Abstract

We theoretically investigate the broadband light absorption in the THz range by canceling the strong coupling in an array of graphene ribbons at subwavelength scale. A series of resonators with different absorption frequencies can achieve a broadband absorber, however, the suppression of absorption always accompanies since the mutual coupling between resonators cause the mode splitting. By adjusting the near- and far-field coupling between the plasmon resonances of the graphene ribbon array to the critical point, the absorption linewidth is broadened for almost one magnitude larger than that of individual graphene ribbon, to be ~1 THz. Our study provides not only insight understanding but also new approaches towards the broadband graphene absorber.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Graphene ribbons for tunable coupling with plasmonic subwavelength cavities

Gilles Rosolen and Bjorn Maes
J. Opt. Soc. Am. B 31(5) 1096-1102 (2014)

Broadband wave absorption in single-layered and nonstructured graphene based on far-field interaction effect

Fei Gao, Zhihong Zhu, Wei. Xu, Jianfa Zhang, Chucai Guo, Ken Liu, Xiaodong Yuan, and Shiqiao Qin
Opt. Express 25(9) 9579-9586 (2017)

Realization of mid-infrared broadband absorption in monolayer graphene based on strong coupling between graphene nanoribbons and metal tapered grooves

Lei Huang, Guohua Hu, Chunyu Deng, Yuan Zhu, Binfeng Yun, Ruohu Zhang, and Yiping Cui
Opt. Express 26(22) 29192-29202 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  2. Q. Bao and K. P. Loh, “Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices,” ACS Nano 6(5), 3677–3694 (2012).
    [Crossref] [PubMed]
  3. K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
    [Crossref] [PubMed]
  4. J. R. Piper and S. H. Fan, “Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance,” ACS Photonics 1(4), 347–353 (2014).
    [Crossref]
  5. Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
    [Crossref]
  6. M. Amin, M. Farhat, and H. Baǧcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3, 2105 (2013).
    [Crossref] [PubMed]
  7. F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene Plasmonics: A Platform for Strong Light-Matter Interactions,” Nano Lett. 11(8), 3370–3377 (2011).
    [Crossref] [PubMed]
  8. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
    [Crossref] [PubMed]
  9. F. J. García de Abajo, “Graphene Plasmonics: Challenges and Opportunities,” ACS Photonics 1(3), 135–152 (2014).
    [Crossref]
  10. C. S. R. Kaipa, A. B. Yakovlev, G. W. Hanson, Y. R. Padooru, F. Medina, and F. Mesa, “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B 85(24), 245407 (2012).
    [Crossref]
  11. Y. Fan, Z. Wei, Z. Zhang, and H. Li, “Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators,” Opt. Lett. 38(24), 5410–5413 (2013).
    [Crossref] [PubMed]
  12. Y. C. Fan, Z. Y. Wei, H. Q. Li, H. Chen, and C. M. Soukoulis, “Photonic band gap of a graphene-embedded quarter-wave stack,” Phys. Rev. B 88(24), 241403 (2013).
    [Crossref]
  13. J. Zheng, R. A. Barton, and D. Englund, “Broadband Coherent Absorption in Chirped-Planar-Dielectric Cavities for 2D-Material-Based Photovoltaics and Photodetectors,” ACS Photonics 1(9), 768–774 (2014).
    [Crossref]
  14. Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
    [Crossref]
  15. S. B. Parizi, B. Rejaei, and A. Khavasi, “Analytical Circuit Model for Periodic Arrays of Graphene Disks,” IEEE. J. Quantum Electron. 51, 7000507 (2015).
  16. S. Yi, M. Zhou, X. Shi, Q. Gan, J. Zi, and Z. Yu, “A multiple-resonator approach for broadband light absorption in a single layer of nanostructured graphene,” Opt. Express 23(8), 10081–10090 (2015).
    [Crossref] [PubMed]
  17. K. Arik, S. A. Ramezani, and A. Khavasi, “Polarization Insensitive and Broadband Terahertz Absorber Using Graphene Disks,” Plasmonics 11, 1–6 (2016).
  18. X. Shi, D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, and J. Zi, “Plasmonic analog of electromagnetically induced transparency in nanostructure graphene,” Opt. Express 21(23), 28438–28443 (2013).
    [Crossref] [PubMed]
  19. S. Y. Yi, M. Zhou, Z. Wang, and Z. F. Yu, “Superradiant absorption in multiple optical nanoresonators,” Phys. Rev. B 89(19), 195449 (2014).
    [Crossref]
  20. Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
    [Crossref] [PubMed]
  21. Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
    [Crossref] [PubMed]
  22. W. Suh, Z. Wang, and S. H. Fan, “Temporal Coupled-Mode Theory and the Presence of Non-Orthogonal Modes in Lossless Multimode Cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
    [Crossref]
  23. W. Tan, Y. Sun, Z. G. Wang, and H. Chen, “Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near- and far-field couplings,” Appl. Phys. Lett. 104(9), 091107 (2014).
    [Crossref]
  24. S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian Plasmon Coupling of an Array of Gold Thin-Film Antennas for Controlling Light at the Nanoscale,” Phys. Rev. Lett. 109(19), 193902 (2012).
    [Crossref] [PubMed]
  25. A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano Resonances in Coupled Plasmonic Systems,” ACS Nano 7(5), 4527–4536 (2013).
    [Crossref] [PubMed]
  26. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  27. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref] [PubMed]
  28. T. Zhan, X. Shi, Y. Y. Dai, X. H. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys-Condens. Mat. 25, 215301 (2013).
  29. M. Zhou, L. Shi, J. Zi, and Z. Yu, “Extraordinarily Large Optical Cross Section for Localized Single Nanoresonator,” Phys. Rev. Lett. 115(2), 023903 (2015).
    [Crossref] [PubMed]
  30. F. Liu, L. Chen, Q. Guo, J. Chen, X. Zhao, and W. Shi, “Enhanced graphene absorption and linewidth sharpening enabled by Fano-like geometric resonance at near-infrared wavelengths,” Opt. Express 23(16), 21097–21106 (2015).
    [Crossref] [PubMed]

2016 (1)

K. Arik, S. A. Ramezani, and A. Khavasi, “Polarization Insensitive and Broadband Terahertz Absorber Using Graphene Disks,” Plasmonics 11, 1–6 (2016).

2015 (6)

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

S. B. Parizi, B. Rejaei, and A. Khavasi, “Analytical Circuit Model for Periodic Arrays of Graphene Disks,” IEEE. J. Quantum Electron. 51, 7000507 (2015).

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

M. Zhou, L. Shi, J. Zi, and Z. Yu, “Extraordinarily Large Optical Cross Section for Localized Single Nanoresonator,” Phys. Rev. Lett. 115(2), 023903 (2015).
[Crossref] [PubMed]

S. Yi, M. Zhou, X. Shi, Q. Gan, J. Zi, and Z. Yu, “A multiple-resonator approach for broadband light absorption in a single layer of nanostructured graphene,” Opt. Express 23(8), 10081–10090 (2015).
[Crossref] [PubMed]

F. Liu, L. Chen, Q. Guo, J. Chen, X. Zhao, and W. Shi, “Enhanced graphene absorption and linewidth sharpening enabled by Fano-like geometric resonance at near-infrared wavelengths,” Opt. Express 23(16), 21097–21106 (2015).
[Crossref] [PubMed]

2014 (7)

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref] [PubMed]

W. Tan, Y. Sun, Z. G. Wang, and H. Chen, “Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near- and far-field couplings,” Appl. Phys. Lett. 104(9), 091107 (2014).
[Crossref]

S. Y. Yi, M. Zhou, Z. Wang, and Z. F. Yu, “Superradiant absorption in multiple optical nanoresonators,” Phys. Rev. B 89(19), 195449 (2014).
[Crossref]

F. J. García de Abajo, “Graphene Plasmonics: Challenges and Opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

J. Zheng, R. A. Barton, and D. Englund, “Broadband Coherent Absorption in Chirped-Planar-Dielectric Cavities for 2D-Material-Based Photovoltaics and Photodetectors,” ACS Photonics 1(9), 768–774 (2014).
[Crossref]

J. R. Piper and S. H. Fan, “Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

2013 (6)

M. Amin, M. Farhat, and H. Baǧcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3, 2105 (2013).
[Crossref] [PubMed]

Y. C. Fan, Z. Y. Wei, H. Q. Li, H. Chen, and C. M. Soukoulis, “Photonic band gap of a graphene-embedded quarter-wave stack,” Phys. Rev. B 88(24), 241403 (2013).
[Crossref]

X. Shi, D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, and J. Zi, “Plasmonic analog of electromagnetically induced transparency in nanostructure graphene,” Opt. Express 21(23), 28438–28443 (2013).
[Crossref] [PubMed]

Y. Fan, Z. Wei, Z. Zhang, and H. Li, “Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators,” Opt. Lett. 38(24), 5410–5413 (2013).
[Crossref] [PubMed]

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano Resonances in Coupled Plasmonic Systems,” ACS Nano 7(5), 4527–4536 (2013).
[Crossref] [PubMed]

T. Zhan, X. Shi, Y. Y. Dai, X. H. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys-Condens. Mat. 25, 215301 (2013).

2012 (4)

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian Plasmon Coupling of an Array of Gold Thin-Film Antennas for Controlling Light at the Nanoscale,” Phys. Rev. Lett. 109(19), 193902 (2012).
[Crossref] [PubMed]

C. S. R. Kaipa, A. B. Yakovlev, G. W. Hanson, Y. R. Padooru, F. Medina, and F. Mesa, “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B 85(24), 245407 (2012).
[Crossref]

Q. Bao and K. P. Loh, “Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

2011 (3)

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene Plasmonics: A Platform for Strong Light-Matter Interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

2010 (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

2008 (1)

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

2004 (1)

W. Suh, Z. Wang, and S. H. Fan, “Temporal Coupled-Mode Theory and the Presence of Non-Orthogonal Modes in Lossless Multimode Cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

Amin, M.

M. Amin, M. Farhat, and H. Baǧcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3, 2105 (2013).
[Crossref] [PubMed]

Arik, K.

K. Arik, S. A. Ramezani, and A. Khavasi, “Polarization Insensitive and Broadband Terahertz Absorber Using Graphene Disks,” Plasmonics 11, 1–6 (2016).

Bagci, H.

M. Amin, M. Farhat, and H. Baǧcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3, 2105 (2013).
[Crossref] [PubMed]

Bao, Q.

Q. Bao and K. P. Loh, “Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

Bartal, G.

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian Plasmon Coupling of an Array of Gold Thin-Film Antennas for Controlling Light at the Nanoscale,” Phys. Rev. Lett. 109(19), 193902 (2012).
[Crossref] [PubMed]

Barton, R. A.

J. Zheng, R. A. Barton, and D. Englund, “Broadband Coherent Absorption in Chirped-Planar-Dielectric Cavities for 2D-Material-Based Photovoltaics and Photodetectors,” ACS Photonics 1(9), 768–774 (2014).
[Crossref]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Chadha, A.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Chang, D. E.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene Plasmonics: A Platform for Strong Light-Matter Interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Chen, H.

W. Tan, Y. Sun, Z. G. Wang, and H. Chen, “Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near- and far-field couplings,” Appl. Phys. Lett. 104(9), 091107 (2014).
[Crossref]

X. Shi, D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, and J. Zi, “Plasmonic analog of electromagnetically induced transparency in nanostructure graphene,” Opt. Express 21(23), 28438–28443 (2013).
[Crossref] [PubMed]

Y. C. Fan, Z. Y. Wei, H. Q. Li, H. Chen, and C. M. Soukoulis, “Photonic band gap of a graphene-embedded quarter-wave stack,” Phys. Rev. B 88(24), 241403 (2013).
[Crossref]

Chen, J.

Chen, L.

Dai, Y.

Dai, Y. Y.

T. Zhan, X. Shi, Y. Y. Dai, X. H. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys-Condens. Mat. 25, 215301 (2013).

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Englund, D.

J. Zheng, R. A. Barton, and D. Englund, “Broadband Coherent Absorption in Chirped-Planar-Dielectric Cavities for 2D-Material-Based Photovoltaics and Photodetectors,” ACS Photonics 1(9), 768–774 (2014).
[Crossref]

Fan, S. H.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

J. R. Piper and S. H. Fan, “Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

W. Suh, Z. Wang, and S. H. Fan, “Temporal Coupled-Mode Theory and the Presence of Non-Orthogonal Modes in Lossless Multimode Cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

Fan, Y.

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref] [PubMed]

Y. Fan, Z. Wei, Z. Zhang, and H. Li, “Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators,” Opt. Lett. 38(24), 5410–5413 (2013).
[Crossref] [PubMed]

Fan, Y. C.

Y. C. Fan, Z. Y. Wei, H. Q. Li, H. Chen, and C. M. Soukoulis, “Photonic band gap of a graphene-embedded quarter-wave stack,” Phys. Rev. B 88(24), 241403 (2013).
[Crossref]

Farhat, M.

M. Amin, M. Farhat, and H. Baǧcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3, 2105 (2013).
[Crossref] [PubMed]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Fu, Q.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

Gallinet, B.

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano Resonances in Coupled Plasmonic Systems,” ACS Nano 7(5), 4527–4536 (2013).
[Crossref] [PubMed]

Gan, Q.

García de Abajo, F. J.

F. J. García de Abajo, “Graphene Plasmonics: Challenges and Opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene Plasmonics: A Platform for Strong Light-Matter Interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Gu, C.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

Guo, Q.

Han, D.

Hanson, G. W.

C. S. R. Kaipa, A. B. Yakovlev, G. W. Hanson, Y. R. Padooru, F. Medina, and F. Mesa, “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B 85(24), 245407 (2012).
[Crossref]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Heinz, T. F.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Jia, Y. C.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Kaipa, C. S. R.

C. S. R. Kaipa, A. B. Yakovlev, G. W. Hanson, Y. R. Padooru, F. Medina, and F. Mesa, “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B 85(24), 245407 (2012).
[Crossref]

Khavasi, A.

K. Arik, S. A. Ramezani, and A. Khavasi, “Polarization Insensitive and Broadband Terahertz Absorber Using Graphene Disks,” Plasmonics 11, 1–6 (2016).

S. B. Parizi, B. Rejaei, and A. Khavasi, “Analytical Circuit Model for Periodic Arrays of Graphene Disks,” IEEE. J. Quantum Electron. 51, 7000507 (2015).

Koppens, F. H. L.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene Plasmonics: A Platform for Strong Light-Matter Interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Koschny, T.

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Li, H.

Li, H. Q.

Y. C. Fan, Z. Y. Wei, H. Q. Li, H. Chen, and C. M. Soukoulis, “Photonic band gap of a graphene-embedded quarter-wave stack,” Phys. Rev. B 88(24), 241403 (2013).
[Crossref]

Li, J.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Liu, F.

Liu, X.

Liu, X. H.

T. Zhan, X. Shi, Y. Y. Dai, X. H. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys-Condens. Mat. 25, 215301 (2013).

Liu, Y. H.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Liu, Z.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

Loh, K. P.

Q. Bao and K. P. Loh, “Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

Lovera, A.

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano Resonances in Coupled Plasmonic Systems,” ACS Nano 7(5), 4527–4536 (2013).
[Crossref] [PubMed]

Lui, C. H.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Ma, Z. Q.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Mak, K. F.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Martin, O. J. F.

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano Resonances in Coupled Plasmonic Systems,” ACS Nano 7(5), 4527–4536 (2013).
[Crossref] [PubMed]

Medina, F.

C. S. R. Kaipa, A. B. Yakovlev, G. W. Hanson, Y. R. Padooru, F. Medina, and F. Mesa, “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B 85(24), 245407 (2012).
[Crossref]

Menon, L.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Mesa, F.

C. S. R. Kaipa, A. B. Yakovlev, G. W. Hanson, Y. R. Padooru, F. Medina, and F. Mesa, “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B 85(24), 245407 (2012).
[Crossref]

Misewich, J. A.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Mrejen, M.

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian Plasmon Coupling of an Array of Gold Thin-Film Antennas for Controlling Light at the Nanoscale,” Phys. Rev. Lett. 109(19), 193902 (2012).
[Crossref] [PubMed]

Nordlander, P.

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano Resonances in Coupled Plasmonic Systems,” ACS Nano 7(5), 4527–4536 (2013).
[Crossref] [PubMed]

Padooru, Y. R.

C. S. R. Kaipa, A. B. Yakovlev, G. W. Hanson, Y. R. Padooru, F. Medina, and F. Mesa, “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B 85(24), 245407 (2012).
[Crossref]

Parizi, S. B.

S. B. Parizi, B. Rejaei, and A. Khavasi, “Analytical Circuit Model for Periodic Arrays of Graphene Disks,” IEEE. J. Quantum Electron. 51, 7000507 (2015).

Park, Y.

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian Plasmon Coupling of an Array of Gold Thin-Film Antennas for Controlling Light at the Nanoscale,” Phys. Rev. Lett. 109(19), 193902 (2012).
[Crossref] [PubMed]

Piper, J. R.

J. R. Piper and S. H. Fan, “Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Ramezani, S. A.

K. Arik, S. A. Ramezani, and A. Khavasi, “Polarization Insensitive and Broadband Terahertz Absorber Using Graphene Disks,” Plasmonics 11, 1–6 (2016).

Rejaei, B.

S. B. Parizi, B. Rejaei, and A. Khavasi, “Analytical Circuit Model for Periodic Arrays of Graphene Disks,” IEEE. J. Quantum Electron. 51, 7000507 (2015).

Sfeir, M. Y.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Shen, N.-H.

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Shi, L.

M. Zhou, L. Shi, J. Zi, and Z. Yu, “Extraordinarily Large Optical Cross Section for Localized Single Nanoresonator,” Phys. Rev. Lett. 115(2), 023903 (2015).
[Crossref] [PubMed]

Shi, W.

Shi, X.

Shuai, Y. C.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Soukoulis, C. M.

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Y. C. Fan, Z. Y. Wei, H. Q. Li, H. Chen, and C. M. Soukoulis, “Photonic band gap of a graphene-embedded quarter-wave stack,” Phys. Rev. B 88(24), 241403 (2013).
[Crossref]

Suh, W.

W. Suh, Z. Wang, and S. H. Fan, “Temporal Coupled-Mode Theory and the Presence of Non-Orthogonal Modes in Lossless Multimode Cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

Sun, Y.

W. Tan, Y. Sun, Z. G. Wang, and H. Chen, “Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near- and far-field couplings,” Appl. Phys. Lett. 104(9), 091107 (2014).
[Crossref]

X. Shi, D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, and J. Zi, “Plasmonic analog of electromagnetically induced transparency in nanostructure graphene,” Opt. Express 21(23), 28438–28443 (2013).
[Crossref] [PubMed]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Tan, W.

W. Tan, Y. Sun, Z. G. Wang, and H. Chen, “Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near- and far-field couplings,” Appl. Phys. Lett. 104(9), 091107 (2014).
[Crossref]

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Wang, Y.

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian Plasmon Coupling of an Array of Gold Thin-Film Antennas for Controlling Light at the Nanoscale,” Phys. Rev. Lett. 109(19), 193902 (2012).
[Crossref] [PubMed]

Wang, Z.

S. Y. Yi, M. Zhou, Z. Wang, and Z. F. Yu, “Superradiant absorption in multiple optical nanoresonators,” Phys. Rev. B 89(19), 195449 (2014).
[Crossref]

W. Suh, Z. Wang, and S. H. Fan, “Temporal Coupled-Mode Theory and the Presence of Non-Orthogonal Modes in Lossless Multimode Cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

Wang, Z. G.

W. Tan, Y. Sun, Z. G. Wang, and H. Chen, “Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near- and far-field couplings,” Appl. Phys. Lett. 104(9), 091107 (2014).
[Crossref]

Wei, Z.

Wei, Z. Y.

Y. C. Fan, Z. Y. Wei, H. Q. Li, H. Chen, and C. M. Soukoulis, “Photonic band gap of a graphene-embedded quarter-wave stack,” Phys. Rev. B 88(24), 241403 (2013).
[Crossref]

Wu, Y.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Xia, F. N.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Yakovlev, A. B.

C. S. R. Kaipa, A. B. Yakovlev, G. W. Hanson, Y. R. Padooru, F. Medina, and F. Mesa, “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B 85(24), 245407 (2012).
[Crossref]

Yang, H. J.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Ye, Z.

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian Plasmon Coupling of an Array of Gold Thin-Film Antennas for Controlling Light at the Nanoscale,” Phys. Rev. Lett. 109(19), 193902 (2012).
[Crossref] [PubMed]

Yi, S.

Yi, S. Y.

S. Y. Yi, M. Zhou, Z. Wang, and Z. F. Yu, “Superradiant absorption in multiple optical nanoresonators,” Phys. Rev. B 89(19), 195449 (2014).
[Crossref]

Yin, X.

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian Plasmon Coupling of an Array of Gold Thin-Film Antennas for Controlling Light at the Nanoscale,” Phys. Rev. Lett. 109(19), 193902 (2012).
[Crossref] [PubMed]

Yu, Z.

Yu, Z. F.

S. Y. Yi, M. Zhou, Z. Wang, and Z. F. Yu, “Superradiant absorption in multiple optical nanoresonators,” Phys. Rev. B 89(19), 195449 (2014).
[Crossref]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Zhan, T.

T. Zhan, X. Shi, Y. Y. Dai, X. H. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys-Condens. Mat. 25, 215301 (2013).

Zhang, F.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian Plasmon Coupling of an Array of Gold Thin-Film Antennas for Controlling Light at the Nanoscale,” Phys. Rev. Lett. 109(19), 193902 (2012).
[Crossref] [PubMed]

Zhang, X.

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian Plasmon Coupling of an Array of Gold Thin-Film Antennas for Controlling Light at the Nanoscale,” Phys. Rev. Lett. 109(19), 193902 (2012).
[Crossref] [PubMed]

Zhang, Z.

Zhao, D. Y.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Zhao, Q.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref] [PubMed]

Zhao, X.

Zheng, J.

J. Zheng, R. A. Barton, and D. Englund, “Broadband Coherent Absorption in Chirped-Planar-Dielectric Cavities for 2D-Material-Based Photovoltaics and Photodetectors,” ACS Photonics 1(9), 768–774 (2014).
[Crossref]

Zhou, M.

S. Yi, M. Zhou, X. Shi, Q. Gan, J. Zi, and Z. Yu, “A multiple-resonator approach for broadband light absorption in a single layer of nanostructured graphene,” Opt. Express 23(8), 10081–10090 (2015).
[Crossref] [PubMed]

M. Zhou, L. Shi, J. Zi, and Z. Yu, “Extraordinarily Large Optical Cross Section for Localized Single Nanoresonator,” Phys. Rev. Lett. 115(2), 023903 (2015).
[Crossref] [PubMed]

S. Y. Yi, M. Zhou, Z. Wang, and Z. F. Yu, “Superradiant absorption in multiple optical nanoresonators,” Phys. Rev. B 89(19), 195449 (2014).
[Crossref]

Zhou, W. D.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Zi, J.

M. Zhou, L. Shi, J. Zi, and Z. Yu, “Extraordinarily Large Optical Cross Section for Localized Single Nanoresonator,” Phys. Rev. Lett. 115(2), 023903 (2015).
[Crossref] [PubMed]

S. Yi, M. Zhou, X. Shi, Q. Gan, J. Zi, and Z. Yu, “A multiple-resonator approach for broadband light absorption in a single layer of nanostructured graphene,” Opt. Express 23(8), 10081–10090 (2015).
[Crossref] [PubMed]

T. Zhan, X. Shi, Y. Y. Dai, X. H. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys-Condens. Mat. 25, 215301 (2013).

X. Shi, D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, and J. Zi, “Plasmonic analog of electromagnetically induced transparency in nanostructure graphene,” Opt. Express 21(23), 28438–28443 (2013).
[Crossref] [PubMed]

ACS Nano (2)

Q. Bao and K. P. Loh, “Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano Resonances in Coupled Plasmonic Systems,” ACS Nano 7(5), 4527–4536 (2013).
[Crossref] [PubMed]

ACS Photonics (4)

J. R. Piper and S. H. Fan, “Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

F. J. García de Abajo, “Graphene Plasmonics: Challenges and Opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

J. Zheng, R. A. Barton, and D. Englund, “Broadband Coherent Absorption in Chirped-Planar-Dielectric Cavities for 2D-Material-Based Photovoltaics and Photodetectors,” ACS Photonics 1(9), 768–774 (2014).
[Crossref]

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Appl. Phys. Lett. (2)

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

W. Tan, Y. Sun, Z. G. Wang, and H. Chen, “Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near- and far-field couplings,” Appl. Phys. Lett. 104(9), 091107 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

W. Suh, Z. Wang, and S. H. Fan, “Temporal Coupled-Mode Theory and the Presence of Non-Orthogonal Modes in Lossless Multimode Cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

IEEE. J. Quantum Electron. (1)

S. B. Parizi, B. Rejaei, and A. Khavasi, “Analytical Circuit Model for Periodic Arrays of Graphene Disks,” IEEE. J. Quantum Electron. 51, 7000507 (2015).

J. Phys-Condens. Mat. (1)

T. Zhan, X. Shi, Y. Y. Dai, X. H. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys-Condens. Mat. 25, 215301 (2013).

Nano Lett. (1)

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene Plasmonics: A Platform for Strong Light-Matter Interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (3)

Y. C. Fan, Z. Y. Wei, H. Q. Li, H. Chen, and C. M. Soukoulis, “Photonic band gap of a graphene-embedded quarter-wave stack,” Phys. Rev. B 88(24), 241403 (2013).
[Crossref]

S. Y. Yi, M. Zhou, Z. Wang, and Z. F. Yu, “Superradiant absorption in multiple optical nanoresonators,” Phys. Rev. B 89(19), 195449 (2014).
[Crossref]

C. S. R. Kaipa, A. B. Yakovlev, G. W. Hanson, Y. R. Padooru, F. Medina, and F. Mesa, “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B 85(24), 245407 (2012).
[Crossref]

Phys. Rev. Lett. (4)

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, and X. Zhang, “Anti-Hermitian Plasmon Coupling of an Array of Gold Thin-Film Antennas for Controlling Light at the Nanoscale,” Phys. Rev. Lett. 109(19), 193902 (2012).
[Crossref] [PubMed]

M. Zhou, L. Shi, J. Zi, and Z. Yu, “Extraordinarily Large Optical Cross Section for Localized Single Nanoresonator,” Phys. Rev. Lett. 115(2), 023903 (2015).
[Crossref] [PubMed]

Plasmonics (1)

K. Arik, S. A. Ramezani, and A. Khavasi, “Polarization Insensitive and Broadband Terahertz Absorber Using Graphene Disks,” Plasmonics 11, 1–6 (2016).

Sci. Rep. (2)

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

M. Amin, M. Farhat, and H. Baǧcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3, 2105 (2013).
[Crossref] [PubMed]

Science (1)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Scheme of the geometry under consideration. Two graphene ribbons lay on the substrate. A beam is incident at normal direction onto the ribbons, with polarization along the transverse direction of the ribbons. (b) Absorption spectra for two uncoupled ribbons with the same geometries as Fig. 1(a). Open circles are simulation and the solid lines are CMT. (c) Absorption as a function of frequency and real part of coupling coefficient
Fig. 2
Fig. 2 (a) Absorption spectra for the two coupled graphene ribbons with the increasing of space between them. Open circles are simulation and the solid line is the CMT. The blue line represents the case of κ' = 0 and two dashed red line indicate the eigenfrequencies of the system. (b) The extracted imaginary part of far-field interactions (black square) and near-field coupling (red circle) of coupling coefficient between the two ribbons, and the real part (green triangle) and imaginary part (blue diamond) of coupling coefficient between the two ribbons as a function of their edge to edge separation s. (c) The stored energy in each ribbon as a function of frequency in coupled system when the space is 3.95 μm. (d) The spectral response of electric fields (probe is placed 1 nm above the center of each ribbons). The green line and black line represent the ribbons. Inset, absorption spectra for the sandwiched structure with different κ'. The thickness of the dielectric layer is assumed to be 1.4 μm in order to achieve total absorption.
Fig. 3
Fig. 3 (a) Absorption spectrum of graphene ribbons array for normal incidence and polarization along the transverse direction of the ribbons. The inset is the top view of schematic of graphene ribbons array consisting of four ribbons with gradually varying widths. (b) The spectral response of electric fields (probe is placed 1 nm above the center of each ribbons).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d d t a 1 = ( i ω 1 γ 1 Γ 1 ) a 1 + i γ 1 s + + i ( κ ' + i κ ' ' ) a 2 ,
d d t a 2 = ( i ω 2 γ 2 Γ 2 ) a 2 + i γ 2 s + + i ( κ ' + i κ ' ' ) a 1 ,
ω ± = ( ω 1 + ω 2 + 2 i γ 0 ± [ ( ω 1 ω 2 ) 2 + 4 ( κ ' + i κ ' ' ) 2 ] 1 / 2 ) / 2.

Metrics