Rep. 5, 14183 (2015).
[Crossref]

Lee, S.-G.

Y. Kim, B. Yeom, O. Arteaga, S. JoYoo, S.-G. Lee, J.-G. Kim, and N. A. Kotov, “Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale,” Nat. Mater. 15, 461–468 (2016).
[Crossref] [PubMed]

Lenzini, G.

Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, “High-fidelity spherical cholesteric liquid crystal bragg reflectors generating unclonable patterns for secure authentication,” Sci. Rep. 6, 26840 (2016).
[Crossref] [PubMed]

Li, J.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[Crossref] [PubMed]

Li, Q.

Y. Wang and Q. Li, “Light-driven chiral molecular switches or motors in liquid crystals,” Adv. Mater. 24, 1926–1945 (2012).
[Crossref] [PubMed]

Liang, W.

Lin, S.-Y.

Liška, M.

P. Zemánek, A. Jonáš, P. Jákl, M. Šerý, J. Ježek, and M. Liška, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220, 401–412 (2003).
[Crossref]

P. Zemánek, A. Jonáš, and M. Liška, “Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave,” J. Opt. Soc. Am. A 19, 1025–1034 (2002).
[Crossref]

Lu, X.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[Crossref] [PubMed]

Magazzù, A.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

Maragò, O. M.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

Mazzulla, A.

R. J. Hernández, C. Provenzano, A. Mazzulla, P. Pagliusi, M. Viola, and G. Cipparrone, “Cholesteric solid spherical microparticles: chiral optomechanics and microphotonics,” Liq. Cryst. Rev. 4, 59–79 (2016).
[Crossref]

R. J. Hernandez, A. Mazzulla, C. Provenzano, P. Pagliusi, and G. Cipparrone, “Chiral resolution of spin angular momentum in linearly polarized and unpolarized light,” Sci. Rep. 5, 16926 (2015).
[Crossref] [PubMed]

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

R. J. Hernandez, A. Mazzulla, A. Pane, K. Volke-Sepulveda, and G. Cipparrone, “Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers,” Lab. Chip 13, 459–467 (2013).
[Crossref]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

Morris, S.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676–685 (2010).
[Crossref]

Muševic, I.

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science 333, 62–65 (2011).
[Crossref] [PubMed]

Noh, J.

Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, “High-fidelity spherical cholesteric liquid crystal bragg reflectors generating unclonable patterns for secure authentication,” Sci. Rep. 6, 26840 (2016).
[Crossref] [PubMed]

Pagliusi, P.

R. J. Hernández, C. Provenzano, A. Mazzulla, P. Pagliusi, M. Viola, and G. Cipparrone, “Cholesteric solid spherical microparticles: chiral optomechanics and microphotonics,” Liq. Cryst. Rev. 4, 59–79 (2016).
[Crossref]

R. J. Hernandez, A. Mazzulla, C. Provenzano, P. Pagliusi, and G. Cipparrone, “Chiral resolution of spin angular momentum in linearly polarized and unpolarized light,” Sci. Rep. 5, 16926 (2015).
[Crossref] [PubMed]

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

Pane, A.

R. J. Hernandez, A. Mazzulla, A. Pane, K. Volke-Sepulveda, and G. Cipparrone, “Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers,” Lab. Chip 13, 459–467 (2013).
[Crossref]

Park, Y.-S.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[Crossref] [PubMed]

Prosvirnin, S. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

Provenzano, C.

R. J. Hernández, C. Provenzano, A. Mazzulla, P. Pagliusi, M. Viola, and G. Cipparrone, “Cholesteric solid spherical microparticles: chiral optomechanics and microphotonics,” Liq. Cryst. Rev. 4, 59–79 (2016).
[Crossref]

R. J. Hernandez, A. Mazzulla, C. Provenzano, P. Pagliusi, and G. Cipparrone, “Chiral resolution of spin angular momentum in linearly polarized and unpolarized light,” Sci. Rep. 5, 16926 (2015).
[Crossref] [PubMed]

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

Ravnik, M.

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science 333, 62–65 (2011).
[Crossref] [PubMed]

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

Rupp, R.

Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, “High-fidelity spherical cholesteric liquid crystal bragg reflectors generating unclonable patterns for secure authentication,” Sci. Rep. 6, 26840 (2016).
[Crossref] [PubMed]

Saija, R.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

Sanders, J. L.

J. L. Sanders, Y. Yang, M. R. Dickinson, and H. F. Gleeson, “Pushing, pulling and twisting liquid crystal systems: exploring new directions with laser manipulation,” Phil. Trans. R. Soc. A371 (2013).
[Crossref] [PubMed]

Sasso, A.

P. Zemánek, V. Karásek, and A. Sasso, “Optical forces acting on Rayleigh particle placed into interference field,” Opt. Commun. 240, 401–415 (2004).
[Crossref]

Sayed, R.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

Šerý, M.

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[Crossref]

P. Zemánek, A. Jonáš, P. Jákl, M. Šerý, J. Ježek, and M. Liška, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220, 401–412 (2003).
[Crossref]

Šiler, M.

O. Brzobohatý, A. V. Arzola, M. Šiler, L. Chvátal, P. Jákl, S. Simpson, and P. Zemánek, “Complex rotational dynamics of multiple spheroidal particles in a circularly polarized, dual beam trap,” Opt. Express 23, 7273–7287 (2015).
[Crossref] [PubMed]

M. Šiler and P. Zemánek, “Particle jumps between optical traps in a one-dimensional optical lattice,” New. J. Phys. 12, 083001 (2010).
[Crossref]

O. Brzobohatý, T. Čižmár, V. Karásek, M. Šiler, K. Dholakia, and P. Zemánek, “Experimental and theoretical determination of optical binding forces,” Opt. Express 18, 25389–25402 (2010).
[Crossref] [PubMed]

M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination,” New. J. Phys. 10, 113010 (2008).
[Crossref]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[Crossref]

T. Čižmár, M. Šiler, and P. Zemánek, “An optical nanotrap array movable over a milimetre range,” Appl. Phys. B 84, 197–203 (2006).
[Crossref]

Silveirinha, G. M.

D. Fernandez and G. M. Silveirinha, “Single beam optical conveyor belt for chiral particles,” arXiv (2016).

Simpson, S.

Sukas, S.

S. J. Asshoff, S. Sukas, T. Yamaguchi, C. A. Hommersom, S. Le Gac, and N. Katsonis, “Superstructures of chiral nematic microspheres as all-optical switchable distributors of light,” Sci. Rep. 5, 14183 (2015).
[Crossref]

Tang, Y.

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332, 333–336 (2011).
[Crossref] [PubMed]

Tkachenko, G.

G. Tkachenko and E. Brasselet, “Optofluidic sorting of material chirality by chiral light,” Nat. Commun. 5, 3577 (2014).
[Crossref] [PubMed]

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5, 4491 (2014).
[Crossref] [PubMed]

G. Tkachenko and E. Brasselet, “Spin controlled optical radiation pressure,” Phys. Rev. Lett. 111, 033605 (2013).
[Crossref] [PubMed]

Tkalec, U.

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science 333, 62–65 (2011).
[Crossref] [PubMed]

Vasi, S.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

Viola, M.

R. J. Hernández, C. Provenzano, A. Mazzulla, P. Pagliusi, M. Viola, and G. Cipparrone, “Cholesteric solid spherical microparticles: chiral optomechanics and microphotonics,” Liq. Cryst. Rev. 4, 59–79 (2016).
[Crossref]

Volke-Sepulveda, K.

R. J. Hernandez, A. Mazzulla, A. Pane, K. Volke-Sepulveda, and G. Cipparrone, “Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers,” Lab. Chip 13, 459–467 (2013).
[Crossref]

Wang, Y.

Y. Wang and Q. Li, “Light-driven chiral molecular switches or motors in liquid crystals,” Adv. Mater. 24, 1926–1945 (2012).
[Crossref] [PubMed]

Xu, Y.

Yamaguchi, T.

S. J. Asshoff, S. Sukas, T. Yamaguchi, C. A. Hommersom, S. Le Gac, and N. Katsonis, “Superstructures of chiral nematic microspheres as all-optical switchable distributors of light,” Sci. Rep. 5, 14183 (2015).
[Crossref]

Yang, Y.

J. L. Sanders, Y. Yang, M. R. Dickinson, and H. F. Gleeson, “Pushing, pulling and twisting liquid crystal systems: exploring new directions with laser manipulation,” Phil. Trans. R. Soc. A371 (2013).
[Crossref] [PubMed]

Yariv, A.

Yeom, B.

Y. Kim, B. Yeom, O. Arteaga, S. JoYoo, S.-G. Lee, J.-G. Kim, and N. A. Kotov, “Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale,” Nat. Mater. 15, 461–468 (2016).
[Crossref] [PubMed]

Zemánek, P.

O. Brzobohatý, A. V. Arzola, M. Šiler, L. Chvátal, P. Jákl, S. Simpson, and P. Zemánek, “Complex rotational dynamics of multiple spheroidal particles in a circularly polarized, dual beam trap,” Opt. Express 23, 7273–7287 (2015).
[Crossref] [PubMed]

O. Brzobohatý, V. Karásek, T. Čižmár, and P. Zemánek, “Dynamic size tuning of multidimensional optically bound matter,” Appl. Phys. Lett. 99, 101105 (2011).
[Crossref]

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[Crossref]

M. Šiler and P. Zemánek, “Particle jumps between optical traps in a one-dimensional optical lattice,” New. J. Phys. 12, 083001 (2010).
[Crossref]

O. Brzobohatý, T. Čižmár, V. Karásek, M. Šiler, K. Dholakia, and P. Zemánek, “Experimental and theoretical determination of optical binding forces,” Opt. Express 18, 25389–25402 (2010).
[Crossref] [PubMed]

M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination,” New. J. Phys. 10, 113010 (2008).
[Crossref]

V. Karásek, T. Čižmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101, 143601 (2008).
[Crossref] [PubMed]

T. Čižmár, M. Šiler, and P. Zemánek, “An optical nanotrap array movable over a milimetre range,” Appl. Phys. B 84, 197–203 (2006).
[Crossref]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[Crossref]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[Crossref]

P. Zemánek, V. Karásek, and A. Sasso, “Optical forces acting on Rayleigh particle placed into interference field,” Opt. Commun. 240, 401–415 (2004).
[Crossref]

P. Zemánek, A. Jonáš, P. Jákl, M. Šerý, J. Ježek, and M. Liška, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220, 401–412 (2003).
[Crossref]

P. Zemánek, A. Jonáš, and M. Liška, “Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave,” J. Opt. Soc. Am. A 19, 1025–1034 (2002).
[Crossref]

Zhang, S.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[Crossref] [PubMed]

Zhang, W.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[Crossref] [PubMed]

Zhang, X.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[Crossref] [PubMed]

Zheludev, N. I.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

Žumer, S.

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science 333, 62–65 (2011).
[Crossref] [PubMed]

Adv. Mater. (1)

Y. Wang and Q. Li, “Light-driven chiral molecular switches or motors in liquid crystals,” Adv. Mater. 24, 1926–1945 (2012).
[Crossref] [PubMed]

Appl. Phys. B (1)

T. Čižmár, M. Šiler, and P. Zemánek, “An optical nanotrap array movable over a milimetre range,” Appl. Phys. B 84, 197–203 (2006).
[Crossref]

Appl. Phys. Lett. (2)

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[Crossref]

O. Brzobohatý, V. Karásek, T. Čižmár, and P. Zemánek, “Dynamic size tuning of multidimensional optically bound matter,” Appl. Phys. Lett. 99, 101105 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

Lab. Chip (1)

R. J. Hernandez, A. Mazzulla, A. Pane, K. Volke-Sepulveda, and G. Cipparrone, “Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers,” Lab. Chip 13, 459–467 (2013).
[Crossref]

Laser Phys. Lett. (1)

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[Crossref]

Liq. Cryst. Rev. (1)

R. J. Hernández, C. Provenzano, A. Mazzulla, P. Pagliusi, M. Viola, and G. Cipparrone, “Cholesteric solid spherical microparticles: chiral optomechanics and microphotonics,” Liq. Cryst. Rev. 4, 59–79 (2016).
[Crossref]

Nat. Commun. (3)

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzù, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Maragò, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

G. Tkachenko and E. Brasselet, “Optofluidic sorting of material chirality by chiral light,” Nat. Commun. 5, 3577 (2014).
[Crossref] [PubMed]

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5, 4491 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

Y. Kim, B. Yeom, O. Arteaga, S. JoYoo, S.-G. Lee, J.-G. Kim, and N. A. Kotov, “Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale,” Nat. Mater. 15, 461–468 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676–685 (2010).
[Crossref]

New. J. Phys. (2)

M. Šiler and P. Zemánek, “Particle jumps between optical traps in a one-dimensional optical lattice,” New. J. Phys. 12, 083001 (2010).
[Crossref]

M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination,” New. J. Phys. 10, 113010 (2008).
[Crossref]

Opt. Commun. (2)

P. Zemánek, A. Jonáš, P. Jákl, M. Šerý, J. Ježek, and M. Liška, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220, 401–412 (2003).
[Crossref]

P. Zemánek, V. Karásek, and A. Sasso, “Optical forces acting on Rayleigh particle placed into interference field,” Opt. Commun. 240, 401–415 (2004).
[Crossref]

Opt. Express (3)

Phys. Rev. B (1)

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[Crossref]

Phys. Rev. Lett. (4)

V. Karásek, T. Čižmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101, 143601 (2008).
[Crossref] [PubMed]

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[Crossref] [PubMed]

G. Tkachenko and E. Brasselet, “Spin controlled optical radiation pressure,” Phys. Rev. Lett. 111, 033605 (2013).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

Sci. Rep. (3)

R. J. Hernandez, A. Mazzulla, C. Provenzano, P. Pagliusi, and G. Cipparrone, “Chiral resolution of spin angular momentum in linearly polarized and unpolarized light,” Sci. Rep. 5, 16926 (2015).
[Crossref] [PubMed]

S. J. Asshoff, S. Sukas, T. Yamaguchi, C. A. Hommersom, S. Le Gac, and N. Katsonis, “Superstructures of chiral nematic microspheres as all-optical switchable distributors of light,” Sci. Rep. 5, 14183 (2015).
[Crossref]

Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, “High-fidelity spherical cholesteric liquid crystal bragg reflectors generating unclonable patterns for secure authentication,” Sci. Rep. 6, 26840 (2016).
[Crossref] [PubMed]

Science (3)

J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[Crossref] [PubMed]

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332, 333–336 (2011).
[Crossref] [PubMed]

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science 333, 62–65 (2011).
[Crossref] [PubMed]

Other (3)

L. M. Blinov, Structure and Properties of Liquid Crystals (SpringerNetherlands, 2011).
[Crossref]

J. L. Sanders, Y. Yang, M. R. Dickinson, and H. F. Gleeson, “Pushing, pulling and twisting liquid crystal systems: exploring new directions with laser manipulation,” Phil. Trans. R. Soc. A371 (2013).
[Crossref] [PubMed]

D. Fernandez and G. M. Silveirinha, “Single beam optical conveyor belt for chiral particles,” arXiv (2016).

Supplementary Material (2)

NameDescription
» Visualization 1: AVI (6385 KB)      A chiral particle with radius a = 1.4+-0.2um optically trapped in the C-P Gaussian beams. Various combinations of the polarizations of both beams were set to study the optical torque transfer.
» Visualization 2: AVI (5400 KB)      Two optically bound rotating chiral particles (a_1 = 1.0+-0.1um and a_2 = 1.2+-0.1um) optically trapped in the C-P Gaussian beams (beam waist w_0 = 4.6 um, power in the sample P = 140 mW) with opposite handedness.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

a) Dual-beam optical trap [29, 30] with the ability to set the polarizations of each beam by quarter wave plates (QW). Optically trapped particles are observed using the microscope from side-view. b) Red arrows show the electric field directions of rotation for the right-hand circular (RC) and left-hand circular (LC) polarization of light, respectively. The right-hand circularly polarized light going along the left-helix does not see periodicity of the helix and, therefore, does not diffract. c) optical torque and force acting on the left handed chiral particle illuminated by various combinations CP Gaussian beams are discussed. (LHCP – left handed chiral particles; RC – right-handed circularly polarized light, LC left-handed circularly polarized light, LP linearly polarized light (as a sum of LC and RC circularly polarized beams)).

Fig. 2
Fig. 2

a) An optical microscope image of a small polymeric particle (in the configuration of crossed polarizers) shows the radial structure of the helix with the number of pitches to be a/p ≈ 2. b) Scanning electron microscopy proofs spherical shape of chiral microparticles, c) The asymmetric transmission of the two beams from the particle, due to the Bragg reflectance, modifies the potential in a biased cosine potential (blue curve). d) A trajectory of a left-handed chiral particles (with radius 1.3 ± 0.2 μm) initially illuminated by two counter-propagating Gaussian beams with opposite orientation of circular polarization. At 6 seconds we switched the orientation of the LB to have the same orientation of circular polarization the RB, and we observed particle’s motion in the tilted potential towards the new equilibrium position at 0 μm. (w0 = 4.6 μm, P = 10 mW)

Fig. 3
Fig. 3

A chiral particle with radius a = 1.4 ± 0.2 μm optically trapped in the C-P Gaussian beams. Various combinations of the polarizations of both beams were set to study the optical torque exerted on chiral particles. a) time series of particle positions along x axes, b) x-position distribution, c) Fast Fourier transform revealed, that the observed particle rotates most intensively when illuminated by laser beams with opposite handednesses, see violet curve. When illuminated, for instance, by one linearly polarized beam (having half left-and half right-circular component) and by second one with the opposite handedness as the particle material, the particle rotates with approximately half frequency, see yellow curve (see Visualization 1).

Fig. 4
Fig. 4

a) The optical radiation torque Γ measured for different particles as a function of the sphere radius to beam waist ratio a/w0. b) Chiral particles with a/w0 in the range 0 ≤ a/w0 ≤ 1.5 orbit around optical axis. RO is the radius of orbital motion. Both quantities are plotted for three sizes of particles a = 1.0, 1.5 and 4.3 μm.

Fig. 5
Fig. 5

Trajectories (transversal coordinate x) of single chiral particle (blue line, a = 1.1 ± 0.2 μm) and two optically bound chiral particles with very similar sizes (orange line, a1 = 1.0 ± 0.1 μm and a2 = 1.2 ± 0.1 μm) optically trapped in the C-P Gaussian beams (beam waist w0 = 4.6 μm, power in the sample P = 140 mW) with opposite handedness. A multi-stability was observed for the optically bound particles (see Visualization 2).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Γ = ( σ z in σ z out ) P / ω = R [ 1 + sin ( 2 φ ) ] P / ω ,

Metrics