Abstract

A novel way to build arrays of X-ray lenslets is proposed for use in medical imaging, in particular for X-ray phase contrast imaging. Focusing on Talbot-Lau interferometers, this work is about patient dose reduction, especially for design energies above 50 keV. A low dose poses a fabrication problem, because it requires an analyzer grating which is both fine and high: It has to be fine for a good angular sensitivity. It has to be high to absorb well. However, gratings can currently be built either fine or high. The proposed solution is to use a fine novel lens grating in front of a high analyzer grating: The lens grating uses lenslets to combine fine fringes into wider strips. This coarser pattern is then analyzed by a high grating. Regular binary production processes are sufficient to build lens gratings. Simulation-based results show that lens gratings can save dose with no impact on reconstructed images.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Choosing sensitivity to reduce X-ray dose in medical phase contrast imaging

Oliver Preusche
Opt. Express 26(8) 10339-10357 (2018)

Development of microperiodic mirrors for hard x-ray phase-contrast imaging

Dan Stutman, Michael Finkenthal, and Nicolae Moldovan
Appl. Opt. 49(25) 4677-4686 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58(1), R1–R35 (2013).
    [Crossref] [PubMed]
  2. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
    [Crossref]
  3. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13(16), 6296–6304 (2005).
    [Crossref] [PubMed]
  4. T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80(5), 053701 (2009).
    [Crossref] [PubMed]
  5. D. Stutman and M. Finkenthal, “Glancing angle Talbot-Lau grating interferometers for phase contrast imaging at high x-ray energy,” Appl. Phys. Lett. 101(9), 091108 (2012).
    [Crossref] [PubMed]
  6. R. Raupach and T. G. Flohr, “Analytical evaluation of the signal and noise propagation in x-ray differential phase-contrast computed tomography,” Phys. Med. Biol. 56(7), 2219–2244 (2011).
    [Crossref] [PubMed]
  7. J. Mohr, T. Grund, D. Kunka, J. Kenntner, J. Leuthold, J. Meiser, J. Schulz, and M. Walter, “High aspect ratio gratings for x-ray phase contrast imaging,” AIP Conf. Proc. 1466, 41–50 (2012).
    [Crossref]
  8. C. Chang and A. Sakdinawat, “Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics,” Nat. Commun. 5, 4243 (2014).
    [Crossref] [PubMed]
  9. F. Pfeiffer, O. Bunk, C. David, M. Bech, G. Le Duc, A. Bravin, and P. Cloetens, “High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography,” Phys. Med. Biol. 52(23), 6923–6930 (2007).
    [Crossref] [PubMed]
  10. D. Stutman, T. J. Beck, J. A. Carrino, and C. O. Bingham, “Talbot phase-contrast x-ray imaging for the small joints of the hand,” Phys. Med. Biol. 56(17), 5697–5720 (2011).
    [Crossref] [PubMed]
  11. D. Stutman and M. Finkenthal, “K-edge and mirror filtered x-ray grating interferometers,” AIP Conf. Proc. 1466, 229–236 (2012).
    [Crossref]
  12. K. J. Engel, D. Geller, T. Köhler, G. Martens, S. Schusser, G. Vogtmeier, and E. Rössl, “Contrast-to-noise in x-ray differential phase contrast imaging,” Nucl. Instrum. Methods Phys. Res. A 648, S202–S207 (2011).
    [Crossref]
  13. A. Yaroshenko, M. Bech, G. Potdevin, A. Malecki, T. Biernath, J. Wolf, A. Tapfer, M. Schüttler, J. Meiser, D. Kunka, M. Amberger, J. Mohr, and F. Pfeiffer, “Non-binary phase gratings for x-ray imaging with a compact Talbot interferometer,” Opt. Express 22(1), 547–556 (2014).
    [Crossref] [PubMed]
  14. A. Olivo and R. Speller, “Modelling of a novel x-ray phase contrast imaging technique based on coded apertures,” Phys. Med. Biol. 52(22), 6555–6573 (2007).
    [Crossref] [PubMed]
  15. A. Olivo, K. Ignatyev, P. R. T. Munro, and R. D. Speller, “Noninterferometric phase-contrast images obtained with incoherent x-ray sources,” Appl. Opt. 50(12), 1765–1769 (2011).
    [Crossref] [PubMed]
  16. A. Sarapata, J. W. Stayman, M. Finkenthal, J. H. Siewerdsen, F. Pfeiffer, and D. Stutman, “High energy x-ray phase contrast CT using glancing-angle grating interferometers,” Med. Phys. 41(2), 021904 (2014).
    [Crossref] [PubMed]
  17. T. Thüring, M. Abis, Z. Wang, C. David, and M. Stampanoni, “X-ray phase-contrast imaging at 100 keV on a conventional source,” Sci. Rep. 4, 5198 (2014).
    [Crossref] [PubMed]
  18. H. Wen, A. A. Gomella, A. Patel, S. K. Lynch, N. Y. Morgan, S. A. Anderson, E. E. Bennett, X. Xiao, C. Liu, and D. E. Wolfe, “Subnanoradian X-ray phase-contrast imaging using a far-field interferometer of nanometric phase gratings,” Nat. Commun. 4, 2659 (2013).
    [Crossref] [PubMed]
  19. H. Miao, A. A. Gomella, K. J. Harmon, E. E. Bennett, N. Chedid, S. Znati, A. Panna, B. A. Foster, P. Bhandarkar, and H. Wen, “Enhancing tabletop x-ray phase contrast imaging with nano-fabrication,” Sci. Rep. 5, 13581 (2015).
    [Crossref] [PubMed]
  20. H. Miao, A. Panna, A. A. Gomella, E. E. Bennett, S. Znati, L. Chen, and H. Wen, “A universal moiré effect and application in x-ray phase-contrast imaging,” Nat. Phys. 12(9), 830–834 (2016).
    [Crossref] [PubMed]
  21. O. Preusche and G. Anton, patent application PCT/EP2013/057912 (2012).
  22. J. H. Hubbell and S. M. Seltzer, “Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients,” (version 1.4, 2004) http://physics.nist.gov/xaamdi .
  23. C. T. Chantler, K. Olsen, R. A. Dragoset, J. Chang, A. R. Kishore, S. A. Kotochigova, and D. S. Zucker, “X-ray form factor, attenuation and scattering tables,” (version 2.1, 2005) http://physics.nist.gov/ffast .
  24. O. Preusche, “Sensitive phase gratings for x-ray phase contrast – a simulation-based comparison,” in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (IEEE, 2014), paper 7431016.
    [Crossref]
  25. H. Siemens Healthcare Gmb, “Simulation of x-ray spectra,” http://www.oem-products.siemens.com/x-ray-spectra-simulation .
  26. R. Raupach and T. Flohr, “Performance evaluation of x-ray differential phase contrast computed tomography (PCT) with respect to medical imaging,” Med. Phys. 39(8), 4761–4774 (2012).
    [Crossref] [PubMed]
  27. M. Kagias, S. Cartier, Z. Wang, A. Bergamaschi, R. Dinapoli, A. Mozzanica, B. Schmitt, and M. Stampanoni, “Single shot x-ray phase contrast imaging using a direct conversion microstrip detector with single photon sensitivity,” Appl. Phys. Lett. 108(23), 234102 (2016).
    [Crossref]
  28. Y. Du, X. Liu, Y. Lei, J. Guo, and H. Niu, “Non-absorption grating approach for X-ray phase contrast imaging,” Opt. Express 19(23), 22669–22674 (2011).
    [Crossref] [PubMed]
  29. S. Rutishauser, I. Zanette, T. Donath, A. Sahlholm, J. Linnros, and C. David, “Structured scintillator for hard x-ray grating interferometry,” Appl. Phys. Lett. 98(17), 171107 (2011).
    [Crossref]
  30. T. Shimura, N. Morimoto, S. Fujino, T. Nagatomi, K. C. Oshima, J. Harada, K. Omote, N. Osaka, T. Hosoi, and H. Watanabe, “Hard x-ray phase contrast imaging using a tabletop Talbot-Lau interferometer with multiline embedded x-ray targets,” Opt. Lett. 38(2), 157–159 (2013).
    [Crossref] [PubMed]

2016 (2)

H. Miao, A. Panna, A. A. Gomella, E. E. Bennett, S. Znati, L. Chen, and H. Wen, “A universal moiré effect and application in x-ray phase-contrast imaging,” Nat. Phys. 12(9), 830–834 (2016).
[Crossref] [PubMed]

M. Kagias, S. Cartier, Z. Wang, A. Bergamaschi, R. Dinapoli, A. Mozzanica, B. Schmitt, and M. Stampanoni, “Single shot x-ray phase contrast imaging using a direct conversion microstrip detector with single photon sensitivity,” Appl. Phys. Lett. 108(23), 234102 (2016).
[Crossref]

2015 (1)

H. Miao, A. A. Gomella, K. J. Harmon, E. E. Bennett, N. Chedid, S. Znati, A. Panna, B. A. Foster, P. Bhandarkar, and H. Wen, “Enhancing tabletop x-ray phase contrast imaging with nano-fabrication,” Sci. Rep. 5, 13581 (2015).
[Crossref] [PubMed]

2014 (4)

C. Chang and A. Sakdinawat, “Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics,” Nat. Commun. 5, 4243 (2014).
[Crossref] [PubMed]

A. Yaroshenko, M. Bech, G. Potdevin, A. Malecki, T. Biernath, J. Wolf, A. Tapfer, M. Schüttler, J. Meiser, D. Kunka, M. Amberger, J. Mohr, and F. Pfeiffer, “Non-binary phase gratings for x-ray imaging with a compact Talbot interferometer,” Opt. Express 22(1), 547–556 (2014).
[Crossref] [PubMed]

A. Sarapata, J. W. Stayman, M. Finkenthal, J. H. Siewerdsen, F. Pfeiffer, and D. Stutman, “High energy x-ray phase contrast CT using glancing-angle grating interferometers,” Med. Phys. 41(2), 021904 (2014).
[Crossref] [PubMed]

T. Thüring, M. Abis, Z. Wang, C. David, and M. Stampanoni, “X-ray phase-contrast imaging at 100 keV on a conventional source,” Sci. Rep. 4, 5198 (2014).
[Crossref] [PubMed]

2013 (3)

H. Wen, A. A. Gomella, A. Patel, S. K. Lynch, N. Y. Morgan, S. A. Anderson, E. E. Bennett, X. Xiao, C. Liu, and D. E. Wolfe, “Subnanoradian X-ray phase-contrast imaging using a far-field interferometer of nanometric phase gratings,” Nat. Commun. 4, 2659 (2013).
[Crossref] [PubMed]

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58(1), R1–R35 (2013).
[Crossref] [PubMed]

T. Shimura, N. Morimoto, S. Fujino, T. Nagatomi, K. C. Oshima, J. Harada, K. Omote, N. Osaka, T. Hosoi, and H. Watanabe, “Hard x-ray phase contrast imaging using a tabletop Talbot-Lau interferometer with multiline embedded x-ray targets,” Opt. Lett. 38(2), 157–159 (2013).
[Crossref] [PubMed]

2012 (4)

R. Raupach and T. Flohr, “Performance evaluation of x-ray differential phase contrast computed tomography (PCT) with respect to medical imaging,” Med. Phys. 39(8), 4761–4774 (2012).
[Crossref] [PubMed]

D. Stutman and M. Finkenthal, “Glancing angle Talbot-Lau grating interferometers for phase contrast imaging at high x-ray energy,” Appl. Phys. Lett. 101(9), 091108 (2012).
[Crossref] [PubMed]

J. Mohr, T. Grund, D. Kunka, J. Kenntner, J. Leuthold, J. Meiser, J. Schulz, and M. Walter, “High aspect ratio gratings for x-ray phase contrast imaging,” AIP Conf. Proc. 1466, 41–50 (2012).
[Crossref]

D. Stutman and M. Finkenthal, “K-edge and mirror filtered x-ray grating interferometers,” AIP Conf. Proc. 1466, 229–236 (2012).
[Crossref]

2011 (6)

K. J. Engel, D. Geller, T. Köhler, G. Martens, S. Schusser, G. Vogtmeier, and E. Rössl, “Contrast-to-noise in x-ray differential phase contrast imaging,” Nucl. Instrum. Methods Phys. Res. A 648, S202–S207 (2011).
[Crossref]

D. Stutman, T. J. Beck, J. A. Carrino, and C. O. Bingham, “Talbot phase-contrast x-ray imaging for the small joints of the hand,” Phys. Med. Biol. 56(17), 5697–5720 (2011).
[Crossref] [PubMed]

A. Olivo, K. Ignatyev, P. R. T. Munro, and R. D. Speller, “Noninterferometric phase-contrast images obtained with incoherent x-ray sources,” Appl. Opt. 50(12), 1765–1769 (2011).
[Crossref] [PubMed]

R. Raupach and T. G. Flohr, “Analytical evaluation of the signal and noise propagation in x-ray differential phase-contrast computed tomography,” Phys. Med. Biol. 56(7), 2219–2244 (2011).
[Crossref] [PubMed]

Y. Du, X. Liu, Y. Lei, J. Guo, and H. Niu, “Non-absorption grating approach for X-ray phase contrast imaging,” Opt. Express 19(23), 22669–22674 (2011).
[Crossref] [PubMed]

S. Rutishauser, I. Zanette, T. Donath, A. Sahlholm, J. Linnros, and C. David, “Structured scintillator for hard x-ray grating interferometry,” Appl. Phys. Lett. 98(17), 171107 (2011).
[Crossref]

2009 (1)

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80(5), 053701 (2009).
[Crossref] [PubMed]

2007 (2)

F. Pfeiffer, O. Bunk, C. David, M. Bech, G. Le Duc, A. Bravin, and P. Cloetens, “High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography,” Phys. Med. Biol. 52(23), 6923–6930 (2007).
[Crossref] [PubMed]

A. Olivo and R. Speller, “Modelling of a novel x-ray phase contrast imaging technique based on coded apertures,” Phys. Med. Biol. 52(22), 6555–6573 (2007).
[Crossref] [PubMed]

2006 (1)

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

2005 (1)

Abis, M.

T. Thüring, M. Abis, Z. Wang, C. David, and M. Stampanoni, “X-ray phase-contrast imaging at 100 keV on a conventional source,” Sci. Rep. 4, 5198 (2014).
[Crossref] [PubMed]

Amberger, M.

Anderson, S. A.

H. Wen, A. A. Gomella, A. Patel, S. K. Lynch, N. Y. Morgan, S. A. Anderson, E. E. Bennett, X. Xiao, C. Liu, and D. E. Wolfe, “Subnanoradian X-ray phase-contrast imaging using a far-field interferometer of nanometric phase gratings,” Nat. Commun. 4, 2659 (2013).
[Crossref] [PubMed]

Bech, M.

A. Yaroshenko, M. Bech, G. Potdevin, A. Malecki, T. Biernath, J. Wolf, A. Tapfer, M. Schüttler, J. Meiser, D. Kunka, M. Amberger, J. Mohr, and F. Pfeiffer, “Non-binary phase gratings for x-ray imaging with a compact Talbot interferometer,” Opt. Express 22(1), 547–556 (2014).
[Crossref] [PubMed]

F. Pfeiffer, O. Bunk, C. David, M. Bech, G. Le Duc, A. Bravin, and P. Cloetens, “High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography,” Phys. Med. Biol. 52(23), 6923–6930 (2007).
[Crossref] [PubMed]

Beck, T. J.

D. Stutman, T. J. Beck, J. A. Carrino, and C. O. Bingham, “Talbot phase-contrast x-ray imaging for the small joints of the hand,” Phys. Med. Biol. 56(17), 5697–5720 (2011).
[Crossref] [PubMed]

Bednarzik, M.

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80(5), 053701 (2009).
[Crossref] [PubMed]

Bennett, E. E.

H. Miao, A. Panna, A. A. Gomella, E. E. Bennett, S. Znati, L. Chen, and H. Wen, “A universal moiré effect and application in x-ray phase-contrast imaging,” Nat. Phys. 12(9), 830–834 (2016).
[Crossref] [PubMed]

H. Miao, A. A. Gomella, K. J. Harmon, E. E. Bennett, N. Chedid, S. Znati, A. Panna, B. A. Foster, P. Bhandarkar, and H. Wen, “Enhancing tabletop x-ray phase contrast imaging with nano-fabrication,” Sci. Rep. 5, 13581 (2015).
[Crossref] [PubMed]

H. Wen, A. A. Gomella, A. Patel, S. K. Lynch, N. Y. Morgan, S. A. Anderson, E. E. Bennett, X. Xiao, C. Liu, and D. E. Wolfe, “Subnanoradian X-ray phase-contrast imaging using a far-field interferometer of nanometric phase gratings,” Nat. Commun. 4, 2659 (2013).
[Crossref] [PubMed]

Bergamaschi, A.

M. Kagias, S. Cartier, Z. Wang, A. Bergamaschi, R. Dinapoli, A. Mozzanica, B. Schmitt, and M. Stampanoni, “Single shot x-ray phase contrast imaging using a direct conversion microstrip detector with single photon sensitivity,” Appl. Phys. Lett. 108(23), 234102 (2016).
[Crossref]

Bhandarkar, P.

H. Miao, A. A. Gomella, K. J. Harmon, E. E. Bennett, N. Chedid, S. Znati, A. Panna, B. A. Foster, P. Bhandarkar, and H. Wen, “Enhancing tabletop x-ray phase contrast imaging with nano-fabrication,” Sci. Rep. 5, 13581 (2015).
[Crossref] [PubMed]

Biernath, T.

Bingham, C. O.

D. Stutman, T. J. Beck, J. A. Carrino, and C. O. Bingham, “Talbot phase-contrast x-ray imaging for the small joints of the hand,” Phys. Med. Biol. 56(17), 5697–5720 (2011).
[Crossref] [PubMed]

Bravin, A.

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58(1), R1–R35 (2013).
[Crossref] [PubMed]

F. Pfeiffer, O. Bunk, C. David, M. Bech, G. Le Duc, A. Bravin, and P. Cloetens, “High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography,” Phys. Med. Biol. 52(23), 6923–6930 (2007).
[Crossref] [PubMed]

Bunk, O.

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80(5), 053701 (2009).
[Crossref] [PubMed]

F. Pfeiffer, O. Bunk, C. David, M. Bech, G. Le Duc, A. Bravin, and P. Cloetens, “High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography,” Phys. Med. Biol. 52(23), 6923–6930 (2007).
[Crossref] [PubMed]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

Carrino, J. A.

D. Stutman, T. J. Beck, J. A. Carrino, and C. O. Bingham, “Talbot phase-contrast x-ray imaging for the small joints of the hand,” Phys. Med. Biol. 56(17), 5697–5720 (2011).
[Crossref] [PubMed]

Cartier, S.

M. Kagias, S. Cartier, Z. Wang, A. Bergamaschi, R. Dinapoli, A. Mozzanica, B. Schmitt, and M. Stampanoni, “Single shot x-ray phase contrast imaging using a direct conversion microstrip detector with single photon sensitivity,” Appl. Phys. Lett. 108(23), 234102 (2016).
[Crossref]

Chang, C.

C. Chang and A. Sakdinawat, “Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics,” Nat. Commun. 5, 4243 (2014).
[Crossref] [PubMed]

Chedid, N.

H. Miao, A. A. Gomella, K. J. Harmon, E. E. Bennett, N. Chedid, S. Znati, A. Panna, B. A. Foster, P. Bhandarkar, and H. Wen, “Enhancing tabletop x-ray phase contrast imaging with nano-fabrication,” Sci. Rep. 5, 13581 (2015).
[Crossref] [PubMed]

Chen, L.

H. Miao, A. Panna, A. A. Gomella, E. E. Bennett, S. Znati, L. Chen, and H. Wen, “A universal moiré effect and application in x-ray phase-contrast imaging,” Nat. Phys. 12(9), 830–834 (2016).
[Crossref] [PubMed]

Cloetens, P.

F. Pfeiffer, O. Bunk, C. David, M. Bech, G. Le Duc, A. Bravin, and P. Cloetens, “High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography,” Phys. Med. Biol. 52(23), 6923–6930 (2007).
[Crossref] [PubMed]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13(16), 6296–6304 (2005).
[Crossref] [PubMed]

Coan, P.

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58(1), R1–R35 (2013).
[Crossref] [PubMed]

David, C.

T. Thüring, M. Abis, Z. Wang, C. David, and M. Stampanoni, “X-ray phase-contrast imaging at 100 keV on a conventional source,” Sci. Rep. 4, 5198 (2014).
[Crossref] [PubMed]

S. Rutishauser, I. Zanette, T. Donath, A. Sahlholm, J. Linnros, and C. David, “Structured scintillator for hard x-ray grating interferometry,” Appl. Phys. Lett. 98(17), 171107 (2011).
[Crossref]

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80(5), 053701 (2009).
[Crossref] [PubMed]

F. Pfeiffer, O. Bunk, C. David, M. Bech, G. Le Duc, A. Bravin, and P. Cloetens, “High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography,” Phys. Med. Biol. 52(23), 6923–6930 (2007).
[Crossref] [PubMed]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13(16), 6296–6304 (2005).
[Crossref] [PubMed]

Diaz, A.

Dinapoli, R.

M. Kagias, S. Cartier, Z. Wang, A. Bergamaschi, R. Dinapoli, A. Mozzanica, B. Schmitt, and M. Stampanoni, “Single shot x-ray phase contrast imaging using a direct conversion microstrip detector with single photon sensitivity,” Appl. Phys. Lett. 108(23), 234102 (2016).
[Crossref]

Donath, T.

S. Rutishauser, I. Zanette, T. Donath, A. Sahlholm, J. Linnros, and C. David, “Structured scintillator for hard x-ray grating interferometry,” Appl. Phys. Lett. 98(17), 171107 (2011).
[Crossref]

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80(5), 053701 (2009).
[Crossref] [PubMed]

Du, Y.

Engel, K. J.

K. J. Engel, D. Geller, T. Köhler, G. Martens, S. Schusser, G. Vogtmeier, and E. Rössl, “Contrast-to-noise in x-ray differential phase contrast imaging,” Nucl. Instrum. Methods Phys. Res. A 648, S202–S207 (2011).
[Crossref]

Finkenthal, M.

A. Sarapata, J. W. Stayman, M. Finkenthal, J. H. Siewerdsen, F. Pfeiffer, and D. Stutman, “High energy x-ray phase contrast CT using glancing-angle grating interferometers,” Med. Phys. 41(2), 021904 (2014).
[Crossref] [PubMed]

D. Stutman and M. Finkenthal, “K-edge and mirror filtered x-ray grating interferometers,” AIP Conf. Proc. 1466, 229–236 (2012).
[Crossref]

D. Stutman and M. Finkenthal, “Glancing angle Talbot-Lau grating interferometers for phase contrast imaging at high x-ray energy,” Appl. Phys. Lett. 101(9), 091108 (2012).
[Crossref] [PubMed]

Flohr, T.

R. Raupach and T. Flohr, “Performance evaluation of x-ray differential phase contrast computed tomography (PCT) with respect to medical imaging,” Med. Phys. 39(8), 4761–4774 (2012).
[Crossref] [PubMed]

Flohr, T. G.

R. Raupach and T. G. Flohr, “Analytical evaluation of the signal and noise propagation in x-ray differential phase-contrast computed tomography,” Phys. Med. Biol. 56(7), 2219–2244 (2011).
[Crossref] [PubMed]

Foster, B. A.

H. Miao, A. A. Gomella, K. J. Harmon, E. E. Bennett, N. Chedid, S. Znati, A. Panna, B. A. Foster, P. Bhandarkar, and H. Wen, “Enhancing tabletop x-ray phase contrast imaging with nano-fabrication,” Sci. Rep. 5, 13581 (2015).
[Crossref] [PubMed]

Fujino, S.

Geller, D.

K. J. Engel, D. Geller, T. Köhler, G. Martens, S. Schusser, G. Vogtmeier, and E. Rössl, “Contrast-to-noise in x-ray differential phase contrast imaging,” Nucl. Instrum. Methods Phys. Res. A 648, S202–S207 (2011).
[Crossref]

Gomella, A. A.

H. Miao, A. Panna, A. A. Gomella, E. E. Bennett, S. Znati, L. Chen, and H. Wen, “A universal moiré effect and application in x-ray phase-contrast imaging,” Nat. Phys. 12(9), 830–834 (2016).
[Crossref] [PubMed]

H. Miao, A. A. Gomella, K. J. Harmon, E. E. Bennett, N. Chedid, S. Znati, A. Panna, B. A. Foster, P. Bhandarkar, and H. Wen, “Enhancing tabletop x-ray phase contrast imaging with nano-fabrication,” Sci. Rep. 5, 13581 (2015).
[Crossref] [PubMed]

H. Wen, A. A. Gomella, A. Patel, S. K. Lynch, N. Y. Morgan, S. A. Anderson, E. E. Bennett, X. Xiao, C. Liu, and D. E. Wolfe, “Subnanoradian X-ray phase-contrast imaging using a far-field interferometer of nanometric phase gratings,” Nat. Commun. 4, 2659 (2013).
[Crossref] [PubMed]

Groot, W.

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80(5), 053701 (2009).
[Crossref] [PubMed]

Grund, T.

J. Mohr, T. Grund, D. Kunka, J. Kenntner, J. Leuthold, J. Meiser, J. Schulz, and M. Walter, “High aspect ratio gratings for x-ray phase contrast imaging,” AIP Conf. Proc. 1466, 41–50 (2012).
[Crossref]

Grünzweig, C.

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80(5), 053701 (2009).
[Crossref] [PubMed]

Guo, J.

Harada, J.

Harmon, K. J.

H. Miao, A. A. Gomella, K. J. Harmon, E. E. Bennett, N. Chedid, S. Znati, A. Panna, B. A. Foster, P. Bhandarkar, and H. Wen, “Enhancing tabletop x-ray phase contrast imaging with nano-fabrication,” Sci. Rep. 5, 13581 (2015).
[Crossref] [PubMed]

Hempel, E.

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80(5), 053701 (2009).
[Crossref] [PubMed]

Hoheisel, M.

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80(5), 053701 (2009).
[Crossref] [PubMed]

Hosoi, T.

Ignatyev, K.

Kagias, M.

M. Kagias, S. Cartier, Z. Wang, A. Bergamaschi, R. Dinapoli, A. Mozzanica, B. Schmitt, and M. Stampanoni, “Single shot x-ray phase contrast imaging using a direct conversion microstrip detector with single photon sensitivity,” Appl. Phys. Lett. 108(23), 234102 (2016).
[Crossref]

Kenntner, J.

J. Mohr, T. Grund, D. Kunka, J. Kenntner, J. Leuthold, J. Meiser, J. Schulz, and M. Walter, “High aspect ratio gratings for x-ray phase contrast imaging,” AIP Conf. Proc. 1466, 41–50 (2012).
[Crossref]

Köhler, T.

K. J. Engel, D. Geller, T. Köhler, G. Martens, S. Schusser, G. Vogtmeier, and E. Rössl, “Contrast-to-noise in x-ray differential phase contrast imaging,” Nucl. Instrum. Methods Phys. Res. A 648, S202–S207 (2011).
[Crossref]

Kunka, D.

Le Duc, G.

F. Pfeiffer, O. Bunk, C. David, M. Bech, G. Le Duc, A. Bravin, and P. Cloetens, “High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography,” Phys. Med. Biol. 52(23), 6923–6930 (2007).
[Crossref] [PubMed]

Lei, Y.

Leuthold, J.

J. Mohr, T. Grund, D. Kunka, J. Kenntner, J. Leuthold, J. Meiser, J. Schulz, and M. Walter, “High aspect ratio gratings for x-ray phase contrast imaging,” AIP Conf. Proc. 1466, 41–50 (2012).
[Crossref]

Linnros, J.

S. Rutishauser, I. Zanette, T. Donath, A. Sahlholm, J. Linnros, and C. David, “Structured scintillator for hard x-ray grating interferometry,” Appl. Phys. Lett. 98(17), 171107 (2011).
[Crossref]

Liu, C.

H. Wen, A. A. Gomella, A. Patel, S. K. Lynch, N. Y. Morgan, S. A. Anderson, E. E. Bennett, X. Xiao, C. Liu, and D. E. Wolfe, “Subnanoradian X-ray phase-contrast imaging using a far-field interferometer of nanometric phase gratings,” Nat. Commun. 4, 2659 (2013).
[Crossref] [PubMed]

Liu, X.

Lynch, S. K.

H. Wen, A. A. Gomella, A. Patel, S. K. Lynch, N. Y. Morgan, S. A. Anderson, E. E. Bennett, X. Xiao, C. Liu, and D. E. Wolfe, “Subnanoradian X-ray phase-contrast imaging using a far-field interferometer of nanometric phase gratings,” Nat. Commun. 4, 2659 (2013).
[Crossref] [PubMed]

Malecki, A.

Martens, G.

K. J. Engel, D. Geller, T. Köhler, G. Martens, S. Schusser, G. Vogtmeier, and E. Rössl, “Contrast-to-noise in x-ray differential phase contrast imaging,” Nucl. Instrum. Methods Phys. Res. A 648, S202–S207 (2011).
[Crossref]

Meiser, J.

Miao, H.

H. Miao, A. Panna, A. A. Gomella, E. E. Bennett, S. Znati, L. Chen, and H. Wen, “A universal moiré effect and application in x-ray phase-contrast imaging,” Nat. Phys. 12(9), 830–834 (2016).
[Crossref] [PubMed]

H. Miao, A. A. Gomella, K. J. Harmon, E. E. Bennett, N. Chedid, S. Znati, A. Panna, B. A. Foster, P. Bhandarkar, and H. Wen, “Enhancing tabletop x-ray phase contrast imaging with nano-fabrication,” Sci. Rep. 5, 13581 (2015).
[Crossref] [PubMed]

Mohr, J.

Morgan, N. Y.

H. Wen, A. A. Gomella, A. Patel, S. K. Lynch, N. Y. Morgan, S. A. Anderson, E. E. Bennett, X. Xiao, C. Liu, and D. E. Wolfe, “Subnanoradian X-ray phase-contrast imaging using a far-field interferometer of nanometric phase gratings,” Nat. Commun. 4, 2659 (2013).
[Crossref] [PubMed]

Morimoto, N.

Mozzanica, A.

M. Kagias, S. Cartier, Z. Wang, A. Bergamaschi, R. Dinapoli, A. Mozzanica, B. Schmitt, and M. Stampanoni, “Single shot x-ray phase contrast imaging using a direct conversion microstrip detector with single photon sensitivity,” Appl. Phys. Lett. 108(23), 234102 (2016).
[Crossref]

Munro, P. R. T.

Nagatomi, T.

Niu, H.

Olivo, A.

A. Olivo, K. Ignatyev, P. R. T. Munro, and R. D. Speller, “Noninterferometric phase-contrast images obtained with incoherent x-ray sources,” Appl. Opt. 50(12), 1765–1769 (2011).
[Crossref] [PubMed]

A. Olivo and R. Speller, “Modelling of a novel x-ray phase contrast imaging technique based on coded apertures,” Phys. Med. Biol. 52(22), 6555–6573 (2007).
[Crossref] [PubMed]

Omote, K.

Osaka, N.

Oshima, K. C.

Panna, A.

H. Miao, A. Panna, A. A. Gomella, E. E. Bennett, S. Znati, L. Chen, and H. Wen, “A universal moiré effect and application in x-ray phase-contrast imaging,” Nat. Phys. 12(9), 830–834 (2016).
[Crossref] [PubMed]

H. Miao, A. A. Gomella, K. J. Harmon, E. E. Bennett, N. Chedid, S. Znati, A. Panna, B. A. Foster, P. Bhandarkar, and H. Wen, “Enhancing tabletop x-ray phase contrast imaging with nano-fabrication,” Sci. Rep. 5, 13581 (2015).
[Crossref] [PubMed]

Patel, A.

H. Wen, A. A. Gomella, A. Patel, S. K. Lynch, N. Y. Morgan, S. A. Anderson, E. E. Bennett, X. Xiao, C. Liu, and D. E. Wolfe, “Subnanoradian X-ray phase-contrast imaging using a far-field interferometer of nanometric phase gratings,” Nat. Commun. 4, 2659 (2013).
[Crossref] [PubMed]

Pfeiffer, F.

A. Sarapata, J. W. Stayman, M. Finkenthal, J. H. Siewerdsen, F. Pfeiffer, and D. Stutman, “High energy x-ray phase contrast CT using glancing-angle grating interferometers,” Med. Phys. 41(2), 021904 (2014).
[Crossref] [PubMed]

A. Yaroshenko, M. Bech, G. Potdevin, A. Malecki, T. Biernath, J. Wolf, A. Tapfer, M. Schüttler, J. Meiser, D. Kunka, M. Amberger, J. Mohr, and F. Pfeiffer, “Non-binary phase gratings for x-ray imaging with a compact Talbot interferometer,” Opt. Express 22(1), 547–556 (2014).
[Crossref] [PubMed]

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80(5), 053701 (2009).
[Crossref] [PubMed]

F. Pfeiffer, O. Bunk, C. David, M. Bech, G. Le Duc, A. Bravin, and P. Cloetens, “High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography,” Phys. Med. Biol. 52(23), 6923–6930 (2007).
[Crossref] [PubMed]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13(16), 6296–6304 (2005).
[Crossref] [PubMed]

Popescu, S.

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80(5), 053701 (2009).
[Crossref] [PubMed]

Potdevin, G.

Preusche, O.

O. Preusche, “Sensitive phase gratings for x-ray phase contrast – a simulation-based comparison,” in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (IEEE, 2014), paper 7431016.
[Crossref]

Raupach, R.

R. Raupach and T. Flohr, “Performance evaluation of x-ray differential phase contrast computed tomography (PCT) with respect to medical imaging,” Med. Phys. 39(8), 4761–4774 (2012).
[Crossref] [PubMed]

R. Raupach and T. G. Flohr, “Analytical evaluation of the signal and noise propagation in x-ray differential phase-contrast computed tomography,” Phys. Med. Biol. 56(7), 2219–2244 (2011).
[Crossref] [PubMed]

Rössl, E.

K. J. Engel, D. Geller, T. Köhler, G. Martens, S. Schusser, G. Vogtmeier, and E. Rössl, “Contrast-to-noise in x-ray differential phase contrast imaging,” Nucl. Instrum. Methods Phys. Res. A 648, S202–S207 (2011).
[Crossref]

Rutishauser, S.

S. Rutishauser, I. Zanette, T. Donath, A. Sahlholm, J. Linnros, and C. David, “Structured scintillator for hard x-ray grating interferometry,” Appl. Phys. Lett. 98(17), 171107 (2011).
[Crossref]

Sahlholm, A.

S. Rutishauser, I. Zanette, T. Donath, A. Sahlholm, J. Linnros, and C. David, “Structured scintillator for hard x-ray grating interferometry,” Appl. Phys. Lett. 98(17), 171107 (2011).
[Crossref]

Sakdinawat, A.

C. Chang and A. Sakdinawat, “Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics,” Nat. Commun. 5, 4243 (2014).
[Crossref] [PubMed]

Sarapata, A.

A. Sarapata, J. W. Stayman, M. Finkenthal, J. H. Siewerdsen, F. Pfeiffer, and D. Stutman, “High energy x-ray phase contrast CT using glancing-angle grating interferometers,” Med. Phys. 41(2), 021904 (2014).
[Crossref] [PubMed]

Schmitt, B.

M. Kagias, S. Cartier, Z. Wang, A. Bergamaschi, R. Dinapoli, A. Mozzanica, B. Schmitt, and M. Stampanoni, “Single shot x-ray phase contrast imaging using a direct conversion microstrip detector with single photon sensitivity,” Appl. Phys. Lett. 108(23), 234102 (2016).
[Crossref]

Schulz, J.

J. Mohr, T. Grund, D. Kunka, J. Kenntner, J. Leuthold, J. Meiser, J. Schulz, and M. Walter, “High aspect ratio gratings for x-ray phase contrast imaging,” AIP Conf. Proc. 1466, 41–50 (2012).
[Crossref]

Schusser, S.

K. J. Engel, D. Geller, T. Köhler, G. Martens, S. Schusser, G. Vogtmeier, and E. Rössl, “Contrast-to-noise in x-ray differential phase contrast imaging,” Nucl. Instrum. Methods Phys. Res. A 648, S202–S207 (2011).
[Crossref]

Schüttler, M.

Shimura, T.

Siewerdsen, J. H.

A. Sarapata, J. W. Stayman, M. Finkenthal, J. H. Siewerdsen, F. Pfeiffer, and D. Stutman, “High energy x-ray phase contrast CT using glancing-angle grating interferometers,” Med. Phys. 41(2), 021904 (2014).
[Crossref] [PubMed]

Speller, R.

A. Olivo and R. Speller, “Modelling of a novel x-ray phase contrast imaging technique based on coded apertures,” Phys. Med. Biol. 52(22), 6555–6573 (2007).
[Crossref] [PubMed]

Speller, R. D.

Stampanoni, M.

M. Kagias, S. Cartier, Z. Wang, A. Bergamaschi, R. Dinapoli, A. Mozzanica, B. Schmitt, and M. Stampanoni, “Single shot x-ray phase contrast imaging using a direct conversion microstrip detector with single photon sensitivity,” Appl. Phys. Lett. 108(23), 234102 (2016).
[Crossref]

T. Thüring, M. Abis, Z. Wang, C. David, and M. Stampanoni, “X-ray phase-contrast imaging at 100 keV on a conventional source,” Sci. Rep. 4, 5198 (2014).
[Crossref] [PubMed]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13(16), 6296–6304 (2005).
[Crossref] [PubMed]

Stayman, J. W.

A. Sarapata, J. W. Stayman, M. Finkenthal, J. H. Siewerdsen, F. Pfeiffer, and D. Stutman, “High energy x-ray phase contrast CT using glancing-angle grating interferometers,” Med. Phys. 41(2), 021904 (2014).
[Crossref] [PubMed]

Stutman, D.

A. Sarapata, J. W. Stayman, M. Finkenthal, J. H. Siewerdsen, F. Pfeiffer, and D. Stutman, “High energy x-ray phase contrast CT using glancing-angle grating interferometers,” Med. Phys. 41(2), 021904 (2014).
[Crossref] [PubMed]

D. Stutman and M. Finkenthal, “K-edge and mirror filtered x-ray grating interferometers,” AIP Conf. Proc. 1466, 229–236 (2012).
[Crossref]

D. Stutman and M. Finkenthal, “Glancing angle Talbot-Lau grating interferometers for phase contrast imaging at high x-ray energy,” Appl. Phys. Lett. 101(9), 091108 (2012).
[Crossref] [PubMed]

D. Stutman, T. J. Beck, J. A. Carrino, and C. O. Bingham, “Talbot phase-contrast x-ray imaging for the small joints of the hand,” Phys. Med. Biol. 56(17), 5697–5720 (2011).
[Crossref] [PubMed]

Suortti, P.

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58(1), R1–R35 (2013).
[Crossref] [PubMed]

Tapfer, A.

Thüring, T.

T. Thüring, M. Abis, Z. Wang, C. David, and M. Stampanoni, “X-ray phase-contrast imaging at 100 keV on a conventional source,” Sci. Rep. 4, 5198 (2014).
[Crossref] [PubMed]

Vogtmeier, G.

K. J. Engel, D. Geller, T. Köhler, G. Martens, S. Schusser, G. Vogtmeier, and E. Rössl, “Contrast-to-noise in x-ray differential phase contrast imaging,” Nucl. Instrum. Methods Phys. Res. A 648, S202–S207 (2011).
[Crossref]

Walter, M.

J. Mohr, T. Grund, D. Kunka, J. Kenntner, J. Leuthold, J. Meiser, J. Schulz, and M. Walter, “High aspect ratio gratings for x-ray phase contrast imaging,” AIP Conf. Proc. 1466, 41–50 (2012).
[Crossref]

Wang, Z.

M. Kagias, S. Cartier, Z. Wang, A. Bergamaschi, R. Dinapoli, A. Mozzanica, B. Schmitt, and M. Stampanoni, “Single shot x-ray phase contrast imaging using a direct conversion microstrip detector with single photon sensitivity,” Appl. Phys. Lett. 108(23), 234102 (2016).
[Crossref]

T. Thüring, M. Abis, Z. Wang, C. David, and M. Stampanoni, “X-ray phase-contrast imaging at 100 keV on a conventional source,” Sci. Rep. 4, 5198 (2014).
[Crossref] [PubMed]

Watanabe, H.

Weitkamp, T.

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13(16), 6296–6304 (2005).
[Crossref] [PubMed]

Wen, H.

H. Miao, A. Panna, A. A. Gomella, E. E. Bennett, S. Znati, L. Chen, and H. Wen, “A universal moiré effect and application in x-ray phase-contrast imaging,” Nat. Phys. 12(9), 830–834 (2016).
[Crossref] [PubMed]

H. Miao, A. A. Gomella, K. J. Harmon, E. E. Bennett, N. Chedid, S. Znati, A. Panna, B. A. Foster, P. Bhandarkar, and H. Wen, “Enhancing tabletop x-ray phase contrast imaging with nano-fabrication,” Sci. Rep. 5, 13581 (2015).
[Crossref] [PubMed]

H. Wen, A. A. Gomella, A. Patel, S. K. Lynch, N. Y. Morgan, S. A. Anderson, E. E. Bennett, X. Xiao, C. Liu, and D. E. Wolfe, “Subnanoradian X-ray phase-contrast imaging using a far-field interferometer of nanometric phase gratings,” Nat. Commun. 4, 2659 (2013).
[Crossref] [PubMed]

Wolf, J.

Wolfe, D. E.

H. Wen, A. A. Gomella, A. Patel, S. K. Lynch, N. Y. Morgan, S. A. Anderson, E. E. Bennett, X. Xiao, C. Liu, and D. E. Wolfe, “Subnanoradian X-ray phase-contrast imaging using a far-field interferometer of nanometric phase gratings,” Nat. Commun. 4, 2659 (2013).
[Crossref] [PubMed]

Xiao, X.

H. Wen, A. A. Gomella, A. Patel, S. K. Lynch, N. Y. Morgan, S. A. Anderson, E. E. Bennett, X. Xiao, C. Liu, and D. E. Wolfe, “Subnanoradian X-ray phase-contrast imaging using a far-field interferometer of nanometric phase gratings,” Nat. Commun. 4, 2659 (2013).
[Crossref] [PubMed]

Yaroshenko, A.

Zanette, I.

S. Rutishauser, I. Zanette, T. Donath, A. Sahlholm, J. Linnros, and C. David, “Structured scintillator for hard x-ray grating interferometry,” Appl. Phys. Lett. 98(17), 171107 (2011).
[Crossref]

Ziegler, E.

Znati, S.

H. Miao, A. Panna, A. A. Gomella, E. E. Bennett, S. Znati, L. Chen, and H. Wen, “A universal moiré effect and application in x-ray phase-contrast imaging,” Nat. Phys. 12(9), 830–834 (2016).
[Crossref] [PubMed]

H. Miao, A. A. Gomella, K. J. Harmon, E. E. Bennett, N. Chedid, S. Znati, A. Panna, B. A. Foster, P. Bhandarkar, and H. Wen, “Enhancing tabletop x-ray phase contrast imaging with nano-fabrication,” Sci. Rep. 5, 13581 (2015).
[Crossref] [PubMed]

AIP Conf. Proc. (2)

J. Mohr, T. Grund, D. Kunka, J. Kenntner, J. Leuthold, J. Meiser, J. Schulz, and M. Walter, “High aspect ratio gratings for x-ray phase contrast imaging,” AIP Conf. Proc. 1466, 41–50 (2012).
[Crossref]

D. Stutman and M. Finkenthal, “K-edge and mirror filtered x-ray grating interferometers,” AIP Conf. Proc. 1466, 229–236 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

D. Stutman and M. Finkenthal, “Glancing angle Talbot-Lau grating interferometers for phase contrast imaging at high x-ray energy,” Appl. Phys. Lett. 101(9), 091108 (2012).
[Crossref] [PubMed]

M. Kagias, S. Cartier, Z. Wang, A. Bergamaschi, R. Dinapoli, A. Mozzanica, B. Schmitt, and M. Stampanoni, “Single shot x-ray phase contrast imaging using a direct conversion microstrip detector with single photon sensitivity,” Appl. Phys. Lett. 108(23), 234102 (2016).
[Crossref]

S. Rutishauser, I. Zanette, T. Donath, A. Sahlholm, J. Linnros, and C. David, “Structured scintillator for hard x-ray grating interferometry,” Appl. Phys. Lett. 98(17), 171107 (2011).
[Crossref]

Med. Phys. (2)

R. Raupach and T. Flohr, “Performance evaluation of x-ray differential phase contrast computed tomography (PCT) with respect to medical imaging,” Med. Phys. 39(8), 4761–4774 (2012).
[Crossref] [PubMed]

A. Sarapata, J. W. Stayman, M. Finkenthal, J. H. Siewerdsen, F. Pfeiffer, and D. Stutman, “High energy x-ray phase contrast CT using glancing-angle grating interferometers,” Med. Phys. 41(2), 021904 (2014).
[Crossref] [PubMed]

Nat. Commun. (2)

H. Wen, A. A. Gomella, A. Patel, S. K. Lynch, N. Y. Morgan, S. A. Anderson, E. E. Bennett, X. Xiao, C. Liu, and D. E. Wolfe, “Subnanoradian X-ray phase-contrast imaging using a far-field interferometer of nanometric phase gratings,” Nat. Commun. 4, 2659 (2013).
[Crossref] [PubMed]

C. Chang and A. Sakdinawat, “Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics,” Nat. Commun. 5, 4243 (2014).
[Crossref] [PubMed]

Nat. Phys. (2)

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

H. Miao, A. Panna, A. A. Gomella, E. E. Bennett, S. Znati, L. Chen, and H. Wen, “A universal moiré effect and application in x-ray phase-contrast imaging,” Nat. Phys. 12(9), 830–834 (2016).
[Crossref] [PubMed]

Nucl. Instrum. Methods Phys. Res. A (1)

K. J. Engel, D. Geller, T. Köhler, G. Martens, S. Schusser, G. Vogtmeier, and E. Rössl, “Contrast-to-noise in x-ray differential phase contrast imaging,” Nucl. Instrum. Methods Phys. Res. A 648, S202–S207 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Med. Biol. (5)

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58(1), R1–R35 (2013).
[Crossref] [PubMed]

R. Raupach and T. G. Flohr, “Analytical evaluation of the signal and noise propagation in x-ray differential phase-contrast computed tomography,” Phys. Med. Biol. 56(7), 2219–2244 (2011).
[Crossref] [PubMed]

F. Pfeiffer, O. Bunk, C. David, M. Bech, G. Le Duc, A. Bravin, and P. Cloetens, “High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography,” Phys. Med. Biol. 52(23), 6923–6930 (2007).
[Crossref] [PubMed]

D. Stutman, T. J. Beck, J. A. Carrino, and C. O. Bingham, “Talbot phase-contrast x-ray imaging for the small joints of the hand,” Phys. Med. Biol. 56(17), 5697–5720 (2011).
[Crossref] [PubMed]

A. Olivo and R. Speller, “Modelling of a novel x-ray phase contrast imaging technique based on coded apertures,” Phys. Med. Biol. 52(22), 6555–6573 (2007).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, and C. David, “Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source,” Rev. Sci. Instrum. 80(5), 053701 (2009).
[Crossref] [PubMed]

Sci. Rep. (2)

H. Miao, A. A. Gomella, K. J. Harmon, E. E. Bennett, N. Chedid, S. Znati, A. Panna, B. A. Foster, P. Bhandarkar, and H. Wen, “Enhancing tabletop x-ray phase contrast imaging with nano-fabrication,” Sci. Rep. 5, 13581 (2015).
[Crossref] [PubMed]

T. Thüring, M. Abis, Z. Wang, C. David, and M. Stampanoni, “X-ray phase-contrast imaging at 100 keV on a conventional source,” Sci. Rep. 4, 5198 (2014).
[Crossref] [PubMed]

Other (5)

O. Preusche and G. Anton, patent application PCT/EP2013/057912 (2012).

J. H. Hubbell and S. M. Seltzer, “Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients,” (version 1.4, 2004) http://physics.nist.gov/xaamdi .

C. T. Chantler, K. Olsen, R. A. Dragoset, J. Chang, A. R. Kishore, S. A. Kotochigova, and D. S. Zucker, “X-ray form factor, attenuation and scattering tables,” (version 2.1, 2005) http://physics.nist.gov/ffast .

O. Preusche, “Sensitive phase gratings for x-ray phase contrast – a simulation-based comparison,” in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (IEEE, 2014), paper 7431016.
[Crossref]

H. Siemens Healthcare Gmb, “Simulation of x-ray spectra,” http://www.oem-products.siemens.com/x-ray-spectra-simulation .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Talbot-Lau interferometer: (a) Usual asymmetric setup (i.e., d01>d12), where α is the measured angle and αR the measurement range. (b) proposed setup including lenses.
Fig. 2
Fig. 2 (a) Fresnel lenses, when (b) interlaced with identical ‘bar’ lenses, can (c) analyze the fringe phase by alternatingly focusing to bars and slits of G2.
Fig. 3
Fig. 3 (a) 3D-profile of the prisms (N = 5) from Fig. 2(b). (b) In slanted production, vertical cross-sections (shown in red) are stretched projections of one y-period of the layout (blue).
Fig. 4
Fig. 4 A layout mask (shown in blue at the top) which results in the same refraction angles as the height profile in Fig. 3(a). Added metal is shown in grey and vertical cross sections are red.
Fig. 5
Fig. 5 A diagonal layout for N = 5, step-by-step: (a) Lens structure, (b) cross-sections of prisms, (c) triangles in the layout, (d) added overhead metal, (e) final y-periodic diagonal layout. Metal is shown in light grey, dark blue marks prisms of ‘slit’ lenses, and ‘bar’-prisms are medium grey. All corners are rounded near the bottom, circles showing the rounding radius sL/2.
Fig. 6
Fig. 6 Fine diagonal layout for N = 5: (a) Lens structure, (b) stretched layout.
Fig. 7
Fig. 7 Lens gratings of the optical prototype consist of 3 PMMA-layers (each 2 mm thin) for (a) N = 3 and for (b) N = 5. (c) and (d) show corresponding images in the G2-plane.
Fig. 8
Fig. 8 Layout details of setup L/Au, for (a) the phase grating G1 and (b) the lens grating GL. The maximum phase shift was 3π for G1 and 3.3π for GL. Circles near the top show the narrowest width of w = 0.75µm. The circles are compressed by 4:1 along with the layout. Large y-periods (14.5µm for G1, 18.4µm for GL) were used to minimize both the metal overhead and the impact of rounded corners. The lithography angle was θ = 20°. (c) shows how much gold height hØ would be needed for a given narrowest width w, using aspect ratios r≤72.
Fig. 9
Fig. 9 Performance predicted by the simulation: (a) lens gratings combine competing goals (αR = p0/d01 is introduced in Fig. 1). (b) FoM, the dose reduction relative to setup C. Error bars in (a) correspond to the six variations shown in (b).
Fig. 10
Fig. 10 (a) Refraction of different energies by a strongest prism. (b) Wavefront incident on the lens grating. A point source illuminated a phase grating with random x-shifts by |Δx|≤5 nm.
Fig. 11
Fig. 11 Performance of lens gratings without influences of absorption gratings. (a) Visibility graphs for setup F (thick graph) as reference, setup L/Ni, and a variant (one out of 38 slits open in G0, G2 duty cycle 46%). The visibility-graphs (1) correspond to the visibility averages (2), which are based on the spectrum of the setup (shown at the bottom). (b) Transmission of the combination of G1 and GL. Discs again show average transmissions.
Fig. 12
Fig. 12 (a) Sinusoidal contrast C = (IslitIbar)/(Islit + Ibar) of the intensity in front of G2 for setup L/Ni (point source; unaffected by G2; all monochromatic graphs scaled to the visibility of the L/Ni graph). (b) Contrast at maxima of (a), i.e., at positions x = (25% ± j)p0 for integers j (the source was a single G0-strip of regular width 40% p0; a regular G2 was used).

Tables (2)

Tables Icon

Table 1 Variables and the sections which introduce them.

Tables Icon

Table 2 Specification of the setups.

Metrics