Abstract

Linearly-polarized magnetic dipole (MD) scattering as intense as Rayleigh scattering is reported in transparent garnet crystals and fused quartz through a magneto-electric interaction at the molecular level. Radiation patterns in quartz show the strongest optical magnetization relative to electric polarization ever reported. As shown in an accompanying paper, quantitative agreement is achieved with a strong-field, fully-quantized theory of magneto-electric (M-E) interactions in molecular media. The conclusion is reached that magnetic torque enables 2-photon resonance in an EH* process that excites molecular librations and accounts for the observed upper limit on magnetization. Second-order M-E dynamics can also account for unpolarized scattering from high-frequency librations previously ascribed to first-order collision-induced or third-order, all-electric processes.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical magnetization, Part II: Theory of induced optical magnetism

Alexander A. Fisher, Elizabeth F. C. Dreyer, Ayan Chakrabarty, and Stephen C. Rand
Opt. Express 24(23) 26064-26079 (2016)

Optically induced magnetization in homogeneous, undoped dielectric media

S. C. Rand, W. M. Fisher, and S. L. Oliveira
J. Opt. Soc. Am. B 25(7) 1106-1117 (2008)

Quantum theory of coherent transverse optical magnetism

Stephen C. Rand
J. Opt. Soc. Am. B 26(12) B120-B129 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover, 1975).
  2. A. Einstein and W. J. de Haas, “Experimental proof of the existence of Ampère’s molecular currents,” K. Akad. van Wet. Amsterdam. Proc. 18, 696–711 (1915).
  3. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
    [Crossref] [PubMed]
  4. J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
    [Crossref] [PubMed]
  5. K. Y. Bliokh, Y. S. Kivshar, and F. Nori, “Magnetoelectric effects in local light-matter interactions,” Phys. Rev. Lett. 113(3), 033601 (2014).
    [Crossref] [PubMed]
  6. N. A. Spaldin and M. Fiebig, “Materials Science. The Renaissance of Magnetoelectric Multiferroics,” Science 309(5733), 391–392 (2005).
    [Crossref] [PubMed]
  7. P. Curie, “Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique,” J. Phys. 3, 393–415 (1894).
  8. P. Debye, “Remark on some new experiments on a magneto-electric straightening effect,” J. Phys. 36, 300–301 (1926).
  9. H. B. Levine and G. Birnbaum, “Classical theory of collision-induced absorption in rare-gas mixtures,” Phys. Rev. 160(1), 159–169 (1967).
    [Crossref]
  10. J. P. McTague and G. Birnbaum, “Collision-Induced Light Scattering in Gaseous Ar and Kr,” Phys. Rev. Lett. 21(10), 661–664 (1968).
    [Crossref]
  11. J. A. Bucaro and T. A. Litovitz, “Molecular Motions in CCl4: Light Scattering and Infrared Absorption,” J. Chem. Phys. 55(7), 3585 (1971).
    [Crossref]
  12. G. C. Tabisz, W. R. Wall, and D. P. Shelton, “Collision-Induced Light Scattering from Liquid CCl4 and C6H12,” Chem. Phys. Lett. 15(3), 387–391 (1972).
    [Crossref]
  13. M. Perrot, M. H. Brooker, and J. Lascombe, “Raman light scattering studies of the depolarized Rayleigh wing of liquids and solutions,” J. Chem. Phys. 74(5), 2787 (1981).
    [Crossref]
  14. See for example Y. R. Shen, See for example Y. R. Shen, Principles Of Nonlinear Optics, 1st ed. (John Wiliey & Sons, 1984), pp. 195–199.
  15. W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism, 2nd ed. (Addison-Wesley Publishing Co., 1962).
  16. L. D. Landau, E. M. Lifshitz, and L. P. Pitaewskii, Electrodynamics of Continuous Media, 2nd ed. (Pergamon Press, 1984), pp. 268.
  17. P. Pershan, “Nonlinear optical properties of solids: energy considerations,” Phys. Rev. 130(3), 919–929 (1963).
    [Crossref]
  18. A. A. Fisher, E. F. Cloos, W. M. Fisher, and S. C. Rand, “Dynamic symmetry-breaking in a simple quantum model of magneto-electric rectification, optical magnetization, and harmonic generation,” Opt. Express 22(3), 2910–2924 (2014).
    [Crossref] [PubMed]
  19. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics, 2nd ed. (Butterworth-Heinemann, 1982), Vol. 4.
  20. A. A. Fisher, E. F. C. Dreyer, A. Chakrabarty, and S. C. Rand, “Optical magnetization, Part II: Theory of induced optical magnetization,” Opt. Express 24(23), 26064–26079 (2016).
  21. S. L. Oliveira and S. C. Rand, “Intense Nonlinear Magnetic Dipole Radiation At Optical Frequencies: Molecular Scattering in a Dielectric Liquid,” Phys. Rev. Lett. 98(9), 093901 (2007).
    [Crossref] [PubMed]
  22. S. C. Rand, W. M. Fisher, and S. L. Oliveira, “Optically induced magnetization in homogeneous, undoped dielectric media,” J. Opt. Soc. Am. B 25(7), 1106 (2008).
    [Crossref]
  23. M. Fiebig, D. Fröhlich, T. Lottermoser, V. V. Pavlov, R. V. Pisarev, and H.-J. Weber, “Second harmonic Generation in the Centrosymmetric Antiferromagnet NiO,” Phys. Rev. Lett. 87(13), 137202 (2001).
    [Crossref] [PubMed]
  24. C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
    [Crossref] [PubMed]
  25. W. M. Fisher and S. C. Rand, “Optically-induced charge separation and terahertz emission in unbiased dielectrics,” J. Appl. Phys. 109(6), 064903 (2011).
    [Crossref]
  26. S. C. Rand, “Quantum theory of coherent transverse optical magnetism,” J. Opt. Soc. Am. B 26(12), B120 (2009).
    [Crossref]
  27. N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, “Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration,” J. Opt. Soc. Am. B 21(9), 1659 (2004).
    [Crossref]
  28. R. Krsmanović, V. A. Morozov, O. I. Lebedev, S. Polizzi, A. Speghini, M. Bettinelli, and G. V. Tendeloo, “Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis,” Nanotechnology 18(32), 325604 (2007).
    [Crossref]
  29. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (J. Wiley & Sons Inc., 1992).

2016 (1)

2014 (2)

2012 (2)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

2011 (1)

W. M. Fisher and S. C. Rand, “Optically-induced charge separation and terahertz emission in unbiased dielectrics,” J. Appl. Phys. 109(6), 064903 (2011).
[Crossref]

2009 (1)

2008 (1)

2007 (3)

S. L. Oliveira and S. C. Rand, “Intense Nonlinear Magnetic Dipole Radiation At Optical Frequencies: Molecular Scattering in a Dielectric Liquid,” Phys. Rev. Lett. 98(9), 093901 (2007).
[Crossref] [PubMed]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

R. Krsmanović, V. A. Morozov, O. I. Lebedev, S. Polizzi, A. Speghini, M. Bettinelli, and G. V. Tendeloo, “Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis,” Nanotechnology 18(32), 325604 (2007).
[Crossref]

2005 (1)

N. A. Spaldin and M. Fiebig, “Materials Science. The Renaissance of Magnetoelectric Multiferroics,” Science 309(5733), 391–392 (2005).
[Crossref] [PubMed]

2004 (1)

2001 (1)

M. Fiebig, D. Fröhlich, T. Lottermoser, V. V. Pavlov, R. V. Pisarev, and H.-J. Weber, “Second harmonic Generation in the Centrosymmetric Antiferromagnet NiO,” Phys. Rev. Lett. 87(13), 137202 (2001).
[Crossref] [PubMed]

1981 (1)

M. Perrot, M. H. Brooker, and J. Lascombe, “Raman light scattering studies of the depolarized Rayleigh wing of liquids and solutions,” J. Chem. Phys. 74(5), 2787 (1981).
[Crossref]

1972 (1)

G. C. Tabisz, W. R. Wall, and D. P. Shelton, “Collision-Induced Light Scattering from Liquid CCl4 and C6H12,” Chem. Phys. Lett. 15(3), 387–391 (1972).
[Crossref]

1971 (1)

J. A. Bucaro and T. A. Litovitz, “Molecular Motions in CCl4: Light Scattering and Infrared Absorption,” J. Chem. Phys. 55(7), 3585 (1971).
[Crossref]

1968 (1)

J. P. McTague and G. Birnbaum, “Collision-Induced Light Scattering in Gaseous Ar and Kr,” Phys. Rev. Lett. 21(10), 661–664 (1968).
[Crossref]

1967 (1)

H. B. Levine and G. Birnbaum, “Classical theory of collision-induced absorption in rare-gas mixtures,” Phys. Rev. 160(1), 159–169 (1967).
[Crossref]

1963 (1)

P. Pershan, “Nonlinear optical properties of solids: energy considerations,” Phys. Rev. 130(3), 919–929 (1963).
[Crossref]

1926 (1)

P. Debye, “Remark on some new experiments on a magneto-electric straightening effect,” J. Phys. 36, 300–301 (1926).

1915 (1)

A. Einstein and W. J. de Haas, “Experimental proof of the existence of Ampère’s molecular currents,” K. Akad. van Wet. Amsterdam. Proc. 18, 696–711 (1915).

1894 (1)

P. Curie, “Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique,” J. Phys. 3, 393–415 (1894).

Albert, O.

Basilio, L. I.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Bettinelli, M.

R. Krsmanović, V. A. Morozov, O. I. Lebedev, S. Polizzi, A. Speghini, M. Bettinelli, and G. V. Tendeloo, “Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis,” Nanotechnology 18(32), 325604 (2007).
[Crossref]

Birnbaum, G.

J. P. McTague and G. Birnbaum, “Collision-Induced Light Scattering in Gaseous Ar and Kr,” Phys. Rev. Lett. 21(10), 661–664 (1968).
[Crossref]

H. B. Levine and G. Birnbaum, “Classical theory of collision-induced absorption in rare-gas mixtures,” Phys. Rev. 160(1), 159–169 (1967).
[Crossref]

Bliokh, K. Y.

K. Y. Bliokh, Y. S. Kivshar, and F. Nori, “Magnetoelectric effects in local light-matter interactions,” Phys. Rev. Lett. 113(3), 033601 (2014).
[Crossref] [PubMed]

Brener, I.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Brooker, M. H.

M. Perrot, M. H. Brooker, and J. Lascombe, “Raman light scattering studies of the depolarized Rayleigh wing of liquids and solutions,” J. Chem. Phys. 74(5), 2787 (1981).
[Crossref]

Bucaro, J. A.

J. A. Bucaro and T. A. Litovitz, “Molecular Motions in CCl4: Light Scattering and Infrared Absorption,” J. Chem. Phys. 55(7), 3585 (1971).
[Crossref]

Chakrabarty, A.

Clem, P. G.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Cloos, E. F.

Curie, P.

P. Curie, “Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique,” J. Phys. 3, 393–415 (1894).

de Haas, W. J.

A. Einstein and W. J. de Haas, “Experimental proof of the existence of Ampère’s molecular currents,” K. Akad. van Wet. Amsterdam. Proc. 18, 696–711 (1915).

Debye, P.

P. Debye, “Remark on some new experiments on a magneto-electric straightening effect,” J. Phys. 36, 300–301 (1926).

Dreyer, E. F. C.

Einstein, A.

A. Einstein and W. J. de Haas, “Experimental proof of the existence of Ampère’s molecular currents,” K. Akad. van Wet. Amsterdam. Proc. 18, 696–711 (1915).

Etchepare, J.

Fiebig, M.

N. A. Spaldin and M. Fiebig, “Materials Science. The Renaissance of Magnetoelectric Multiferroics,” Science 309(5733), 391–392 (2005).
[Crossref] [PubMed]

M. Fiebig, D. Fröhlich, T. Lottermoser, V. V. Pavlov, R. V. Pisarev, and H.-J. Weber, “Second harmonic Generation in the Centrosymmetric Antiferromagnet NiO,” Phys. Rev. Lett. 87(13), 137202 (2001).
[Crossref] [PubMed]

Fisher, A. A.

Fisher, W. M.

Fröhlich, D.

M. Fiebig, D. Fröhlich, T. Lottermoser, V. V. Pavlov, R. V. Pisarev, and H.-J. Weber, “Second harmonic Generation in the Centrosymmetric Antiferromagnet NiO,” Phys. Rev. Lett. 87(13), 137202 (2001).
[Crossref] [PubMed]

Ginn, J. C.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Hansteen, F.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Hines, P. F.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Ihlefeld, J. F.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Itoh, A.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Kimel, A. V.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Kirilyuk, A.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Kivshar, Y. S.

K. Y. Bliokh, Y. S. Kivshar, and F. Nori, “Magnetoelectric effects in local light-matter interactions,” Phys. Rev. Lett. 113(3), 033601 (2014).
[Crossref] [PubMed]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Krsmanovic, R.

R. Krsmanović, V. A. Morozov, O. I. Lebedev, S. Polizzi, A. Speghini, M. Bettinelli, and G. V. Tendeloo, “Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis,” Nanotechnology 18(32), 325604 (2007).
[Crossref]

Lascombe, J.

M. Perrot, M. H. Brooker, and J. Lascombe, “Raman light scattering studies of the depolarized Rayleigh wing of liquids and solutions,” J. Chem. Phys. 74(5), 2787 (1981).
[Crossref]

Lebedev, O. I.

R. Krsmanović, V. A. Morozov, O. I. Lebedev, S. Polizzi, A. Speghini, M. Bettinelli, and G. V. Tendeloo, “Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis,” Nanotechnology 18(32), 325604 (2007).
[Crossref]

Levine, H. B.

H. B. Levine and G. Birnbaum, “Classical theory of collision-induced absorption in rare-gas mixtures,” Phys. Rev. 160(1), 159–169 (1967).
[Crossref]

Litovitz, T. A.

J. A. Bucaro and T. A. Litovitz, “Molecular Motions in CCl4: Light Scattering and Infrared Absorption,” J. Chem. Phys. 55(7), 3585 (1971).
[Crossref]

Lottermoser, T.

M. Fiebig, D. Fröhlich, T. Lottermoser, V. V. Pavlov, R. V. Pisarev, and H.-J. Weber, “Second harmonic Generation in the Centrosymmetric Antiferromagnet NiO,” Phys. Rev. Lett. 87(13), 137202 (2001).
[Crossref] [PubMed]

McTague, J. P.

J. P. McTague and G. Birnbaum, “Collision-Induced Light Scattering in Gaseous Ar and Kr,” Phys. Rev. Lett. 21(10), 661–664 (1968).
[Crossref]

Minkovski, N.

Morozov, V. A.

R. Krsmanović, V. A. Morozov, O. I. Lebedev, S. Polizzi, A. Speghini, M. Bettinelli, and G. V. Tendeloo, “Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis,” Nanotechnology 18(32), 325604 (2007).
[Crossref]

Nori, F.

K. Y. Bliokh, Y. S. Kivshar, and F. Nori, “Magnetoelectric effects in local light-matter interactions,” Phys. Rev. Lett. 113(3), 033601 (2014).
[Crossref] [PubMed]

Oliveira, S. L.

S. C. Rand, W. M. Fisher, and S. L. Oliveira, “Optically induced magnetization in homogeneous, undoped dielectric media,” J. Opt. Soc. Am. B 25(7), 1106 (2008).
[Crossref]

S. L. Oliveira and S. C. Rand, “Intense Nonlinear Magnetic Dipole Radiation At Optical Frequencies: Molecular Scattering in a Dielectric Liquid,” Phys. Rev. Lett. 98(9), 093901 (2007).
[Crossref] [PubMed]

Pavlov, V. V.

M. Fiebig, D. Fröhlich, T. Lottermoser, V. V. Pavlov, R. V. Pisarev, and H.-J. Weber, “Second harmonic Generation in the Centrosymmetric Antiferromagnet NiO,” Phys. Rev. Lett. 87(13), 137202 (2001).
[Crossref] [PubMed]

Perrot, M.

M. Perrot, M. H. Brooker, and J. Lascombe, “Raman light scattering studies of the depolarized Rayleigh wing of liquids and solutions,” J. Chem. Phys. 74(5), 2787 (1981).
[Crossref]

Pershan, P.

P. Pershan, “Nonlinear optical properties of solids: energy considerations,” Phys. Rev. 130(3), 919–929 (1963).
[Crossref]

Peters, D. W.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Petrov, G. I.

Pisarev, R. V.

M. Fiebig, D. Fröhlich, T. Lottermoser, V. V. Pavlov, R. V. Pisarev, and H.-J. Weber, “Second harmonic Generation in the Centrosymmetric Antiferromagnet NiO,” Phys. Rev. Lett. 87(13), 137202 (2001).
[Crossref] [PubMed]

Polizzi, S.

R. Krsmanović, V. A. Morozov, O. I. Lebedev, S. Polizzi, A. Speghini, M. Bettinelli, and G. V. Tendeloo, “Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis,” Nanotechnology 18(32), 325604 (2007).
[Crossref]

Rand, S. C.

Rasing, T.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Saltiel, S. M.

Shelton, D. P.

G. C. Tabisz, W. R. Wall, and D. P. Shelton, “Collision-Induced Light Scattering from Liquid CCl4 and C6H12,” Chem. Phys. Lett. 15(3), 387–391 (1972).
[Crossref]

Sinclair, M. B.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Spaldin, N. A.

N. A. Spaldin and M. Fiebig, “Materials Science. The Renaissance of Magnetoelectric Multiferroics,” Science 309(5733), 391–392 (2005).
[Crossref] [PubMed]

Speghini, A.

R. Krsmanović, V. A. Morozov, O. I. Lebedev, S. Polizzi, A. Speghini, M. Bettinelli, and G. V. Tendeloo, “Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis,” Nanotechnology 18(32), 325604 (2007).
[Crossref]

Stanciu, C. D.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Stevens, J. O.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Tabisz, G. C.

G. C. Tabisz, W. R. Wall, and D. P. Shelton, “Collision-Induced Light Scattering from Liquid CCl4 and C6H12,” Chem. Phys. Lett. 15(3), 387–391 (1972).
[Crossref]

Tendeloo, G. V.

R. Krsmanović, V. A. Morozov, O. I. Lebedev, S. Polizzi, A. Speghini, M. Bettinelli, and G. V. Tendeloo, “Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis,” Nanotechnology 18(32), 325604 (2007).
[Crossref]

Tsukamoto, A.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Wall, W. R.

G. C. Tabisz, W. R. Wall, and D. P. Shelton, “Collision-Induced Light Scattering from Liquid CCl4 and C6H12,” Chem. Phys. Lett. 15(3), 387–391 (1972).
[Crossref]

Warne, L. K.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Weber, H.-J.

M. Fiebig, D. Fröhlich, T. Lottermoser, V. V. Pavlov, R. V. Pisarev, and H.-J. Weber, “Second harmonic Generation in the Centrosymmetric Antiferromagnet NiO,” Phys. Rev. Lett. 87(13), 137202 (2001).
[Crossref] [PubMed]

Wendt, J. R.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

Zheludev, N. I.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

G. C. Tabisz, W. R. Wall, and D. P. Shelton, “Collision-Induced Light Scattering from Liquid CCl4 and C6H12,” Chem. Phys. Lett. 15(3), 387–391 (1972).
[Crossref]

J. Appl. Phys. (1)

W. M. Fisher and S. C. Rand, “Optically-induced charge separation and terahertz emission in unbiased dielectrics,” J. Appl. Phys. 109(6), 064903 (2011).
[Crossref]

J. Chem. Phys. (2)

M. Perrot, M. H. Brooker, and J. Lascombe, “Raman light scattering studies of the depolarized Rayleigh wing of liquids and solutions,” J. Chem. Phys. 74(5), 2787 (1981).
[Crossref]

J. A. Bucaro and T. A. Litovitz, “Molecular Motions in CCl4: Light Scattering and Infrared Absorption,” J. Chem. Phys. 55(7), 3585 (1971).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. (2)

P. Curie, “Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique,” J. Phys. 3, 393–415 (1894).

P. Debye, “Remark on some new experiments on a magneto-electric straightening effect,” J. Phys. 36, 300–301 (1926).

K. Akad. van Wet. Amsterdam. Proc. (1)

A. Einstein and W. J. de Haas, “Experimental proof of the existence of Ampère’s molecular currents,” K. Akad. van Wet. Amsterdam. Proc. 18, 696–711 (1915).

Nanotechnology (1)

R. Krsmanović, V. A. Morozov, O. I. Lebedev, S. Polizzi, A. Speghini, M. Bettinelli, and G. V. Tendeloo, “Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis,” Nanotechnology 18(32), 325604 (2007).
[Crossref]

Nat. Mater. (1)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. (2)

P. Pershan, “Nonlinear optical properties of solids: energy considerations,” Phys. Rev. 130(3), 919–929 (1963).
[Crossref]

H. B. Levine and G. Birnbaum, “Classical theory of collision-induced absorption in rare-gas mixtures,” Phys. Rev. 160(1), 159–169 (1967).
[Crossref]

Phys. Rev. Lett. (6)

J. P. McTague and G. Birnbaum, “Collision-Induced Light Scattering in Gaseous Ar and Kr,” Phys. Rev. Lett. 21(10), 661–664 (1968).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref] [PubMed]

K. Y. Bliokh, Y. S. Kivshar, and F. Nori, “Magnetoelectric effects in local light-matter interactions,” Phys. Rev. Lett. 113(3), 033601 (2014).
[Crossref] [PubMed]

S. L. Oliveira and S. C. Rand, “Intense Nonlinear Magnetic Dipole Radiation At Optical Frequencies: Molecular Scattering in a Dielectric Liquid,” Phys. Rev. Lett. 98(9), 093901 (2007).
[Crossref] [PubMed]

M. Fiebig, D. Fröhlich, T. Lottermoser, V. V. Pavlov, R. V. Pisarev, and H.-J. Weber, “Second harmonic Generation in the Centrosymmetric Antiferromagnet NiO,” Phys. Rev. Lett. 87(13), 137202 (2001).
[Crossref] [PubMed]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Science (1)

N. A. Spaldin and M. Fiebig, “Materials Science. The Renaissance of Magnetoelectric Multiferroics,” Science 309(5733), 391–392 (2005).
[Crossref] [PubMed]

Other (6)

V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics, 2nd ed. (Butterworth-Heinemann, 1982), Vol. 4.

C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover, 1975).

See for example Y. R. Shen, See for example Y. R. Shen, Principles Of Nonlinear Optics, 1st ed. (John Wiliey & Sons, 1984), pp. 195–199.

W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism, 2nd ed. (Addison-Wesley Publishing Co., 1962).

L. D. Landau, E. M. Lifshitz, and L. P. Pitaewskii, Electrodynamics of Continuous Media, 2nd ed. (Pergamon Press, 1984), pp. 268.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (J. Wiley & Sons Inc., 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the experimental apparatus, showing both the forward beam used to monitor polarization changes due to cross-polarized four-wave mixing in sample transmission and the detection arm at 90 degrees to the incident beam used to observed ED and MD scattering. WC = wavefront controller, IC = Intensity Controller, IF = interference filter, Det = detector, Pol = polarization analyzer.

Fig. 2
Fig. 2

(a). Measurements of unpolarized ED (open circles) and MD (filled circles) scattering intensity versus input intensity for the reference sample (CCl4) obtained at a repetition rate of 1 kHz. Solid curves are quadratic fits to the intensity dependence. Inset: corresponding data for polarized scattering components on the same intensity scale. (b) Measurements of sample transmission in GGG with polarization parallel (circles) and perpendicular (triangles) to that of the incident beam in the range of input intensities used for scattering experiments.

Fig. 3
Fig. 3

(a) Polar plot of raw data on co-polarized (open circles) and cross-polarized (filled circles) radiation patterns in GGG at I=1.4× 10 7 W/cm2 obtained at a repetition rate of 1 kHz. Dashed circles anticipate fits to the unpolarized background signal intensities. Residuals from the best fit of a circle plus a squared cosine curve to the raw data are shown below the polar plot. (b) Comparative plots in crystalline GGG of unpolarized ED (open circles) and MD (filled circles) scattering. Solid curves are quadratic fits to the data. Inset: corresponding data for polarized scattering components on the same scale.

Fig. 4
Fig. 4

Polar plots of the radiation patterns for polarized ED and MD scattering in fused quartz at an input intensity of I~2.2× 10 10 W/cm2 obtained at a repetition rate of 80 MHz. At this intensity, in this sample, the unpolarized component is negligible compared to the polarized component. Note that peak intensities in the two plots are equal. Residuals from the best fit of a squared cosine curve to the raw data are shown below the polar plot.

Fig. 5
Fig. 5

An energy level diagram depicting the second-order magneto-electric dynamics driven by E and B fields of (i) equal frequency (solid arrows), and (ii) frequencies differing by rotational frequency ω φ (dashed arrow).

Metrics