Abstract

Photonic structures created by coupling a narrow resonance to a broad resonance can significantly improve the sensitivity of optical sensors. We investigated a planar metal-insulator-metal (MIM) multilayered structure using attenuated total reflection to couple surface plasmon polaritons with the waveguide (WG) mode. A plasmon-induced transparency (PIT) to plasmon-induced adsorption (PIA) transformation was realized by controlling the coupling strength between the incident light and the WG mode. The results indicated that PIT and PIA have differing coupling strength and reflectance phase at surface plasmon resonance. Moreover, Fano resonance was realized by adjusting the center of the absorption band of the WG mode.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic coupled modes in metal-dielectric multilayer structures: Fano resonance and giant field enhancement

Zouheir Sekkat, Shinji Hayashi, Dmitry V. Nesterenko, Anouar Rahmouni, Siham Refki, Hidekazu Ishitobi, Yasushi Inouye, and Satoshi Kawata
Opt. Express 24(18) 20080-20088 (2016)

Attenuated total reflection response to wavelength tuning of plasmon-induced transparency in a metal–insulator–metal structure

Kouki Matsunaga, Takeshi Watanabe, Yoichiro Neo, Takahiro Matsumoto, and Makoto Tomita
Opt. Lett. 41(22) 5274-5277 (2016)

Plasmonic-induced absorption in an end-coupled metal-insulator-metal resonator structure

Kunhua Wen, Yihua Hu, Jinyun Zhou, Liang Lei, Jianfeng Li, and Yanjie Wu
Opt. Mater. Express 7(2) 433-443 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. B 23A, 2135–2136 (1968).
  2. A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
    [Crossref]
  3. A. Brecht and G. Gauglitz, “Optical probes and transducers,” Biosens. Bioelectron. 10(9-10), 923–936 (1995).
    [Crossref] [PubMed]
  4. I. Pockrand, J. D. Swalen, J. G. Gordon, and M. R. Philpott, “Surface plasmon spectroscopy of organic monolayer assemblies,” Surf. Sci. 74(1), 237–244 (1978).
    [Crossref]
  5. G. Gordon and S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci. 101(1-3), 499–506 (1980).
    [Crossref]
  6. C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmons resonance,” Sens. Actuators 3, 79–88 (1982).
    [Crossref]
  7. B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmons resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
    [Crossref]
  8. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [Crossref]
  9. D. C. Cullen, R. G. W. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3(4), 211–225 (1987).
    [Crossref] [PubMed]
  10. P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, “Surface plasmon resonance on grating as novel means for gas sensing,” Sens. Actuators B Chem. 8(2), 155–160 (1992).
    [Crossref]
  11. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3(11), 1780–1787 (1986).
    [Crossref]
  12. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
    [Crossref]
  13. J. Čtyroký, J. Homola, and M. Skalsky, “Tuning of spectral operation range of a waveguide surface plasmon resonance sensor,” Electron. Lett. 33(14), 1246–1248 (1997).
    [Crossref]
  14. N. Weiss, R. Srivastava, H. Groger, P. Lo, and S. F. Luo, “A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors,” Sens. Actuators A Phys. 51(2-3), 211–217 (1995).
    [Crossref]
  15. S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8(2), 022201 (2015).
    [Crossref]
  16. Z. Sekkat, S. Hayashi, D. Nesternko, A. Rahmouni, S. Refki, H. Ishitobi, Y. Inouye, and S. Kawata, “Plasmonic coupled modes in metal-dielectric multilayer structures: fano resonance and giant field enhancement,” Opt. Express 18, 20080–20088 (2016).
  17. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  18. G. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of plasmon induced transparency,” Am. J. Phys. 70, 37 (2002).
    [Crossref]
  19. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
    [Crossref]
  20. F. Villa, T. Lopez-Rios, and L. E. Regalado, “Electromagnetic modes in metal-insulator-metal structures,” Phys. Rev. B 63(16), 165103 (2001).
    [Crossref]
  21. S. Refki, S. Hayashi, A. Rahmouni, D. V. Nesterenko, and Z. Sekkat, “Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11(2), 433 (2016).
    [Crossref]
  22. K. Matsunaga, T. Watanabe, Y. Neo, T. Matsumoto, and M. Tomita, “Attenuated total reflection response to wavelength tuning of plasmon-induced transparency in a metal–insulator–metal structure,” Opt. Lett.in press.
  23. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon Press, 1964).
  24. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  25. A. D. Rakić, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  26. A. M. Akulshin, S. Barreiro, and A. Lezama, “Plasmon induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996 (1998).
    [Crossref]
  27. A. Lezama, S. Barreiro, and A. M. Akulshin, “Plasmon induced absorption,” Phys. Rev. A 59, 4732 (1999).
    [Crossref]
  28. P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Plasmon induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
    [Crossref] [PubMed]
  29. B. Tang, L. Dai, and C. Jiang, “Electromagnetically induced transparency in hybrid plasmonic-dielectric system,” Opt. Express 19(2), 628–637 (2011).
    [Crossref] [PubMed]
  30. X. Jin, Y. Lu, H. Zheng, Y. Lee, J. Y. Rhee, and W. H. Jang, “Plasmonic electromagnetically-induced transparency in symmetric structures,” Opt. Express 18(13), 13396–13401 (2010).
    [Crossref] [PubMed]
  31. M. Tomita, K. Totsuka, R. Hanamura, and T. Matsumoto, “Tunable Fano interference effect in coupled-microsphere resonator-induced transparency,” J. Opt. Soc. Am. B 26(4), 813–818 (2009).
    [Crossref]
  32. Y. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76(20), 201405 (2007).
    [Crossref]
  33. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano Resonances in Plasmonic Nanoclusters: Geometrical and Chemical Tunability,” Nano Lett. 10(8), 3184–3189 (2010).
    [Crossref] [PubMed]
  34. J. B. Lassiter, H. Sobhani, M. W. M. W. S. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and Deconstructing the Fano Lineshape in Plasmonic Nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
    [Crossref] [PubMed]
  35. S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the Interplay of Electric and Magnetic Modes via Fano-like Plasmon Resonances,” Nano Lett. 11(9), 3927–3934 (2011).
    [Crossref] [PubMed]
  36. W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A Plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
    [Crossref] [PubMed]
  37. Z.-J. Yang, Q.-Q. Wang, and H.-Q. Lin, “Tunable two types of Fano resonances in metal–dielectric core–shell nanoparticle cluster,” Appl. Phys. Lett. 103(11), 111115 (2013).
    [Crossref]
  38. Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
    [Crossref] [PubMed]
  39. Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6(6), 5130–5137 (2012).
    [Crossref] [PubMed]
  40. J. Li, T. Liu, H. Zheng, J. Dong, E. He, W. Gao, Q. Han, C. Wang, and Y. Wu, “Higher order Fano resonances and electric field enhancements in disk-ring plasmonic nanostructures with double symmetry breaking,” Plasmonics 9(6), 1439–1445 (2014).
    [Crossref]
  41. J. Qi, Z. Chen, J. Chen, Y. Li, W. Qiang, J. Xu, and Q. Sun, “Independently tunable double Fano resonances in asymmetric MIM waveguide structure,” Opt. Express 22(12), 14688–14695 (2014).
    [Crossref] [PubMed]

2016 (2)

Z. Sekkat, S. Hayashi, D. Nesternko, A. Rahmouni, S. Refki, H. Ishitobi, Y. Inouye, and S. Kawata, “Plasmonic coupled modes in metal-dielectric multilayer structures: fano resonance and giant field enhancement,” Opt. Express 18, 20080–20088 (2016).

S. Refki, S. Hayashi, A. Rahmouni, D. V. Nesterenko, and Z. Sekkat, “Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11(2), 433 (2016).
[Crossref]

2015 (1)

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8(2), 022201 (2015).
[Crossref]

2014 (2)

J. Li, T. Liu, H. Zheng, J. Dong, E. He, W. Gao, Q. Han, C. Wang, and Y. Wu, “Higher order Fano resonances and electric field enhancements in disk-ring plasmonic nanostructures with double symmetry breaking,” Plasmonics 9(6), 1439–1445 (2014).
[Crossref]

J. Qi, Z. Chen, J. Chen, Y. Li, W. Qiang, J. Xu, and Q. Sun, “Independently tunable double Fano resonances in asymmetric MIM waveguide structure,” Opt. Express 22(12), 14688–14695 (2014).
[Crossref] [PubMed]

2013 (1)

Z.-J. Yang, Q.-Q. Wang, and H.-Q. Lin, “Tunable two types of Fano resonances in metal–dielectric core–shell nanoparticle cluster,” Appl. Phys. Lett. 103(11), 111115 (2013).
[Crossref]

2012 (4)

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A Plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, M. W. M. W. S. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and Deconstructing the Fano Lineshape in Plasmonic Nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Plasmon induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6(6), 5130–5137 (2012).
[Crossref] [PubMed]

2011 (2)

B. Tang, L. Dai, and C. Jiang, “Electromagnetically induced transparency in hybrid plasmonic-dielectric system,” Opt. Express 19(2), 628–637 (2011).
[Crossref] [PubMed]

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the Interplay of Electric and Magnetic Modes via Fano-like Plasmon Resonances,” Nano Lett. 11(9), 3927–3934 (2011).
[Crossref] [PubMed]

2010 (4)

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano Resonances in Plasmonic Nanoclusters: Geometrical and Chemical Tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

X. Jin, Y. Lu, H. Zheng, Y. Lee, J. Y. Rhee, and W. H. Jang, “Plasmonic electromagnetically-induced transparency in symmetric structures,” Opt. Express 18(13), 13396–13401 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

2009 (1)

2007 (1)

Y. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76(20), 201405 (2007).
[Crossref]

2002 (1)

G. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of plasmon induced transparency,” Am. J. Phys. 70, 37 (2002).
[Crossref]

2001 (1)

F. Villa, T. Lopez-Rios, and L. E. Regalado, “Electromagnetic modes in metal-insulator-metal structures,” Phys. Rev. B 63(16), 165103 (2001).
[Crossref]

1999 (3)

A. Lezama, S. Barreiro, and A. M. Akulshin, “Plasmon induced absorption,” Phys. Rev. A 59, 4732 (1999).
[Crossref]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

1998 (2)

A. D. Rakić, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
[Crossref] [PubMed]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Plasmon induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996 (1998).
[Crossref]

1997 (1)

J. Čtyroký, J. Homola, and M. Skalsky, “Tuning of spectral operation range of a waveguide surface plasmon resonance sensor,” Electron. Lett. 33(14), 1246–1248 (1997).
[Crossref]

1995 (2)

N. Weiss, R. Srivastava, H. Groger, P. Lo, and S. F. Luo, “A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors,” Sens. Actuators A Phys. 51(2-3), 211–217 (1995).
[Crossref]

A. Brecht and G. Gauglitz, “Optical probes and transducers,” Biosens. Bioelectron. 10(9-10), 923–936 (1995).
[Crossref] [PubMed]

1992 (1)

P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, “Surface plasmon resonance on grating as novel means for gas sensing,” Sens. Actuators B Chem. 8(2), 155–160 (1992).
[Crossref]

1987 (1)

D. C. Cullen, R. G. W. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3(4), 211–225 (1987).
[Crossref] [PubMed]

1986 (1)

1983 (1)

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmons resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

1982 (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmons resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

1980 (1)

G. Gordon and S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci. 101(1-3), 499–506 (1980).
[Crossref]

1978 (1)

I. Pockrand, J. D. Swalen, J. G. Gordon, and M. R. Philpott, “Surface plasmon spectroscopy of organic monolayer assemblies,” Surf. Sci. 74(1), 237–244 (1978).
[Crossref]

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

1968 (2)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. B 23A, 2135–2136 (1968).

A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[Crossref]

Akulshin, A. M.

A. Lezama, S. Barreiro, and A. M. Akulshin, “Plasmon induced absorption,” Phys. Rev. A 59, 4732 (1999).
[Crossref]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Plasmon induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996 (1998).
[Crossref]

Barreiro, S.

A. Lezama, S. Barreiro, and A. M. Akulshin, “Plasmon induced absorption,” Phys. Rev. A 59, 4732 (1999).
[Crossref]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Plasmon induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996 (1998).
[Crossref]

Brecht, A.

A. Brecht and G. Gauglitz, “Optical probes and transducers,” Biosens. Bioelectron. 10(9-10), 923–936 (1995).
[Crossref] [PubMed]

Brown, R. G. W.

D. C. Cullen, R. G. W. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3(4), 211–225 (1987).
[Crossref] [PubMed]

Bryan-Brown, G. P.

P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, “Surface plasmon resonance on grating as novel means for gas sensing,” Sens. Actuators B Chem. 8(2), 155–160 (1992).
[Crossref]

Capasso, F.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano Resonances in Plasmonic Nanoclusters: Geometrical and Chemical Tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Chang, W.-S.

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A Plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Chen, J.

Chen, Z.

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Christ, Y.

Y. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76(20), 201405 (2007).
[Crossref]

Ctyroký, J.

J. Čtyroký, J. Homola, and M. Skalsky, “Tuning of spectral operation range of a waveguide surface plasmon resonance sensor,” Electron. Lett. 33(14), 1246–1248 (1997).
[Crossref]

Cullen, D. C.

D. C. Cullen, R. G. W. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3(4), 211–225 (1987).
[Crossref] [PubMed]

Dai, L.

Dionne, J. A.

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the Interplay of Electric and Magnetic Modes via Fano-like Plasmon Resonances,” Nano Lett. 11(9), 3927–3934 (2011).
[Crossref] [PubMed]

Djurišic, A. B.

Dong, J.

J. Li, T. Liu, H. Zheng, J. Dong, E. He, W. Gao, Q. Han, C. Wang, and Y. Wu, “Higher order Fano resonances and electric field enhancements in disk-ring plasmonic nanostructures with double symmetry breaking,” Plasmonics 9(6), 1439–1445 (2014).
[Crossref]

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

Ekinci, Y.

Y. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76(20), 201405 (2007).
[Crossref]

Elazar, J. M.

Ernst, S.

G. Gordon and S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci. 101(1-3), 499–506 (1980).
[Crossref]

Fan, J. A.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano Resonances in Plasmonic Nanoclusters: Geometrical and Chemical Tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Fu, Y. H.

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6(6), 5130–5137 (2012).
[Crossref] [PubMed]

Gao, W.

J. Li, T. Liu, H. Zheng, J. Dong, E. He, W. Gao, Q. Han, C. Wang, and Y. Wu, “Higher order Fano resonances and electric field enhancements in disk-ring plasmonic nanostructures with double symmetry breaking,” Plasmonics 9(6), 1439–1445 (2014).
[Crossref]

García-Etxarri, A.

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the Interplay of Electric and Magnetic Modes via Fano-like Plasmon Resonances,” Nano Lett. 11(9), 3927–3934 (2011).
[Crossref] [PubMed]

Garrido Alzar, G. L.

G. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of plasmon induced transparency,” Am. J. Phys. 70, 37 (2002).
[Crossref]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

A. Brecht and G. Gauglitz, “Optical probes and transducers,” Biosens. Bioelectron. 10(9-10), 923–936 (1995).
[Crossref] [PubMed]

Gaylord, T. K.

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Gippius, N. A.

Y. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76(20), 201405 (2007).
[Crossref]

Gordon, G.

G. Gordon and S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci. 101(1-3), 499–506 (1980).
[Crossref]

Gordon, J. G.

I. Pockrand, J. D. Swalen, J. G. Gordon, and M. R. Philpott, “Surface plasmon spectroscopy of organic monolayer assemblies,” Surf. Sci. 74(1), 237–244 (1978).
[Crossref]

Groger, H.

N. Weiss, R. Srivastava, H. Groger, P. Lo, and S. F. Luo, “A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors,” Sens. Actuators A Phys. 51(2-3), 211–217 (1995).
[Crossref]

Halas, N. J.

J. B. Lassiter, H. Sobhani, M. W. M. W. S. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and Deconstructing the Fano Lineshape in Plasmonic Nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A Plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano Resonances in Plasmonic Nanoclusters: Geometrical and Chemical Tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Han, Q.

J. Li, T. Liu, H. Zheng, J. Dong, E. He, W. Gao, Q. Han, C. Wang, and Y. Wu, “Higher order Fano resonances and electric field enhancements in disk-ring plasmonic nanostructures with double symmetry breaking,” Plasmonics 9(6), 1439–1445 (2014).
[Crossref]

Hanamura, R.

Hayashi, S.

Z. Sekkat, S. Hayashi, D. Nesternko, A. Rahmouni, S. Refki, H. Ishitobi, Y. Inouye, and S. Kawata, “Plasmonic coupled modes in metal-dielectric multilayer structures: fano resonance and giant field enhancement,” Opt. Express 18, 20080–20088 (2016).

S. Refki, S. Hayashi, A. Rahmouni, D. V. Nesterenko, and Z. Sekkat, “Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11(2), 433 (2016).
[Crossref]

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8(2), 022201 (2015).
[Crossref]

He, E.

J. Li, T. Liu, H. Zheng, J. Dong, E. He, W. Gao, Q. Han, C. Wang, and Y. Wu, “Higher order Fano resonances and electric field enhancements in disk-ring plasmonic nanostructures with double symmetry breaking,” Plasmonics 9(6), 1439–1445 (2014).
[Crossref]

Homola, J.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

J. Čtyroký, J. Homola, and M. Skalsky, “Tuning of spectral operation range of a waveguide surface plasmon resonance sensor,” Electron. Lett. 33(14), 1246–1248 (1997).
[Crossref]

Inouye, Y.

Z. Sekkat, S. Hayashi, D. Nesternko, A. Rahmouni, S. Refki, H. Ishitobi, Y. Inouye, and S. Kawata, “Plasmonic coupled modes in metal-dielectric multilayer structures: fano resonance and giant field enhancement,” Opt. Express 18, 20080–20088 (2016).

Ishitobi, H.

Z. Sekkat, S. Hayashi, D. Nesternko, A. Rahmouni, S. Refki, H. Ishitobi, Y. Inouye, and S. Kawata, “Plasmonic coupled modes in metal-dielectric multilayer structures: fano resonance and giant field enhancement,” Opt. Express 18, 20080–20088 (2016).

Jain, A.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Plasmon induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Jang, W. H.

Jiang, C.

Jin, X.

Kawata, S.

Z. Sekkat, S. Hayashi, D. Nesternko, A. Rahmouni, S. Refki, H. Ishitobi, Y. Inouye, and S. Kawata, “Plasmonic coupled modes in metal-dielectric multilayer structures: fano resonance and giant field enhancement,” Opt. Express 18, 20080–20088 (2016).

Khatua, S.

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A Plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Knight, M. W. M. W. S.

J. B. Lassiter, H. Sobhani, M. W. M. W. S. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and Deconstructing the Fano Lineshape in Plasmonic Nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

Koschny, T.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Plasmon induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Koudela, I.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
[Crossref]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. B 23A, 2135–2136 (1968).

Kundu, J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano Resonances in Plasmonic Nanoclusters: Geometrical and Chemical Tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Lassiter, J. B.

J. B. Lassiter, H. Sobhani, M. W. M. W. S. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and Deconstructing the Fano Lineshape in Plasmonic Nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A Plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano Resonances in Plasmonic Nanoclusters: Geometrical and Chemical Tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Lee, Y.

Lezama, A.

A. Lezama, S. Barreiro, and A. M. Akulshin, “Plasmon induced absorption,” Phys. Rev. A 59, 4732 (1999).
[Crossref]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Plasmon induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996 (1998).
[Crossref]

Li, J.

J. Li, T. Liu, H. Zheng, J. Dong, E. He, W. Gao, Q. Han, C. Wang, and Y. Wu, “Higher order Fano resonances and electric field enhancements in disk-ring plasmonic nanostructures with double symmetry breaking,” Plasmonics 9(6), 1439–1445 (2014).
[Crossref]

Li, Y.

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmons resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmons resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

Lin, H.-Q.

Z.-J. Yang, Q.-Q. Wang, and H.-Q. Lin, “Tunable two types of Fano resonances in metal–dielectric core–shell nanoparticle cluster,” Appl. Phys. Lett. 103(11), 111115 (2013).
[Crossref]

Lind, T.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmons resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

Link, S.

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A Plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Liu, T.

J. Li, T. Liu, H. Zheng, J. Dong, E. He, W. Gao, Q. Han, C. Wang, and Y. Wu, “Higher order Fano resonances and electric field enhancements in disk-ring plasmonic nanostructures with double symmetry breaking,” Plasmonics 9(6), 1439–1445 (2014).
[Crossref]

Lo, P.

N. Weiss, R. Srivastava, H. Groger, P. Lo, and S. F. Luo, “A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors,” Sens. Actuators A Phys. 51(2-3), 211–217 (1995).
[Crossref]

Lopez-Rios, T.

F. Villa, T. Lopez-Rios, and L. E. Regalado, “Electromagnetic modes in metal-insulator-metal structures,” Phys. Rev. B 63(16), 165103 (2001).
[Crossref]

Lowe, C. R.

D. C. Cullen, R. G. W. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3(4), 211–225 (1987).
[Crossref] [PubMed]

Lu, Y.

Luk’yanchuk, B.

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6(6), 5130–5137 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Lunström, I.

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmons resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Luo, S. F.

N. Weiss, R. Srivastava, H. Groger, P. Lo, and S. F. Luo, “A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors,” Sens. Actuators A Phys. 51(2-3), 211–217 (1995).
[Crossref]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Majewski, M. L.

Martin, O. J. F.

Y. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76(20), 201405 (2007).
[Crossref]

Martinez, M. A. G.

G. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of plasmon induced transparency,” Am. J. Phys. 70, 37 (2002).
[Crossref]

Matsumoto, T.

M. Tomita, K. Totsuka, R. Hanamura, and T. Matsumoto, “Tunable Fano interference effect in coupled-microsphere resonator-induced transparency,” J. Opt. Soc. Am. B 26(4), 813–818 (2009).
[Crossref]

K. Matsunaga, T. Watanabe, Y. Neo, T. Matsumoto, and M. Tomita, “Attenuated total reflection response to wavelength tuning of plasmon-induced transparency in a metal–insulator–metal structure,” Opt. Lett.in press.

Matsunaga, K.

K. Matsunaga, T. Watanabe, Y. Neo, T. Matsumoto, and M. Tomita, “Attenuated total reflection response to wavelength tuning of plasmon-induced transparency in a metal–insulator–metal structure,” Opt. Lett.in press.

Mielczarek, W. S.

J. B. Lassiter, H. Sobhani, M. W. M. W. S. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and Deconstructing the Fano Lineshape in Plasmonic Nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

Moharam, M. G.

Moshchalkov, V. V.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Neo, Y.

K. Matsunaga, T. Watanabe, Y. Neo, T. Matsumoto, and M. Tomita, “Attenuated total reflection response to wavelength tuning of plasmon-induced transparency in a metal–insulator–metal structure,” Opt. Lett.in press.

Nesterenko, D. V.

S. Refki, S. Hayashi, A. Rahmouni, D. V. Nesterenko, and Z. Sekkat, “Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11(2), 433 (2016).
[Crossref]

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8(2), 022201 (2015).
[Crossref]

Nesternko, D.

Z. Sekkat, S. Hayashi, D. Nesternko, A. Rahmouni, S. Refki, H. Ishitobi, Y. Inouye, and S. Kawata, “Plasmonic coupled modes in metal-dielectric multilayer structures: fano resonance and giant field enhancement,” Opt. Express 18, 20080–20088 (2016).

Nordlander, P.

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A Plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, M. W. M. W. S. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and Deconstructing the Fano Lineshape in Plasmonic Nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano Resonances in Plasmonic Nanoclusters: Geometrical and Chemical Tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Nussenzveig, P.

G. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of plasmon induced transparency,” Am. J. Phys. 70, 37 (2002).
[Crossref]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmons resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmons resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

Otto, A.

A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[Crossref]

Philpott, M. R.

I. Pockrand, J. D. Swalen, J. G. Gordon, and M. R. Philpott, “Surface plasmon spectroscopy of organic monolayer assemblies,” Surf. Sci. 74(1), 237–244 (1978).
[Crossref]

Pockrand, I.

I. Pockrand, J. D. Swalen, J. G. Gordon, and M. R. Philpott, “Surface plasmon spectroscopy of organic monolayer assemblies,” Surf. Sci. 74(1), 237–244 (1978).
[Crossref]

Qi, J.

Qiang, W.

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. B 23A, 2135–2136 (1968).

Rahmouni, A.

S. Refki, S. Hayashi, A. Rahmouni, D. V. Nesterenko, and Z. Sekkat, “Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11(2), 433 (2016).
[Crossref]

Z. Sekkat, S. Hayashi, D. Nesternko, A. Rahmouni, S. Refki, H. Ishitobi, Y. Inouye, and S. Kawata, “Plasmonic coupled modes in metal-dielectric multilayer structures: fano resonance and giant field enhancement,” Opt. Express 18, 20080–20088 (2016).

Rakic, A. D.

Refki, S.

Z. Sekkat, S. Hayashi, D. Nesternko, A. Rahmouni, S. Refki, H. Ishitobi, Y. Inouye, and S. Kawata, “Plasmonic coupled modes in metal-dielectric multilayer structures: fano resonance and giant field enhancement,” Opt. Express 18, 20080–20088 (2016).

S. Refki, S. Hayashi, A. Rahmouni, D. V. Nesterenko, and Z. Sekkat, “Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11(2), 433 (2016).
[Crossref]

Regalado, L. E.

F. Villa, T. Lopez-Rios, and L. E. Regalado, “Electromagnetic modes in metal-insulator-metal structures,” Phys. Rev. B 63(16), 165103 (2001).
[Crossref]

Rhee, J. Y.

Sambles, J. R.

P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, “Surface plasmon resonance on grating as novel means for gas sensing,” Sens. Actuators B Chem. 8(2), 155–160 (1992).
[Crossref]

Sekkat, Z.

Z. Sekkat, S. Hayashi, D. Nesternko, A. Rahmouni, S. Refki, H. Ishitobi, Y. Inouye, and S. Kawata, “Plasmonic coupled modes in metal-dielectric multilayer structures: fano resonance and giant field enhancement,” Opt. Express 18, 20080–20088 (2016).

S. Refki, S. Hayashi, A. Rahmouni, D. V. Nesterenko, and Z. Sekkat, “Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11(2), 433 (2016).
[Crossref]

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8(2), 022201 (2015).
[Crossref]

Sheikholeslami, S. N.

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the Interplay of Electric and Magnetic Modes via Fano-like Plasmon Resonances,” Nano Lett. 11(9), 3927–3934 (2011).
[Crossref] [PubMed]

Skalsky, M.

J. Čtyroký, J. Homola, and M. Skalsky, “Tuning of spectral operation range of a waveguide surface plasmon resonance sensor,” Electron. Lett. 33(14), 1246–1248 (1997).
[Crossref]

Sobhani, H.

J. B. Lassiter, H. Sobhani, M. W. M. W. S. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and Deconstructing the Fano Lineshape in Plasmonic Nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A Plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano Resonances in Plasmonic Nanoclusters: Geometrical and Chemical Tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Solak, H. H.

Y. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76(20), 201405 (2007).
[Crossref]

Sonnefraud, Y.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Soukoulis, C. M.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Plasmon induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Srivastava, R.

N. Weiss, R. Srivastava, H. Groger, P. Lo, and S. F. Luo, “A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors,” Sens. Actuators A Phys. 51(2-3), 211–217 (1995).
[Crossref]

Sun, Q.

Swalen, J. D.

I. Pockrand, J. D. Swalen, J. G. Gordon, and M. R. Philpott, “Surface plasmon spectroscopy of organic monolayer assemblies,” Surf. Sci. 74(1), 237–244 (1978).
[Crossref]

Swanglap, P.

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A Plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Tang, B.

Tassin, P.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Plasmon induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Tikhodeev, S. G.

Y. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76(20), 201405 (2007).
[Crossref]

Tomita, M.

M. Tomita, K. Totsuka, R. Hanamura, and T. Matsumoto, “Tunable Fano interference effect in coupled-microsphere resonator-induced transparency,” J. Opt. Soc. Am. B 26(4), 813–818 (2009).
[Crossref]

K. Matsunaga, T. Watanabe, Y. Neo, T. Matsumoto, and M. Tomita, “Attenuated total reflection response to wavelength tuning of plasmon-induced transparency in a metal–insulator–metal structure,” Opt. Lett.in press.

Totsuka, K.

Van Dorpe, P.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Vandenbosch, G. A. E.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Verellen, N.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Villa, F.

F. Villa, T. Lopez-Rios, and L. E. Regalado, “Electromagnetic modes in metal-insulator-metal structures,” Phys. Rev. B 63(16), 165103 (2001).
[Crossref]

Vukusic, P. S.

P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, “Surface plasmon resonance on grating as novel means for gas sensing,” Sens. Actuators B Chem. 8(2), 155–160 (1992).
[Crossref]

Wang, C.

J. Li, T. Liu, H. Zheng, J. Dong, E. He, W. Gao, Q. Han, C. Wang, and Y. Wu, “Higher order Fano resonances and electric field enhancements in disk-ring plasmonic nanostructures with double symmetry breaking,” Plasmonics 9(6), 1439–1445 (2014).
[Crossref]

Wang, Q.-Q.

Z.-J. Yang, Q.-Q. Wang, and H.-Q. Lin, “Tunable two types of Fano resonances in metal–dielectric core–shell nanoparticle cluster,” Appl. Phys. Lett. 103(11), 111115 (2013).
[Crossref]

Watanabe, T.

K. Matsunaga, T. Watanabe, Y. Neo, T. Matsumoto, and M. Tomita, “Attenuated total reflection response to wavelength tuning of plasmon-induced transparency in a metal–insulator–metal structure,” Opt. Lett.in press.

Weiss, N.

N. Weiss, R. Srivastava, H. Groger, P. Lo, and S. F. Luo, “A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors,” Sens. Actuators A Phys. 51(2-3), 211–217 (1995).
[Crossref]

Wu, Y.

J. Li, T. Liu, H. Zheng, J. Dong, E. He, W. Gao, Q. Han, C. Wang, and Y. Wu, “Higher order Fano resonances and electric field enhancements in disk-ring plasmonic nanostructures with double symmetry breaking,” Plasmonics 9(6), 1439–1445 (2014).
[Crossref]

Xu, J.

Yang, Z.-J.

Z.-J. Yang, Q.-Q. Wang, and H.-Q. Lin, “Tunable two types of Fano resonances in metal–dielectric core–shell nanoparticle cluster,” Appl. Phys. Lett. 103(11), 111115 (2013).
[Crossref]

Yee, S. S.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Yu, Y. F.

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6(6), 5130–5137 (2012).
[Crossref] [PubMed]

Zhang, J. B.

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6(6), 5130–5137 (2012).
[Crossref] [PubMed]

Zhang, L.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Plasmon induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Zhao, R.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Plasmon induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zheng, H.

J. Li, T. Liu, H. Zheng, J. Dong, E. He, W. Gao, Q. Han, C. Wang, and Y. Wu, “Higher order Fano resonances and electric field enhancements in disk-ring plasmonic nanostructures with double symmetry breaking,” Plasmonics 9(6), 1439–1445 (2014).
[Crossref]

X. Jin, Y. Lu, H. Zheng, Y. Lee, J. Y. Rhee, and W. H. Jang, “Plasmonic electromagnetically-induced transparency in symmetric structures,” Opt. Express 18(13), 13396–13401 (2010).
[Crossref] [PubMed]

ACS Nano (2)

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6(6), 5130–5137 (2012).
[Crossref] [PubMed]

Am. J. Phys. (1)

G. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of plasmon induced transparency,” Am. J. Phys. 70, 37 (2002).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8(2), 022201 (2015).
[Crossref]

Appl. Phys. Lett. (1)

Z.-J. Yang, Q.-Q. Wang, and H.-Q. Lin, “Tunable two types of Fano resonances in metal–dielectric core–shell nanoparticle cluster,” Appl. Phys. Lett. 103(11), 111115 (2013).
[Crossref]

Biosens. Bioelectron. (1)

A. Brecht and G. Gauglitz, “Optical probes and transducers,” Biosens. Bioelectron. 10(9-10), 923–936 (1995).
[Crossref] [PubMed]

Biosensors (1)

D. C. Cullen, R. G. W. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3(4), 211–225 (1987).
[Crossref] [PubMed]

Electron. Lett. (1)

J. Čtyroký, J. Homola, and M. Skalsky, “Tuning of spectral operation range of a waveguide surface plasmon resonance sensor,” Electron. Lett. 33(14), 1246–1248 (1997).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nano Lett. (4)

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano Resonances in Plasmonic Nanoclusters: Geometrical and Chemical Tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, M. W. M. W. S. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and Deconstructing the Fano Lineshape in Plasmonic Nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the Interplay of Electric and Magnetic Modes via Fano-like Plasmon Resonances,” Nano Lett. 11(9), 3927–3934 (2011).
[Crossref] [PubMed]

W.-S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A Plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Opt. Express (4)

Phys. Rev. (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

Phys. Rev. A (2)

A. M. Akulshin, S. Barreiro, and A. Lezama, “Plasmon induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996 (1998).
[Crossref]

A. Lezama, S. Barreiro, and A. M. Akulshin, “Plasmon induced absorption,” Phys. Rev. A 59, 4732 (1999).
[Crossref]

Phys. Rev. B (2)

Y. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76(20), 201405 (2007).
[Crossref]

F. Villa, T. Lopez-Rios, and L. E. Regalado, “Electromagnetic modes in metal-insulator-metal structures,” Phys. Rev. B 63(16), 165103 (2001).
[Crossref]

Phys. Rev. Lett. (1)

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Plasmon induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Plasmonics (2)

S. Refki, S. Hayashi, A. Rahmouni, D. V. Nesterenko, and Z. Sekkat, “Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11(2), 433 (2016).
[Crossref]

J. Li, T. Liu, H. Zheng, J. Dong, E. He, W. Gao, Q. Han, C. Wang, and Y. Wu, “Higher order Fano resonances and electric field enhancements in disk-ring plasmonic nanostructures with double symmetry breaking,” Plasmonics 9(6), 1439–1445 (2014).
[Crossref]

Sens. Actuators (2)

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmons resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmons resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Sens. Actuators A Phys. (1)

N. Weiss, R. Srivastava, H. Groger, P. Lo, and S. F. Luo, “A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors,” Sens. Actuators A Phys. 51(2-3), 211–217 (1995).
[Crossref]

Sens. Actuators B Chem. (3)

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, “Surface plasmon resonance on grating as novel means for gas sensing,” Sens. Actuators B Chem. 8(2), 155–160 (1992).
[Crossref]

Surf. Sci. (2)

I. Pockrand, J. D. Swalen, J. G. Gordon, and M. R. Philpott, “Surface plasmon spectroscopy of organic monolayer assemblies,” Surf. Sci. 74(1), 237–244 (1978).
[Crossref]

G. Gordon and S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci. 101(1-3), 499–506 (1980).
[Crossref]

Z. Naturforsch. B (1)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. B 23A, 2135–2136 (1968).

Z. Phys. (1)

A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[Crossref]

Other (3)

K. Matsunaga, T. Watanabe, Y. Neo, T. Matsumoto, and M. Tomita, “Attenuated total reflection response to wavelength tuning of plasmon-induced transparency in a metal–insulator–metal structure,” Opt. Lett.in press.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon Press, 1964).

D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Magnitude of the electric field simulated by FDTD in the case of (a) PIT and (b) PIA from the MIM multilayer structure. The upper plots show the dependence of the reflectance on the incident angle.

Fig. 2
Fig. 2

Schematic of the MIM multilayered structure, obtained by using an ATR prism coupler, on a SiO2 substrate.

Fig. 3
Fig. 3

Experimentally determined angular distributions of reflectance from the MIM multilayer structures designed for the (a) PIT and (b) PIA spectrum.

Fig. 4
Fig. 4

Spirals representing the trajectories of the complex reflection coefficient from the MIM multilayered structure, on an ATR prism, in the case of (a) PIT and (b) PIA. The insets show the corresponding reflectance spectra.

Fig. 5
Fig. 5

Angular distribution of reflectance with off resonance for PIT conditions. SiO2 layers with thicknesses of (a) 181 nm and (b) 196 nm were considered.

Metrics