Abstract

Surface plasmon polariton (SPP) beams with an in-plane angular spread of 8° are produced by electrically exciting a 2D plasmonic crystal using a scanning tunneling microscope (STM). The plasmonic crystal consists of a gold nanoparticle (NP) array on a thin gold film on a glass substrate and it is the inelastic tunnel electrons (IET) from the STM that provide a localized and spectrally broadband SPP source. Surface waves on the gold film are shown to be essential for the coupling of the local, electrical excitation to the extended NP array, thus leading to the creation of SPP beams. A simple model of the scattering of SPPs by the array is used to explain the origin and direction of the generated SPP beams under certain conditions. In order to take into account the broadband spectrum of the source, calculations realized using finite-difference time-domain (FDTD) methods are obtained, showing that bandgaps for SPP propagation exist for certain wavelengths and indicating how changing the pitch of the NP array may enhance the SPP beaming effect.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Edge scattering of surface plasmons excited by scanning tunneling microscopy

Yang Zhang, Elizabeth Boer-Duchemin, Tao Wang, Benoit Rogez, Geneviève Comtet, Eric Le Moal, Gérald Dujardin, Andreas Hohenau, Christian Gruber, and Joachim R. Krenn
Opt. Express 21(12) 13938-13948 (2013)

Surface plasmon polariton–based optical beam profiler

H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg
Opt. Lett. 29(12) 1408-1410 (2004)

Near-field imaging of surface plasmon-polariton guiding in band gap structures at telecom wavelengths

Carsten Marquart, Sergey I. Bozhevolnyi, and Kristjan Leosson
Opt. Express 13(9) 3303-3309 (2005)

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref] [PubMed]
  2. T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
    [Crossref]
  3. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
    [Crossref] [PubMed]
  4. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
    [Crossref] [PubMed]
  5. W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
    [Crossref]
  6. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
    [Crossref] [PubMed]
  7. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-plasmon energy gaps and photoluminescence,” Phys. Rev. B 52, 11441–11445 (1995).
    [Crossref]
  8. E. Devaux, T. W. Ebbesen, J.-C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83, 4936–4938 (2003).
    [Crossref]
  9. A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon polariton Mach-Zehnder interferometer and oscillation fringes,” Plasmonics 1, 141–145 (2006).
    [Crossref]
  10. A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
    [Crossref] [PubMed]
  11. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
    [Crossref]
  12. A. Babuty, A. Bousseksou, J.-P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104, 226806 (2010).
    [Crossref] [PubMed]
  13. R. F. Service, “Ever-smaller lasers pave the way for data highways made of light,” Science 328, 810–811 (2010).
    [Crossref] [PubMed]
  14. D. W. Pohl, S. G. Rodrigo, and L. Novotny, “Stacked optical antennas,” Appl. Phys. Lett. 98, 023111 (2011).
    [Crossref]
  15. P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111, 026804 (2013).
    [Crossref] [PubMed]
  16. K. Ding and C. Z. Ning, “Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers,” Semicond. Sci. Tech. 28, 124002 (2013).
    [Crossref]
  17. K. C. Y. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photonics 8, 244–249 (2014).
    [Crossref]
  18. M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nat. Nanotechnol. 10, 1058–1063 (2015).
    [Crossref] [PubMed]
  19. J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
    [Crossref]
  20. Y. Vardi, E. Cohen-Hoshen, G. Shalem, and I. Bar-Joseph, “Fano resonance in an electrically driven plasmonic device,” Nano Lett. 16, 748–752 (2016).
    [Crossref]
  21. N. Cazier, M. Buret, A. V. Uskov, L. Markey, J. Arocas, G. Colas Des Francs, and A. Bouhelier, “Electrical excitation of waveguided surface plasmons by a light-emitting tunneling optical gap antenna,” Opt. Express 24, 3873–3884 (2016).
    [Crossref] [PubMed]
  22. W. Du, T. Wang, H.-S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and C. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nat. Photonics 10, 274–281 (2016).
    [Crossref]
  23. T. Wang and C. A. Nijhuis, “Molecular electronic plasmonics,” Appl. Mater. Today 3, 73–86 (2016).
    [Crossref]
  24. K. Takeuchi and N. Yamamoto, “Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence,” Opt. Express 19, 12365–12374 (2011).
    [Crossref] [PubMed]
  25. H. Watanabe, M. Honda, and N. Yamamoto, “Size dependence of band-gaps in a one-dimensional plasmonic crystal,” Opt. Express 22, 5155–5165 (2014).
    [Crossref] [PubMed]
  26. H. Saito, S. Mizuma, and N. Yamamoto, “Confinement of surface plasmon polaritons by heterostructures of plasmonic crystals,” Nano Lett. 15, 6789–6793 (2015).
    [Crossref] [PubMed]
  27. B. Stein, J.-Y. Laluet, E. Devaux, C. Genet, and T. W. Ebbesen, “Surface plasmon mode steering and negative refraction,” Phys. Rev. Lett. 105, 266804 (2010).
    [Crossref]
  28. B. Stein, E. Devaux, C. Genet, and T. W. Ebbesen, “Self-collimation of surface plasmon beams,” Opt. Lett. 37, 1916–1918 (2012).
    [Crossref] [PubMed]
  29. R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67, 3796 (1991).
    [Crossref] [PubMed]
  30. P. Johansson, “Light emission from a scanning tunneling microscope: fully retarded calculation,” Phys. Rev. B 58, 10823 (1998).
    [Crossref]
  31. T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22, 175201 (2011).
    [Crossref] [PubMed]
  32. T. Wang, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, S. Huant, and E. Boer-Duchemin, “Temporal coherence of propagating surface plasmons,” Opt. Lett. 39, 6679 (2014).
    [Crossref] [PubMed]
  33. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B Adv. 149, 220–229 (2008).
    [Crossref]
  34. A. G. Nikitin, A. V. Kabashin, and H. Dallaporta, “Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects,” Opt. Express 20, 27941–27952 (2012).
    [Crossref] [PubMed]
  35. A. G. Nikitin, T. Nguyen, and H. Dallaporta, “Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: experimental studies,” Appl. Phys. Lett. 102, 221116 (2013).
    [Crossref]
  36. W. M. Haynes, CRC Handbook of Chemistry and Physics, 96th ed. (CRC, 2015).
  37. E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. DosSantos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13, 4198–4205 (2013).
    [Crossref] [PubMed]
  38. E. Le Moal, S. Marguet, D. Canneson, B. Rogez, E. Boer-Duchemin, G. Dujardin, T. V. Teperik, D.-C. Marinica, and A. G. Borisov, “Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle,” Phys. Rev. B 93, 035418 (2016).
    [Crossref]
  39. P. J. Compaijen, V.A. Malshev, and J. Knoester, “Surface-mediated light transmission in metal nanoparticle chains,” Phys. Rev. B 87, 205437 (2013).
    [Crossref]
  40. T. Wang, B. Rogez, G. Comtet, E. Le Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92, 045438 (2015).
    [Crossref]
  41. J. Wang, C. Zhao, and J. Zhang, “Does the leakage radiation profile mirror the intensity profile of surface plasmon polaritons,” Opt. Lett. 35, 1944–1946 (2010).
    [Crossref] [PubMed]
  42. A. Drezet and C. Genet, “Imaging surface plasmons: from leaky waves to far-field radiation,” Phys. Rev. Lett. 110, 213901 (2013).
    [Crossref] [PubMed]
  43. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, 1976).
  44. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
    [Crossref]
  45. D. Hone, B. Mühlschlegel, and D. J. Scalapino, “Theory of light emission from small particle tunnel junctions,” Appl. Phys. Lett. 33, 203 (1978).
    [Crossref]
  46. F. Bigourdan, J.-P. Hugonin, F. Marquier, C. Sauvan, and J.-J. Greffet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116, 106803 (2016).
    [Crossref] [PubMed]

2016 (6)

Y. Vardi, E. Cohen-Hoshen, G. Shalem, and I. Bar-Joseph, “Fano resonance in an electrically driven plasmonic device,” Nano Lett. 16, 748–752 (2016).
[Crossref]

N. Cazier, M. Buret, A. V. Uskov, L. Markey, J. Arocas, G. Colas Des Francs, and A. Bouhelier, “Electrical excitation of waveguided surface plasmons by a light-emitting tunneling optical gap antenna,” Opt. Express 24, 3873–3884 (2016).
[Crossref] [PubMed]

W. Du, T. Wang, H.-S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and C. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nat. Photonics 10, 274–281 (2016).
[Crossref]

T. Wang and C. A. Nijhuis, “Molecular electronic plasmonics,” Appl. Mater. Today 3, 73–86 (2016).
[Crossref]

E. Le Moal, S. Marguet, D. Canneson, B. Rogez, E. Boer-Duchemin, G. Dujardin, T. V. Teperik, D.-C. Marinica, and A. G. Borisov, “Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle,” Phys. Rev. B 93, 035418 (2016).
[Crossref]

F. Bigourdan, J.-P. Hugonin, F. Marquier, C. Sauvan, and J.-J. Greffet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116, 106803 (2016).
[Crossref] [PubMed]

2015 (4)

T. Wang, B. Rogez, G. Comtet, E. Le Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92, 045438 (2015).
[Crossref]

M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nat. Nanotechnol. 10, 1058–1063 (2015).
[Crossref] [PubMed]

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

H. Saito, S. Mizuma, and N. Yamamoto, “Confinement of surface plasmon polaritons by heterostructures of plasmonic crystals,” Nano Lett. 15, 6789–6793 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (6)

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111, 026804 (2013).
[Crossref] [PubMed]

K. Ding and C. Z. Ning, “Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers,” Semicond. Sci. Tech. 28, 124002 (2013).
[Crossref]

A. Drezet and C. Genet, “Imaging surface plasmons: from leaky waves to far-field radiation,” Phys. Rev. Lett. 110, 213901 (2013).
[Crossref] [PubMed]

P. J. Compaijen, V.A. Malshev, and J. Knoester, “Surface-mediated light transmission in metal nanoparticle chains,” Phys. Rev. B 87, 205437 (2013).
[Crossref]

A. G. Nikitin, T. Nguyen, and H. Dallaporta, “Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: experimental studies,” Appl. Phys. Lett. 102, 221116 (2013).
[Crossref]

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. DosSantos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13, 4198–4205 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (3)

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22, 175201 (2011).
[Crossref] [PubMed]

K. Takeuchi and N. Yamamoto, “Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence,” Opt. Express 19, 12365–12374 (2011).
[Crossref] [PubMed]

D. W. Pohl, S. G. Rodrigo, and L. Novotny, “Stacked optical antennas,” Appl. Phys. Lett. 98, 023111 (2011).
[Crossref]

2010 (4)

A. Babuty, A. Bousseksou, J.-P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104, 226806 (2010).
[Crossref] [PubMed]

R. F. Service, “Ever-smaller lasers pave the way for data highways made of light,” Science 328, 810–811 (2010).
[Crossref] [PubMed]

B. Stein, J.-Y. Laluet, E. Devaux, C. Genet, and T. W. Ebbesen, “Surface plasmon mode steering and negative refraction,” Phys. Rev. Lett. 105, 266804 (2010).
[Crossref]

J. Wang, C. Zhao, and J. Zhang, “Does the leakage radiation profile mirror the intensity profile of surface plasmon polaritons,” Opt. Lett. 35, 1944–1946 (2010).
[Crossref] [PubMed]

2008 (1)

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B Adv. 149, 220–229 (2008).
[Crossref]

2007 (1)

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[Crossref] [PubMed]

2006 (2)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[Crossref]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon polariton Mach-Zehnder interferometer and oscillation fringes,” Plasmonics 1, 141–145 (2006).
[Crossref]

2003 (2)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

E. Devaux, T. W. Ebbesen, J.-C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83, 4936–4938 (2003).
[Crossref]

2000 (1)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[Crossref] [PubMed]

1998 (1)

P. Johansson, “Light emission from a scanning tunneling microscope: fully retarded calculation,” Phys. Rev. B 58, 10823 (1998).
[Crossref]

1996 (2)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[Crossref] [PubMed]

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
[Crossref]

1995 (2)

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
[Crossref]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-plasmon energy gaps and photoluminescence,” Phys. Rev. B 52, 11441–11445 (1995).
[Crossref]

1991 (1)

R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67, 3796 (1991).
[Crossref] [PubMed]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

1978 (1)

D. Hone, B. Mühlschlegel, and D. J. Scalapino, “Theory of light emission from small particle tunnel junctions,” Appl. Phys. Lett. 33, 203 (1978).
[Crossref]

Abidi, W.

T. Wang, B. Rogez, G. Comtet, E. Le Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92, 045438 (2015).
[Crossref]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Arocas, J.

N. Cazier, M. Buret, A. V. Uskov, L. Markey, J. Arocas, G. Colas Des Francs, and A. Bouhelier, “Electrical excitation of waveguided surface plasmons by a light-emitting tunneling optical gap antenna,” Opt. Express 24, 3873–3884 (2016).
[Crossref] [PubMed]

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111, 026804 (2013).
[Crossref] [PubMed]

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Ashcroft, N. W.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, 1976).

Aussenegg, F. R.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B Adv. 149, 220–229 (2008).
[Crossref]

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[Crossref] [PubMed]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon polariton Mach-Zehnder interferometer and oscillation fringes,” Plasmonics 1, 141–145 (2006).
[Crossref]

Babuty, A.

A. Babuty, A. Bousseksou, J.-P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104, 226806 (2010).
[Crossref] [PubMed]

Bar-Joseph, I.

Y. Vardi, E. Cohen-Hoshen, G. Shalem, and I. Bar-Joseph, “Fano resonance in an electrically driven plasmonic device,” Nano Lett. 16, 748–752 (2016).
[Crossref]

Barnes, W. L.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[Crossref] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-plasmon energy gaps and photoluminescence,” Phys. Rev. B 52, 11441–11445 (1995).
[Crossref]

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
[Crossref]

Beaudoin, G.

A. Babuty, A. Bousseksou, J.-P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104, 226806 (2010).
[Crossref] [PubMed]

Berndt, R.

R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67, 3796 (1991).
[Crossref] [PubMed]

Berthelot, J.

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111, 026804 (2013).
[Crossref] [PubMed]

Bharadwaj, P.

M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nat. Nanotechnol. 10, 1058–1063 (2015).
[Crossref] [PubMed]

Bigourdan, F.

F. Bigourdan, J.-P. Hugonin, F. Marquier, C. Sauvan, and J.-J. Greffet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116, 106803 (2016).
[Crossref] [PubMed]

Boer-Duchemin, E.

E. Le Moal, S. Marguet, D. Canneson, B. Rogez, E. Boer-Duchemin, G. Dujardin, T. V. Teperik, D.-C. Marinica, and A. G. Borisov, “Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle,” Phys. Rev. B 93, 035418 (2016).
[Crossref]

T. Wang, B. Rogez, G. Comtet, E. Le Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92, 045438 (2015).
[Crossref]

T. Wang, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, S. Huant, and E. Boer-Duchemin, “Temporal coherence of propagating surface plasmons,” Opt. Lett. 39, 6679 (2014).
[Crossref] [PubMed]

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. DosSantos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13, 4198–4205 (2013).
[Crossref] [PubMed]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22, 175201 (2011).
[Crossref] [PubMed]

Borisov, A. G.

E. Le Moal, S. Marguet, D. Canneson, B. Rogez, E. Boer-Duchemin, G. Dujardin, T. V. Teperik, D.-C. Marinica, and A. G. Borisov, “Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle,” Phys. Rev. B 93, 035418 (2016).
[Crossref]

Bouhelier, A.

N. Cazier, M. Buret, A. V. Uskov, L. Markey, J. Arocas, G. Colas Des Francs, and A. Bouhelier, “Electrical excitation of waveguided surface plasmons by a light-emitting tunneling optical gap antenna,” Opt. Express 24, 3873–3884 (2016).
[Crossref] [PubMed]

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111, 026804 (2013).
[Crossref] [PubMed]

Bousseksou, A.

A. Babuty, A. Bousseksou, J.-P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104, 226806 (2010).
[Crossref] [PubMed]

Brand, S.

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
[Crossref]

Brongersma, M. L.

K. C. Y. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photonics 8, 244–249 (2014).
[Crossref]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[Crossref]

Buret, M.

Canneson, D.

E. Le Moal, S. Marguet, D. Canneson, B. Rogez, E. Boer-Duchemin, G. Dujardin, T. V. Teperik, D.-C. Marinica, and A. G. Borisov, “Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle,” Phys. Rev. B 93, 035418 (2016).
[Crossref]

Cazier, N.

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[Crossref]

Chu, H.-S.

W. Du, T. Wang, H.-S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and C. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nat. Photonics 10, 274–281 (2016).
[Crossref]

Chutinan, A.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[Crossref] [PubMed]

Cohen-Hoshen, E.

Y. Vardi, E. Cohen-Hoshen, G. Shalem, and I. Bar-Joseph, “Fano resonance in an electrically driven plasmonic device,” Nano Lett. 16, 748–752 (2016).
[Crossref]

Colas Des Francs, G.

N. Cazier, M. Buret, A. V. Uskov, L. Markey, J. Arocas, G. Colas Des Francs, and A. Bouhelier, “Electrical excitation of waveguided surface plasmons by a light-emitting tunneling optical gap antenna,” Opt. Express 24, 3873–3884 (2016).
[Crossref] [PubMed]

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111, 026804 (2013).
[Crossref] [PubMed]

Colombelli, R.

A. Babuty, A. Bousseksou, J.-P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104, 226806 (2010).
[Crossref] [PubMed]

Compaijen, P. J.

P. J. Compaijen, V.A. Malshev, and J. Knoester, “Surface-mediated light transmission in metal nanoparticle chains,” Phys. Rev. B 87, 205437 (2013).
[Crossref]

Comtet, G.

T. Wang, B. Rogez, G. Comtet, E. Le Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92, 045438 (2015).
[Crossref]

T. Wang, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, S. Huant, and E. Boer-Duchemin, “Temporal coherence of propagating surface plasmons,” Opt. Lett. 39, 6679 (2014).
[Crossref] [PubMed]

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. DosSantos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13, 4198–4205 (2013).
[Crossref] [PubMed]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22, 175201 (2011).
[Crossref] [PubMed]

Cotter, N. P. K.

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
[Crossref]

Dallaporta, H.

A. G. Nikitin, T. Nguyen, and H. Dallaporta, “Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: experimental studies,” Appl. Phys. Lett. 102, 221116 (2013).
[Crossref]

A. G. Nikitin, A. V. Kabashin, and H. Dallaporta, “Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects,” Opt. Express 20, 27941–27952 (2012).
[Crossref] [PubMed]

De La Rue, R. M.

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
[Crossref]

De Wilde, Y.

A. Babuty, A. Bousseksou, J.-P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104, 226806 (2010).
[Crossref] [PubMed]

Dereux, A.

E. Devaux, T. W. Ebbesen, J.-C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83, 4936–4938 (2003).
[Crossref]

Devaux, E.

B. Stein, E. Devaux, C. Genet, and T. W. Ebbesen, “Self-collimation of surface plasmon beams,” Opt. Lett. 37, 1916–1918 (2012).
[Crossref] [PubMed]

B. Stein, J.-Y. Laluet, E. Devaux, C. Genet, and T. W. Ebbesen, “Surface plasmon mode steering and negative refraction,” Phys. Rev. Lett. 105, 266804 (2010).
[Crossref]

E. Devaux, T. W. Ebbesen, J.-C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83, 4936–4938 (2003).
[Crossref]

Ding, K.

K. Ding and C. Z. Ning, “Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers,” Semicond. Sci. Tech. 28, 124002 (2013).
[Crossref]

Ditlbacher, H.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B Adv. 149, 220–229 (2008).
[Crossref]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon polariton Mach-Zehnder interferometer and oscillation fringes,” Plasmonics 1, 141–145 (2006).
[Crossref]

DosSantos, P.

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. DosSantos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13, 4198–4205 (2013).
[Crossref] [PubMed]

Doyen, I. M.

A. Babuty, A. Bousseksou, J.-P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104, 226806 (2010).
[Crossref] [PubMed]

Drezet, A.

T. Wang, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, S. Huant, and E. Boer-Duchemin, “Temporal coherence of propagating surface plasmons,” Opt. Lett. 39, 6679 (2014).
[Crossref] [PubMed]

A. Drezet and C. Genet, “Imaging surface plasmons: from leaky waves to far-field radiation,” Phys. Rev. Lett. 110, 213901 (2013).
[Crossref] [PubMed]

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B Adv. 149, 220–229 (2008).
[Crossref]

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[Crossref] [PubMed]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon polariton Mach-Zehnder interferometer and oscillation fringes,” Plasmonics 1, 141–145 (2006).
[Crossref]

Du, W.

W. Du, T. Wang, H.-S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and C. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nat. Photonics 10, 274–281 (2016).
[Crossref]

Dujardin, G.

E. Le Moal, S. Marguet, D. Canneson, B. Rogez, E. Boer-Duchemin, G. Dujardin, T. V. Teperik, D.-C. Marinica, and A. G. Borisov, “Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle,” Phys. Rev. B 93, 035418 (2016).
[Crossref]

T. Wang, B. Rogez, G. Comtet, E. Le Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92, 045438 (2015).
[Crossref]

T. Wang, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, S. Huant, and E. Boer-Duchemin, “Temporal coherence of propagating surface plasmons,” Opt. Lett. 39, 6679 (2014).
[Crossref] [PubMed]

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. DosSantos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13, 4198–4205 (2013).
[Crossref] [PubMed]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22, 175201 (2011).
[Crossref] [PubMed]

Ebbesen, T. W.

B. Stein, E. Devaux, C. Genet, and T. W. Ebbesen, “Self-collimation of surface plasmon beams,” Opt. Lett. 37, 1916–1918 (2012).
[Crossref] [PubMed]

B. Stein, J.-Y. Laluet, E. Devaux, C. Genet, and T. W. Ebbesen, “Surface plasmon mode steering and negative refraction,” Phys. Rev. Lett. 105, 266804 (2010).
[Crossref]

E. Devaux, T. W. Ebbesen, J.-C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83, 4936–4938 (2003).
[Crossref]

Emmerling, M.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Genet, C.

A. Drezet and C. Genet, “Imaging surface plasmons: from leaky waves to far-field radiation,” Phys. Rev. Lett. 110, 213901 (2013).
[Crossref] [PubMed]

B. Stein, E. Devaux, C. Genet, and T. W. Ebbesen, “Self-collimation of surface plasmon beams,” Opt. Lett. 37, 1916–1918 (2012).
[Crossref] [PubMed]

B. Stein, J.-Y. Laluet, E. Devaux, C. Genet, and T. W. Ebbesen, “Surface plasmon mode steering and negative refraction,” Phys. Rev. Lett. 105, 266804 (2010).
[Crossref]

Gimzewski, J. K.

R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67, 3796 (1991).
[Crossref] [PubMed]

Greffet, J.-J.

F. Bigourdan, J.-P. Hugonin, F. Marquier, C. Sauvan, and J.-J. Greffet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116, 106803 (2016).
[Crossref] [PubMed]

Harris, J. S.

K. C. Y. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photonics 8, 244–249 (2014).
[Crossref]

Hartmann, N.

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111, 026804 (2013).
[Crossref] [PubMed]

Hartschuh, A.

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111, 026804 (2013).
[Crossref] [PubMed]

Haynes, W. M.

W. M. Haynes, CRC Handbook of Chemistry and Physics, 96th ed. (CRC, 2015).

Hecht, B.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
[Crossref]

Hohenau, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B Adv. 149, 220–229 (2008).
[Crossref]

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[Crossref] [PubMed]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon polariton Mach-Zehnder interferometer and oscillation fringes,” Plasmonics 1, 141–145 (2006).
[Crossref]

Honda, M.

Hone, D.

D. Hone, B. Mühlschlegel, and D. J. Scalapino, “Theory of light emission from small particle tunnel junctions,” Appl. Phys. Lett. 33, 203 (1978).
[Crossref]

Huang, K. C. Y.

K. C. Y. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photonics 8, 244–249 (2014).
[Crossref]

Huant, S.

Hugonin, J.-P.

F. Bigourdan, J.-P. Hugonin, F. Marquier, C. Sauvan, and J.-J. Greffet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116, 106803 (2016).
[Crossref] [PubMed]

Huo, Y.

K. C. Y. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photonics 8, 244–249 (2014).
[Crossref]

Jain, A.

M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nat. Nanotechnol. 10, 1058–1063 (2015).
[Crossref] [PubMed]

Johansson, P.

P. Johansson, “Light emission from a scanning tunneling microscope: fully retarded calculation,” Phys. Rev. B 58, 10823 (1998).
[Crossref]

R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67, 3796 (1991).
[Crossref] [PubMed]

Kabashin, A. V.

Kamp, M.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Kern, J.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Kitson, S. C.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[Crossref] [PubMed]

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
[Crossref]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-plasmon energy gaps and photoluminescence,” Phys. Rev. B 52, 11441–11445 (1995).
[Crossref]

Knoester, J.

P. J. Compaijen, V.A. Malshev, and J. Knoester, “Surface-mediated light transmission in metal nanoparticle chains,” Phys. Rev. B 87, 205437 (2013).
[Crossref]

Koller, D.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B Adv. 149, 220–229 (2008).
[Crossref]

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[Crossref] [PubMed]

Krauss, T. F.

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
[Crossref]

Krenn, J. R.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B Adv. 149, 220–229 (2008).
[Crossref]

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[Crossref] [PubMed]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon polariton Mach-Zehnder interferometer and oscillation fringes,” Plasmonics 1, 141–145 (2006).
[Crossref]

Kullock, R.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Laluet, J.-Y.

B. Stein, J.-Y. Laluet, E. Devaux, C. Genet, and T. W. Ebbesen, “Surface plasmon mode steering and negative refraction,” Phys. Rev. Lett. 105, 266804 (2010).
[Crossref]

Le Moal, E.

E. Le Moal, S. Marguet, D. Canneson, B. Rogez, E. Boer-Duchemin, G. Dujardin, T. V. Teperik, D.-C. Marinica, and A. G. Borisov, “Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle,” Phys. Rev. B 93, 035418 (2016).
[Crossref]

T. Wang, B. Rogez, G. Comtet, E. Le Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92, 045438 (2015).
[Crossref]

T. Wang, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, S. Huant, and E. Boer-Duchemin, “Temporal coherence of propagating surface plasmons,” Opt. Lett. 39, 6679 (2014).
[Crossref] [PubMed]

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. DosSantos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13, 4198–4205 (2013).
[Crossref] [PubMed]

Leitner, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B Adv. 149, 220–229 (2008).
[Crossref]

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[Crossref] [PubMed]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon polariton Mach-Zehnder interferometer and oscillation fringes,” Plasmonics 1, 141–145 (2006).
[Crossref]

Liu, R.

W. Du, T. Wang, H.-S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and C. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nat. Photonics 10, 274–281 (2016).
[Crossref]

Malshev, V.A.

P. J. Compaijen, V.A. Malshev, and J. Knoester, “Surface-mediated light transmission in metal nanoparticle chains,” Phys. Rev. B 87, 205437 (2013).
[Crossref]

Marguet, S.

E. Le Moal, S. Marguet, D. Canneson, B. Rogez, E. Boer-Duchemin, G. Dujardin, T. V. Teperik, D.-C. Marinica, and A. G. Borisov, “Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle,” Phys. Rev. B 93, 035418 (2016).
[Crossref]

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. DosSantos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13, 4198–4205 (2013).
[Crossref] [PubMed]

Marinica, D.-C.

E. Le Moal, S. Marguet, D. Canneson, B. Rogez, E. Boer-Duchemin, G. Dujardin, T. V. Teperik, D.-C. Marinica, and A. G. Borisov, “Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle,” Phys. Rev. B 93, 035418 (2016).
[Crossref]

Markey, L.

Marquier, F.

F. Bigourdan, J.-P. Hugonin, F. Marquier, C. Sauvan, and J.-J. Greffet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116, 106803 (2016).
[Crossref] [PubMed]

Mermin, N. D.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, 1976).

Mizuma, S.

H. Saito, S. Mizuma, and N. Yamamoto, “Confinement of surface plasmon polaritons by heterostructures of plasmonic crystals,” Nano Lett. 15, 6789–6793 (2015).
[Crossref] [PubMed]

Mühlschlegel, B.

D. Hone, B. Mühlschlegel, and D. J. Scalapino, “Theory of light emission from small particle tunnel junctions,” Appl. Phys. Lett. 33, 203 (1978).
[Crossref]

Mukherjee, S.

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. DosSantos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13, 4198–4205 (2013).
[Crossref] [PubMed]

Nash, D. J.

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
[Crossref]

Nguyen, T.

A. G. Nikitin, T. Nguyen, and H. Dallaporta, “Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: experimental studies,” Appl. Phys. Lett. 102, 221116 (2013).
[Crossref]

Nijhuis, C. A.

W. Du, T. Wang, H.-S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and C. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nat. Photonics 10, 274–281 (2016).
[Crossref]

T. Wang and C. A. Nijhuis, “Molecular electronic plasmonics,” Appl. Mater. Today 3, 73–86 (2016).
[Crossref]

Nikitin, A. G.

A. G. Nikitin, T. Nguyen, and H. Dallaporta, “Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: experimental studies,” Appl. Phys. Lett. 102, 221116 (2013).
[Crossref]

A. G. Nikitin, A. V. Kabashin, and H. Dallaporta, “Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects,” Opt. Express 20, 27941–27952 (2012).
[Crossref] [PubMed]

Ning, C. Z.

K. Ding and C. Z. Ning, “Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers,” Semicond. Sci. Tech. 28, 124002 (2013).
[Crossref]

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[Crossref] [PubMed]

Novotny, L.

M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nat. Nanotechnol. 10, 1058–1063 (2015).
[Crossref] [PubMed]

D. W. Pohl, S. G. Rodrigo, and L. Novotny, “Stacked optical antennas,” Appl. Phys. Lett. 98, 023111 (2011).
[Crossref]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
[Crossref]

Parzefall, M.

M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nat. Nanotechnol. 10, 1058–1063 (2015).
[Crossref] [PubMed]

Phua, W. K.

W. Du, T. Wang, H.-S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and C. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nat. Photonics 10, 274–281 (2016).
[Crossref]

Pohl, D. W.

D. W. Pohl, S. G. Rodrigo, and L. Novotny, “Stacked optical antennas,” Appl. Phys. Lett. 98, 023111 (2011).
[Crossref]

Prangsma, J.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
[Crossref]

Rai, P.

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111, 026804 (2013).
[Crossref] [PubMed]

Remita, H.

T. Wang, B. Rogez, G. Comtet, E. Le Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92, 045438 (2015).
[Crossref]

Rodrigo, S. G.

D. W. Pohl, S. G. Rodrigo, and L. Novotny, “Stacked optical antennas,” Appl. Phys. Lett. 98, 023111 (2011).
[Crossref]

Rogez, B.

E. Le Moal, S. Marguet, D. Canneson, B. Rogez, E. Boer-Duchemin, G. Dujardin, T. V. Teperik, D.-C. Marinica, and A. G. Borisov, “Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle,” Phys. Rev. B 93, 035418 (2016).
[Crossref]

T. Wang, B. Rogez, G. Comtet, E. Le Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92, 045438 (2015).
[Crossref]

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. DosSantos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13, 4198–4205 (2013).
[Crossref] [PubMed]

Sagnes, I.

A. Babuty, A. Bousseksou, J.-P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104, 226806 (2010).
[Crossref] [PubMed]

Saito, H.

H. Saito, S. Mizuma, and N. Yamamoto, “Confinement of surface plasmon polaritons by heterostructures of plasmonic crystals,” Nano Lett. 15, 6789–6793 (2015).
[Crossref] [PubMed]

Sambles, J. R.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[Crossref] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-plasmon energy gaps and photoluminescence,” Phys. Rev. B 52, 11441–11445 (1995).
[Crossref]

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
[Crossref]

Sarmiento, T.

K. C. Y. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photonics 8, 244–249 (2014).
[Crossref]

Sauvan, C.

F. Bigourdan, J.-P. Hugonin, F. Marquier, C. Sauvan, and J.-J. Greffet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116, 106803 (2016).
[Crossref] [PubMed]

Scalapino, D. J.

D. Hone, B. Mühlschlegel, and D. J. Scalapino, “Theory of light emission from small particle tunnel junctions,” Appl. Phys. Lett. 33, 203 (1978).
[Crossref]

Schuller, J. A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[Crossref]

Seo, M.-K.

K. C. Y. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photonics 8, 244–249 (2014).
[Crossref]

Service, R. F.

R. F. Service, “Ever-smaller lasers pave the way for data highways made of light,” Science 328, 810–811 (2010).
[Crossref] [PubMed]

Shalem, G.

Y. Vardi, E. Cohen-Hoshen, G. Shalem, and I. Bar-Joseph, “Fano resonance in an electrically driven plasmonic device,” Nano Lett. 16, 748–752 (2016).
[Crossref]

Sirtori, C.

A. Babuty, A. Bousseksou, J.-P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104, 226806 (2010).
[Crossref] [PubMed]

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Stein, B.

B. Stein, E. Devaux, C. Genet, and T. W. Ebbesen, “Self-collimation of surface plasmon beams,” Opt. Lett. 37, 1916–1918 (2012).
[Crossref] [PubMed]

B. Stein, J.-Y. Laluet, E. Devaux, C. Genet, and T. W. Ebbesen, “Surface plasmon mode steering and negative refraction,” Phys. Rev. Lett. 105, 266804 (2010).
[Crossref]

Steinberger, B.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B Adv. 149, 220–229 (2008).
[Crossref]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon polariton Mach-Zehnder interferometer and oscillation fringes,” Plasmonics 1, 141–145 (2006).
[Crossref]

Stepanov, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B Adv. 149, 220–229 (2008).
[Crossref]

Stepanov, A. L.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon polariton Mach-Zehnder interferometer and oscillation fringes,” Plasmonics 1, 141–145 (2006).
[Crossref]

Sun, S.

W. Du, T. Wang, H.-S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and C. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nat. Photonics 10, 274–281 (2016).
[Crossref]

Takeuchi, K.

Taniguchi, T.

M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nat. Nanotechnol. 10, 1058–1063 (2015).
[Crossref] [PubMed]

Teperik, T. V.

E. Le Moal, S. Marguet, D. Canneson, B. Rogez, E. Boer-Duchemin, G. Dujardin, T. V. Teperik, D.-C. Marinica, and A. G. Borisov, “Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle,” Phys. Rev. B 93, 035418 (2016).
[Crossref]

Tetienne, J.-P.

A. Babuty, A. Bousseksou, J.-P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104, 226806 (2010).
[Crossref] [PubMed]

Tomczak, N.

W. Du, T. Wang, H.-S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and C. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nat. Photonics 10, 274–281 (2016).
[Crossref]

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[Crossref] [PubMed]

Uskov, A. V.

Vardi, Y.

Y. Vardi, E. Cohen-Hoshen, G. Shalem, and I. Bar-Joseph, “Fano resonance in an electrically driven plasmonic device,” Nano Lett. 16, 748–752 (2016).
[Crossref]

Wang, J.

Wang, L.

W. Du, T. Wang, H.-S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and C. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nat. Photonics 10, 274–281 (2016).
[Crossref]

Wang, T.

W. Du, T. Wang, H.-S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and C. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nat. Photonics 10, 274–281 (2016).
[Crossref]

T. Wang and C. A. Nijhuis, “Molecular electronic plasmonics,” Appl. Mater. Today 3, 73–86 (2016).
[Crossref]

T. Wang, B. Rogez, G. Comtet, E. Le Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92, 045438 (2015).
[Crossref]

T. Wang, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, S. Huant, and E. Boer-Duchemin, “Temporal coherence of propagating surface plasmons,” Opt. Lett. 39, 6679 (2014).
[Crossref] [PubMed]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22, 175201 (2011).
[Crossref] [PubMed]

Watanabe, H.

Watanabe, K.

M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nat. Nanotechnol. 10, 1058–1063 (2015).
[Crossref] [PubMed]

Weeber, J.-C.

E. Devaux, T. W. Ebbesen, J.-C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83, 4936–4938 (2003).
[Crossref]

Wu, L.

W. Du, T. Wang, H.-S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and C. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nat. Photonics 10, 274–281 (2016).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Yamamoto, N.

H. Saito, S. Mizuma, and N. Yamamoto, “Confinement of surface plasmon polaritons by heterostructures of plasmonic crystals,” Nano Lett. 15, 6789–6793 (2015).
[Crossref] [PubMed]

H. Watanabe, M. Honda, and N. Yamamoto, “Size dependence of band-gaps in a one-dimensional plasmonic crystal,” Opt. Express 22, 5155–5165 (2014).
[Crossref] [PubMed]

K. Takeuchi and N. Yamamoto, “Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence,” Opt. Express 19, 12365–12374 (2011).
[Crossref] [PubMed]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[Crossref] [PubMed]

Zhang, J.

Zhang, Y.

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22, 175201 (2011).
[Crossref] [PubMed]

Zhao, C.

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[Crossref]

Appl. Mater. Today (1)

T. Wang and C. A. Nijhuis, “Molecular electronic plasmonics,” Appl. Mater. Today 3, 73–86 (2016).
[Crossref]

Appl. Phys. Lett. (4)

A. G. Nikitin, T. Nguyen, and H. Dallaporta, “Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: experimental studies,” Appl. Phys. Lett. 102, 221116 (2013).
[Crossref]

E. Devaux, T. W. Ebbesen, J.-C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83, 4936–4938 (2003).
[Crossref]

D. W. Pohl, S. G. Rodrigo, and L. Novotny, “Stacked optical antennas,” Appl. Phys. Lett. 98, 023111 (2011).
[Crossref]

D. Hone, B. Mühlschlegel, and D. J. Scalapino, “Theory of light emission from small particle tunnel junctions,” Appl. Phys. Lett. 33, 203 (1978).
[Crossref]

Mater. Sci. Eng. B Adv. (1)

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B Adv. 149, 220–229 (2008).
[Crossref]

Mater. Today (1)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[Crossref]

Nano Lett. (4)

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[Crossref] [PubMed]

Y. Vardi, E. Cohen-Hoshen, G. Shalem, and I. Bar-Joseph, “Fano resonance in an electrically driven plasmonic device,” Nano Lett. 16, 748–752 (2016).
[Crossref]

H. Saito, S. Mizuma, and N. Yamamoto, “Confinement of surface plasmon polaritons by heterostructures of plasmonic crystals,” Nano Lett. 15, 6789–6793 (2015).
[Crossref] [PubMed]

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. DosSantos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13, 4198–4205 (2013).
[Crossref] [PubMed]

Nanotechnology (1)

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22, 175201 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nat. Nanotechnol. 10, 1058–1063 (2015).
[Crossref] [PubMed]

Nat. Photonics (3)

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

K. C. Y. Huang, M.-K. Seo, T. Sarmiento, Y. Huo, J. S. Harris, and M. L. Brongersma, “Electrically driven subwavelength optical nanocircuits,” Nat. Photonics 8, 244–249 (2014).
[Crossref]

W. Du, T. Wang, H.-S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and C. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nat. Photonics 10, 274–281 (2016).
[Crossref]

Nature (2)

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. B (6)

E. Le Moal, S. Marguet, D. Canneson, B. Rogez, E. Boer-Duchemin, G. Dujardin, T. V. Teperik, D.-C. Marinica, and A. G. Borisov, “Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle,” Phys. Rev. B 93, 035418 (2016).
[Crossref]

P. J. Compaijen, V.A. Malshev, and J. Knoester, “Surface-mediated light transmission in metal nanoparticle chains,” Phys. Rev. B 87, 205437 (2013).
[Crossref]

T. Wang, B. Rogez, G. Comtet, E. Le Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92, 045438 (2015).
[Crossref]

P. Johansson, “Light emission from a scanning tunneling microscope: fully retarded calculation,” Phys. Rev. B 58, 10823 (1998).
[Crossref]

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
[Crossref]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-plasmon energy gaps and photoluminescence,” Phys. Rev. B 52, 11441–11445 (1995).
[Crossref]

Phys. Rev. Lett. (8)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[Crossref] [PubMed]

A. Babuty, A. Bousseksou, J.-P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104, 226806 (2010).
[Crossref] [PubMed]

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111, 026804 (2013).
[Crossref] [PubMed]

R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67, 3796 (1991).
[Crossref] [PubMed]

B. Stein, J.-Y. Laluet, E. Devaux, C. Genet, and T. W. Ebbesen, “Surface plasmon mode steering and negative refraction,” Phys. Rev. Lett. 105, 266804 (2010).
[Crossref]

A. Drezet and C. Genet, “Imaging surface plasmons: from leaky waves to far-field radiation,” Phys. Rev. Lett. 110, 213901 (2013).
[Crossref] [PubMed]

F. Bigourdan, J.-P. Hugonin, F. Marquier, C. Sauvan, and J.-J. Greffet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116, 106803 (2016).
[Crossref] [PubMed]

Plasmonics (1)

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon polariton Mach-Zehnder interferometer and oscillation fringes,” Plasmonics 1, 141–145 (2006).
[Crossref]

Science (2)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[Crossref] [PubMed]

R. F. Service, “Ever-smaller lasers pave the way for data highways made of light,” Science 328, 810–811 (2010).
[Crossref] [PubMed]

Semicond. Sci. Tech. (1)

K. Ding and C. Z. Ning, “Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers,” Semicond. Sci. Tech. 28, 124002 (2013).
[Crossref]

Other (3)

W. M. Haynes, CRC Handbook of Chemistry and Physics, 96th ed. (CRC, 2015).

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, 1976).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup and the geometry of a gold NP array. (a) Local electrical excitation of the sample is carried out using inelastic electron tunneling from the tip of an STM. The resulting light for real-space and Fourier-space imaging is collected and recorded on a CCD camera. BFP represents the back focal plane of the objective lens. (b) 1 × 1 μm2 STM topography image of the gold NP array on a gold film that has a square 450 × 450 nm2 unit cell. NPs are 170 nm in diameter and 50 nm high. The apparent width of the NPs in the image is increased due to the convolution with the STM tip (radius of curvature ≈ 50 − 100 nm).
Fig. 2
Fig. 2 Electrical excitation of plasmonic-crystal-gold-NP arrays: the effect of the substrate and array geometry. In this figure, the left and middle columns are the results for a square array on an ITO or 50-nm gold film respectively (unit cell 450 × 450 nm2). The right-hand column shows the results for a rectangular array with a 330 × 550 nm2 unit cell on a 50-nm gold film. [(a) to (c)] Schematics of the arrays indicating the STM tip excitation position on the sample. [(d) to (f)] Experimental real-space (far-field) microscopy images recorded upon electrical excitation of the array with the STM. The STM tip is located on a particle in the center of the array. All images are in false color and saturated (see color scale on the right, 1 in arbitrary units corresponds to the signal maximum intensity). The white dashed lines delimit the array in each image. Inset: unsaturated central areas of the images showing the lateral size of intensity peak at the tip location. [(g) to (l)] Theoretical squared electric field modulus in the near field above the array, obtained [(g) to (i)] through FDTD calculations where a vertical electric dipole is considered at the array center, and [(j) to (l)] using a simple model where both the excitation source and the scattering at the gold NPs are modeled as electric dipoles located on the NPs. In both approaches, the presence of the tip is ignored.
Fig. 3
Fig. 3 Effect of the NP array on the SPP emission. (a) The electrical excitation of surface plasmons on a thin (50 nm) gold film on glass (no NPs). The leakage radiation detected beneath the substrate is isotropic, no preferred propagation directions for the SPPs are observed. (b) The electrical excitation of surface plasmons on a gold NP square array on a 50-nm thick gold film (unit cell 450 × 450 nm2). The leakage radiation signal shows four preferred SPP propagation directions. (c) Intensity ratio obtained when the data of part (b) is divided by the data of part (a). A factor of ≈ 1.5 increase in the intensity for particular directions is clearly seen when the array is present. In order to obtain part (c) of this figure, the data of parts (a) and (b) are first normalized with respect to the maximum intensity of the respective images.
Fig. 4
Fig. 4 The effect of excitation position. [(a) to (c)] Bright-field optical microscopy images measured upon white-light illumination of the sample (in transmission) with the STM tip present. The shadow of the tip end reveals its lateral position: in the center of the array in panel (a), in the middle of the right edge in panel (b) and at the top right corner of the array in panel (c). [(d) to (f)] Real space images acquired when the excitation position is (d) in the center, (e) on the side and (f) at the corner of the array. In this figure, all the data has been obtained on a square array of 450 × 450 nm2 unit cell on a 50-nm gold film (the array consists of 40 × 40 gold NPs). Images in panels (d) to (f) are in false color and saturated (intensity is given in photon counts). Exposure times range from 600 to 1800 s. STM bias is 2.8 V and the tunnel current setpoint is in the 0.1 – 6 nA range. The real space axes are defined with respect to the array axes.
Fig. 5
Fig. 5 In-plane angular distribution of the emitted SPP beams. [(a) to (c)] Polar plots obtained from the analysis of the real-space images shown in Figs. 4(d) to 4(f), respectively, and [(d) to (f)] schematics showing the preferential SPP propagation directions. In (a) to (c), we use a polar coordinate system where ρ is the lateral distance from the tip apex and ϕ is the polar angle in the surface plane. In each graph, the two plots correspond to the radially-integrated intensity over two different ranges of ρ, i.e., from 10 μm to 15 μm (black curve) and from 26 μm to 31 μm (red curve). In (a), these ranges of ρ correspond to (i) an area within the NP array (but far enough from the source to solely detect propagating SPPs) and (ii) an area just outside the NP array, respectively. The numbers on the graph are the full angular width at half maxima (FWHM) of the intensity peaks after the isotropic background is subtracted. Dashed lines in (b) and (c) indicate the directions of the array edges. In (d) to (f), thin and thick arrows indicate that angularly narrow (FWHM = 8° to 10°) and broad (FWHM ≈ 20°) SPP beams are observed in these directions, respectively.
Fig. 6
Fig. 6 Simple model explaining the directional propagation of locally-excited SPPs on a square nanoparticle array. (a) Diagram of the kxky Fourier plane for in-plane SPP-to-SPP scattering via the 2D lattice. The red circle centered on the Miller index (0,0) represents the SPP leakage radiation angle (k = kSPP ≈ 1.037k0 at λ0 = 700 nm). The black circle of smaller radius corresponds to the critical angle of the air-glass interface (k = k0). The black circle of larger radius corresponds to the microscope objective numerical aperture (k = NAk0 where NA = 1.49). Ka and Kb are the Bragg vectors of the square array, whose moduli in normalized Fourier coordinates are K a k 0 = K b k 0 = λ 0 a where a is the array pitch (a = 450 nm). The dashed red circles have a radius kSPP and are centered on the reciprocal lattice points (±1,0) and (0,±1). In (a), the Laue condition for a particular initial kSPP, with G = −Ka is drawn, yielding k′SPP along the diagonal of the array. (b) Diagram of the kxky Fourier plane for out-of-plane SPP-to-photon scattering via the 2D lattice. k′ is the in-plane component of the emitted photon.
Fig. 7
Fig. 7 The effect of the broadband spectrum of the excitation source. [(a) and (b)] Experimental and [(c) and (d)] theoretical Fourier-space images of the light emitted from the STM excitation of a square array on a gold film. The STM tip is centered on a gold NP in the array center. Panels (a),(c) show the same data as panels (b), (d), but with a saturated color scale so that the details of the images may be seen. The theoretical images shown in panels (c) and (d) are obtained from the weighted average of the results from monochromatic FDTD calculations at different energies (see Sec. 2.3); the weighting factors are determined from the experimental emission spectrum of the excitation source. [(e) to (g)] Three images taken from the series of monochromatic FDTD calculations used to produce the polychromatic result shown in panels (c) and (d). The theoretical Fourier-space images are obtained by Fourier transforming the calculated electric field above the gold NP array, taking the squared modulus of the result and finally truncating it at the angular acceptance limit of the objective lens. Panels (e) to (g), however, show the images before truncation. The array unit cell is 450 × 450 nm2 and the gold film thickness is 50 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ k = G

Metrics