Abstract

The responsivity of room-temperature, semiconductor-based photodetectors consisting of resonant RF circuits coupled to microstrip buslines is investigated. The dependence of the photodetector response on the semiconductor material and RF circuit geometry is presented, as is the detector response as a function of the spatial position of the incident light. We demonstrate significant improvement in detector response by choice of photoconductive material, and for a given material, by positioning our optical signal to overlap with positions of RF field enhancement. Design of RF circuits with strong field enhancement are demonstrated to further improve detector response. The improved detector response demonstrated offers opportunities for applications in RF photonics, materials metrology, or single read-out multiplexed detector arrays.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform

Jianfei Wang, Juejun Hu, Piotr Becla, Anuradha M. Agarwal, and Lionel C. Kimerling
Opt. Express 18(12) 12890-12896 (2010)

Enhanced responsivity of non-steady-state photoinduced electromotive force sensors using asymmetric interdigitated contacts

D. D. Nolte, J. A. Coy, G. J. Dunning, D. M. Pepper, M. P. Chiao, G. D. Bacher, and M. B. Klein
Opt. Lett. 24(5) 342-344 (1999)

References

  • View by:
  • |
  • |
  • |

  1. S. Dixon, R. F. Giordano, and H. Jacobs, “Semiconductor conductivity measurements using a high-sensitivity microwave technique,” J. Appl. Phys. 45(6), 2570–2578 (1974).
    [Crossref]
  2. E. Coué and J. P. Chausse, “A microwave method for electrical measurement of semiconductors: theory and experiment,” Semicond. Sci. Technol. 15(2), 178–183 (2000).
    [Crossref]
  3. E. Yablonovitch, R. Bhat, J. P. Harbison, and R. A. Logan, “Survey of defect mediated recombination lifetimes in GaAs epilayers grown by different methods,” Appl. Phys. Lett. 50(17), 1197–1199 (1987).
    [Crossref]
  4. B. V. Olson, E. A. Kadlec, J. K. Kim, J. F. Klem, S. D. Hawkins, E. A. Shaner, and M. E. Flatte, “Intensity-and Temperature-dependent carrier recombination in InAs/In As1- xSbx type-II superlattices,” Phys. Rev. Appl. 3(4), 044010 (2015).
    [Crossref]
  5. N. Dagli, “Wide-bandwidth lasers and modulators for RF photonics,” IEEE T. Microw. Theory 47(7), 1151–1171 (1999).
    [Crossref]
  6. A. J. Seeds, “Microwave photonics,” IEEE T. Microw. Theory 50(3), 877–887 (2002).
    [Crossref]
  7. R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quant. 12(6), 1678–1687 (2006).
    [Crossref]
  8. P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broadband superconducting detector suitable for use in large arrays,” Nature 425(6960), 817–821 (2003).
    [Crossref] [PubMed]
  9. S. Doyle, P. Mauskopf, J. Naylon, A. Porch, and C. Duncombe, “Lumped element kinetic inductance detectors,” J. Low Temp. Phys. 151(1–2), 530–536 (2008).
    [Crossref]
  10. J. Zmuidzinas, “Superconducting microresonators: Physics and Applications,” Annu. Rev. Condens. Matter Phys. 3(1), 169–214 (2012).
    [Crossref]
  11. B. A. Mazin, B. Bumble, S. R. Meeker, K. O’Brien, S. McHugh, and E. Langman, “A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics,” Opt. Express 20(2), 1503–1511 (2012).
    [Crossref] [PubMed]
  12. J. J. A. Baselmans, S. J. C. Yates, P. de Korte, H. Hoevers, R. Barends, J. N. Hovenier, J. R. Gao, and T. M. Klapwijk, “Development of high-Q superconducting resonators for use as kinetic inductance detectors,” Adv. Space Res. 40(5), 708–713 (2007).
    [Crossref]
  13. G. Ulbricht, B. A. Mazin, P. Szypryt, A. B. Walter, C. Bockstiegel, and B. Bumble, “Highly multiplexible thermal kinetic inductance detectors for X-Ray imaging spectroscopy,” Appl. Phys. Lett. 106(25), 251103 (2015).
    [Crossref]
  14. J. Zmuidzinas and P. L. Richards, “Superconducting detectors and mixers for millimeter and submillimeter astrophysics,” Proc. IEEE 92(10), 1597–1616 (2004).
    [Crossref]
  15. B. A. Mazin, B. Bumble, P. K. Day, M. E. Eckart, S. Golwala, J. Zmuidzinas, and F. A. Harrison, “Position sensitive x-ray spectrophotometer using microwave kinetic inductance detectors,” Appl. Phys. Lett. 89(22), 222507 (2006).
    [Crossref]
  16. M. R. Vissers, J. Gao, D. S. Wisbey, D. A. Hite, C. C. Tsuei, A. D. Corcoles, M. Steffen, and D. P. Pappas, “Low loss superconducting titanium nitride coplanar waveguide resonators,” Appl. Phys. Lett. 97(23), 232509 (2010).
    [Crossref]
  17. A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
    [Crossref]
  18. R. Barends, J. J. A. Baselmans, S. J. C. Yates, J. R. Gao, J. N. Hovenier, and T. M. Klapwijk, “Quasiparticle relaxation in optically excited high-Q superconducting resonators,” Phys. Rev. Lett. 100(25), 257002 (2008).
    [Crossref] [PubMed]
  19. J. J. A. Baselmans, S. J. C. Yates, B. Young, B. Cabrera, and A. Miller, “Long quasiparticle lifetime in aluminum microwave kinetic inductance detectors using coaxial stray light filters,” AIP Conf. Proc. 1185(1), 160–163 (2009).
    [Crossref]
  20. R. Liu, R. Lu, C. Roberts, S. Gong, J. W. Allen, M. S. Allen, B. R. Wenner, and D. Wasserman, “Multiplexed infrared photodetection using resonant radio-frequency circuits,” Appl. Phys. Lett. 108(6), 061101 (2016).
    [Crossref]
  21. S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
    [Crossref]
  22. G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility against carrier concentration in arsenic-, phosorus-, and boron-doped silicon,” IEEE T. Electron Dev. 30(7), 764–769 (1983).
    [Crossref]
  23. J. Dziewior and W. Schmid, “Auger coefficients for highly doped and highly excited silicon,” Appl. Phys. Lett. 31(5), 346–348 (1977).
    [Crossref]
  24. T. Suzuki, H. Takita, C. T. Nguyen, and K. Iiyama, “Carrier recombination lifetime in InAs thin films bonded on low-k flexible substrates,” AIP Adv. 2(4), 042105 (2012).
    [Crossref]
  25. I. J. Fritz, B. L. Doyle, J. E. Schirber, E. D. Jones, L. R. Dawson, and T. J. Drummond, “Influence of built-in strain on Hall effect in InGaAs/GaAs quantum well structures with p-type modulation doping,” Appl. Phys. Lett. 49(10), 581–583 (1986).
    [Crossref]
  26. H. M. Shieh, W. C. Hsu, and C. L. Wu, “Very high two‐dimensional electron gas concentrations with enhanced mobilities in selectively double‐δ‐doped GaAs/InGaAs pseudomorphic single quantum well heterostructures,” Appl. Phys. Lett. 63(4), 509–511 (1993).
    [Crossref]
  27. M. Tabib-Azar, D. Akinwande, G. E. Ponchak, and S. R. LeClair, “Evanescent microwave probes on high-resistivity silicon and its application in characterization of semiconductors,” Rev. Sci. Instrum. 70(7), 3083–3086 (1999).
    [Crossref]
  28. Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterizing and Modeling Nonlinear Intermodulation Distortions in Modified Uni-Traveling Carrier Photodiodes,” IEEE J. Quantum Electron. 47(10), 1312–1319 (2011).
    [Crossref]
  29. Y. Hu, B. S. Marks, C. R. Menyuk, V. J. Urick, and K. J. Williams, “Modeling Sources of Nonlinearity in a Simple p-i-n Photodetector,” J. Lightwave Technol. 32(20), 3710–3720 (2014).
    [Crossref]
  30. Y. Hu, T. F. Carruthers, C. R. Menyuk, M. N. Hutchinson, V. J. Urick, and K. J. Williams, “Simulation of a partially depleted absorber (PDA) photodetector,” Opt. Express 23(16), 20402–20417 (2015).
    [Crossref] [PubMed]
  31. O. Madelung, Semiconductors: Data Handbook (Springer, 2004).
  32. D. L. Rode, Semiconductors and Semimetals (Elsevier, 1975), Chap. 1.

2016 (1)

R. Liu, R. Lu, C. Roberts, S. Gong, J. W. Allen, M. S. Allen, B. R. Wenner, and D. Wasserman, “Multiplexed infrared photodetection using resonant radio-frequency circuits,” Appl. Phys. Lett. 108(6), 061101 (2016).
[Crossref]

2015 (3)

G. Ulbricht, B. A. Mazin, P. Szypryt, A. B. Walter, C. Bockstiegel, and B. Bumble, “Highly multiplexible thermal kinetic inductance detectors for X-Ray imaging spectroscopy,” Appl. Phys. Lett. 106(25), 251103 (2015).
[Crossref]

B. V. Olson, E. A. Kadlec, J. K. Kim, J. F. Klem, S. D. Hawkins, E. A. Shaner, and M. E. Flatte, “Intensity-and Temperature-dependent carrier recombination in InAs/In As1- xSbx type-II superlattices,” Phys. Rev. Appl. 3(4), 044010 (2015).
[Crossref]

Y. Hu, T. F. Carruthers, C. R. Menyuk, M. N. Hutchinson, V. J. Urick, and K. J. Williams, “Simulation of a partially depleted absorber (PDA) photodetector,” Opt. Express 23(16), 20402–20417 (2015).
[Crossref] [PubMed]

2014 (1)

2012 (3)

J. Zmuidzinas, “Superconducting microresonators: Physics and Applications,” Annu. Rev. Condens. Matter Phys. 3(1), 169–214 (2012).
[Crossref]

B. A. Mazin, B. Bumble, S. R. Meeker, K. O’Brien, S. McHugh, and E. Langman, “A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics,” Opt. Express 20(2), 1503–1511 (2012).
[Crossref] [PubMed]

T. Suzuki, H. Takita, C. T. Nguyen, and K. Iiyama, “Carrier recombination lifetime in InAs thin films bonded on low-k flexible substrates,” AIP Adv. 2(4), 042105 (2012).
[Crossref]

2011 (2)

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterizing and Modeling Nonlinear Intermodulation Distortions in Modified Uni-Traveling Carrier Photodiodes,” IEEE J. Quantum Electron. 47(10), 1312–1319 (2011).
[Crossref]

2010 (1)

M. R. Vissers, J. Gao, D. S. Wisbey, D. A. Hite, C. C. Tsuei, A. D. Corcoles, M. Steffen, and D. P. Pappas, “Low loss superconducting titanium nitride coplanar waveguide resonators,” Appl. Phys. Lett. 97(23), 232509 (2010).
[Crossref]

2009 (1)

J. J. A. Baselmans, S. J. C. Yates, B. Young, B. Cabrera, and A. Miller, “Long quasiparticle lifetime in aluminum microwave kinetic inductance detectors using coaxial stray light filters,” AIP Conf. Proc. 1185(1), 160–163 (2009).
[Crossref]

2008 (2)

R. Barends, J. J. A. Baselmans, S. J. C. Yates, J. R. Gao, J. N. Hovenier, and T. M. Klapwijk, “Quasiparticle relaxation in optically excited high-Q superconducting resonators,” Phys. Rev. Lett. 100(25), 257002 (2008).
[Crossref] [PubMed]

S. Doyle, P. Mauskopf, J. Naylon, A. Porch, and C. Duncombe, “Lumped element kinetic inductance detectors,” J. Low Temp. Phys. 151(1–2), 530–536 (2008).
[Crossref]

2007 (1)

J. J. A. Baselmans, S. J. C. Yates, P. de Korte, H. Hoevers, R. Barends, J. N. Hovenier, J. R. Gao, and T. M. Klapwijk, “Development of high-Q superconducting resonators for use as kinetic inductance detectors,” Adv. Space Res. 40(5), 708–713 (2007).
[Crossref]

2006 (3)

B. A. Mazin, B. Bumble, P. K. Day, M. E. Eckart, S. Golwala, J. Zmuidzinas, and F. A. Harrison, “Position sensitive x-ray spectrophotometer using microwave kinetic inductance detectors,” Appl. Phys. Lett. 89(22), 222507 (2006).
[Crossref]

S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
[Crossref]

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quant. 12(6), 1678–1687 (2006).
[Crossref]

2004 (1)

J. Zmuidzinas and P. L. Richards, “Superconducting detectors and mixers for millimeter and submillimeter astrophysics,” Proc. IEEE 92(10), 1597–1616 (2004).
[Crossref]

2003 (1)

P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broadband superconducting detector suitable for use in large arrays,” Nature 425(6960), 817–821 (2003).
[Crossref] [PubMed]

2002 (1)

A. J. Seeds, “Microwave photonics,” IEEE T. Microw. Theory 50(3), 877–887 (2002).
[Crossref]

2000 (1)

E. Coué and J. P. Chausse, “A microwave method for electrical measurement of semiconductors: theory and experiment,” Semicond. Sci. Technol. 15(2), 178–183 (2000).
[Crossref]

1999 (2)

N. Dagli, “Wide-bandwidth lasers and modulators for RF photonics,” IEEE T. Microw. Theory 47(7), 1151–1171 (1999).
[Crossref]

M. Tabib-Azar, D. Akinwande, G. E. Ponchak, and S. R. LeClair, “Evanescent microwave probes on high-resistivity silicon and its application in characterization of semiconductors,” Rev. Sci. Instrum. 70(7), 3083–3086 (1999).
[Crossref]

1993 (1)

H. M. Shieh, W. C. Hsu, and C. L. Wu, “Very high two‐dimensional electron gas concentrations with enhanced mobilities in selectively double‐δ‐doped GaAs/InGaAs pseudomorphic single quantum well heterostructures,” Appl. Phys. Lett. 63(4), 509–511 (1993).
[Crossref]

1987 (1)

E. Yablonovitch, R. Bhat, J. P. Harbison, and R. A. Logan, “Survey of defect mediated recombination lifetimes in GaAs epilayers grown by different methods,” Appl. Phys. Lett. 50(17), 1197–1199 (1987).
[Crossref]

1986 (1)

I. J. Fritz, B. L. Doyle, J. E. Schirber, E. D. Jones, L. R. Dawson, and T. J. Drummond, “Influence of built-in strain on Hall effect in InGaAs/GaAs quantum well structures with p-type modulation doping,” Appl. Phys. Lett. 49(10), 581–583 (1986).
[Crossref]

1983 (1)

G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility against carrier concentration in arsenic-, phosorus-, and boron-doped silicon,” IEEE T. Electron Dev. 30(7), 764–769 (1983).
[Crossref]

1977 (1)

J. Dziewior and W. Schmid, “Auger coefficients for highly doped and highly excited silicon,” Appl. Phys. Lett. 31(5), 346–348 (1977).
[Crossref]

1974 (1)

S. Dixon, R. F. Giordano, and H. Jacobs, “Semiconductor conductivity measurements using a high-sensitivity microwave technique,” J. Appl. Phys. 45(6), 2570–2578 (1974).
[Crossref]

Ade, P.

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

Akinwande, D.

M. Tabib-Azar, D. Akinwande, G. E. Ponchak, and S. R. LeClair, “Evanescent microwave probes on high-resistivity silicon and its application in characterization of semiconductors,” Rev. Sci. Instrum. 70(7), 3083–3086 (1999).
[Crossref]

Allen, J. W.

R. Liu, R. Lu, C. Roberts, S. Gong, J. W. Allen, M. S. Allen, B. R. Wenner, and D. Wasserman, “Multiplexed infrared photodetection using resonant radio-frequency circuits,” Appl. Phys. Lett. 108(6), 061101 (2016).
[Crossref]

Allen, M. S.

R. Liu, R. Lu, C. Roberts, S. Gong, J. W. Allen, M. S. Allen, B. R. Wenner, and D. Wasserman, “Multiplexed infrared photodetection using resonant radio-frequency circuits,” Appl. Phys. Lett. 108(6), 061101 (2016).
[Crossref]

Balakrishnan, G.

S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
[Crossref]

Barends, R.

R. Barends, J. J. A. Baselmans, S. J. C. Yates, J. R. Gao, J. N. Hovenier, and T. M. Klapwijk, “Quasiparticle relaxation in optically excited high-Q superconducting resonators,” Phys. Rev. Lett. 100(25), 257002 (2008).
[Crossref] [PubMed]

J. J. A. Baselmans, S. J. C. Yates, P. de Korte, H. Hoevers, R. Barends, J. N. Hovenier, J. R. Gao, and T. M. Klapwijk, “Development of high-Q superconducting resonators for use as kinetic inductance detectors,” Adv. Space Res. 40(5), 708–713 (2007).
[Crossref]

Baryshev, A.

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

Baselmans, J. J. A.

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

J. J. A. Baselmans, S. J. C. Yates, B. Young, B. Cabrera, and A. Miller, “Long quasiparticle lifetime in aluminum microwave kinetic inductance detectors using coaxial stray light filters,” AIP Conf. Proc. 1185(1), 160–163 (2009).
[Crossref]

R. Barends, J. J. A. Baselmans, S. J. C. Yates, J. R. Gao, J. N. Hovenier, and T. M. Klapwijk, “Quasiparticle relaxation in optically excited high-Q superconducting resonators,” Phys. Rev. Lett. 100(25), 257002 (2008).
[Crossref] [PubMed]

J. J. A. Baselmans, S. J. C. Yates, P. de Korte, H. Hoevers, R. Barends, J. N. Hovenier, J. R. Gao, and T. M. Klapwijk, “Development of high-Q superconducting resonators for use as kinetic inductance detectors,” Adv. Space Res. 40(5), 708–713 (2007).
[Crossref]

Beling, A.

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterizing and Modeling Nonlinear Intermodulation Distortions in Modified Uni-Traveling Carrier Photodiodes,” IEEE J. Quantum Electron. 47(10), 1312–1319 (2011).
[Crossref]

Benoit, A.

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

Bhat, R.

E. Yablonovitch, R. Bhat, J. P. Harbison, and R. A. Logan, “Survey of defect mediated recombination lifetimes in GaAs epilayers grown by different methods,” Appl. Phys. Lett. 50(17), 1197–1199 (1987).
[Crossref]

Bideaud, A.

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

Bockstiegel, C.

G. Ulbricht, B. A. Mazin, P. Szypryt, A. B. Walter, C. Bockstiegel, and B. Bumble, “Highly multiplexible thermal kinetic inductance detectors for X-Ray imaging spectroscopy,” Appl. Phys. Lett. 106(25), 251103 (2015).
[Crossref]

Bourrion, O.

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

Bumble, B.

G. Ulbricht, B. A. Mazin, P. Szypryt, A. B. Walter, C. Bockstiegel, and B. Bumble, “Highly multiplexible thermal kinetic inductance detectors for X-Ray imaging spectroscopy,” Appl. Phys. Lett. 106(25), 251103 (2015).
[Crossref]

B. A. Mazin, B. Bumble, S. R. Meeker, K. O’Brien, S. McHugh, and E. Langman, “A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics,” Opt. Express 20(2), 1503–1511 (2012).
[Crossref] [PubMed]

B. A. Mazin, B. Bumble, P. K. Day, M. E. Eckart, S. Golwala, J. Zmuidzinas, and F. A. Harrison, “Position sensitive x-ray spectrophotometer using microwave kinetic inductance detectors,” Appl. Phys. Lett. 89(22), 222507 (2006).
[Crossref]

Cabrera, B.

J. J. A. Baselmans, S. J. C. Yates, B. Young, B. Cabrera, and A. Miller, “Long quasiparticle lifetime in aluminum microwave kinetic inductance detectors using coaxial stray light filters,” AIP Conf. Proc. 1185(1), 160–163 (2009).
[Crossref]

Calvo, M.

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

Campbell, J. C.

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterizing and Modeling Nonlinear Intermodulation Distortions in Modified Uni-Traveling Carrier Photodiodes,” IEEE J. Quantum Electron. 47(10), 1312–1319 (2011).
[Crossref]

Camus, P.

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

Carruthers, T. F.

Chausse, J. P.

E. Coué and J. P. Chausse, “A microwave method for electrical measurement of semiconductors: theory and experiment,” Semicond. Sci. Technol. 15(2), 178–183 (2000).
[Crossref]

Corcoles, A. D.

M. R. Vissers, J. Gao, D. S. Wisbey, D. A. Hite, C. C. Tsuei, A. D. Corcoles, M. Steffen, and D. P. Pappas, “Low loss superconducting titanium nitride coplanar waveguide resonators,” Appl. Phys. Lett. 97(23), 232509 (2010).
[Crossref]

Coué, E.

E. Coué and J. P. Chausse, “A microwave method for electrical measurement of semiconductors: theory and experiment,” Semicond. Sci. Technol. 15(2), 178–183 (2000).
[Crossref]

Cruciani, A.

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

Dagli, N.

N. Dagli, “Wide-bandwidth lasers and modulators for RF photonics,” IEEE T. Microw. Theory 47(7), 1151–1171 (1999).
[Crossref]

Dawson, L. R.

S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
[Crossref]

I. J. Fritz, B. L. Doyle, J. E. Schirber, E. D. Jones, L. R. Dawson, and T. J. Drummond, “Influence of built-in strain on Hall effect in InGaAs/GaAs quantum well structures with p-type modulation doping,” Appl. Phys. Lett. 49(10), 581–583 (1986).
[Crossref]

Day, P. K.

B. A. Mazin, B. Bumble, P. K. Day, M. E. Eckart, S. Golwala, J. Zmuidzinas, and F. A. Harrison, “Position sensitive x-ray spectrophotometer using microwave kinetic inductance detectors,” Appl. Phys. Lett. 89(22), 222507 (2006).
[Crossref]

P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broadband superconducting detector suitable for use in large arrays,” Nature 425(6960), 817–821 (2003).
[Crossref] [PubMed]

de Korte, P.

J. J. A. Baselmans, S. J. C. Yates, P. de Korte, H. Hoevers, R. Barends, J. N. Hovenier, J. R. Gao, and T. M. Klapwijk, “Development of high-Q superconducting resonators for use as kinetic inductance detectors,” Adv. Space Res. 40(5), 708–713 (2007).
[Crossref]

Desert, F. X.

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

Dixon, S.

S. Dixon, R. F. Giordano, and H. Jacobs, “Semiconductor conductivity measurements using a high-sensitivity microwave technique,” J. Appl. Phys. 45(6), 2570–2578 (1974).
[Crossref]

Dolye, S.

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

Doyle, B. L.

I. J. Fritz, B. L. Doyle, J. E. Schirber, E. D. Jones, L. R. Dawson, and T. J. Drummond, “Influence of built-in strain on Hall effect in InGaAs/GaAs quantum well structures with p-type modulation doping,” Appl. Phys. Lett. 49(10), 581–583 (1986).
[Crossref]

Doyle, S.

S. Doyle, P. Mauskopf, J. Naylon, A. Porch, and C. Duncombe, “Lumped element kinetic inductance detectors,” J. Low Temp. Phys. 151(1–2), 530–536 (2008).
[Crossref]

Drummond, T. J.

I. J. Fritz, B. L. Doyle, J. E. Schirber, E. D. Jones, L. R. Dawson, and T. J. Drummond, “Influence of built-in strain on Hall effect in InGaAs/GaAs quantum well structures with p-type modulation doping,” Appl. Phys. Lett. 49(10), 581–583 (1986).
[Crossref]

Duncombe, C.

S. Doyle, P. Mauskopf, J. Naylon, A. Porch, and C. Duncombe, “Lumped element kinetic inductance detectors,” J. Low Temp. Phys. 151(1–2), 530–536 (2008).
[Crossref]

Dziewior, J.

J. Dziewior and W. Schmid, “Auger coefficients for highly doped and highly excited silicon,” Appl. Phys. Lett. 31(5), 346–348 (1977).
[Crossref]

Eckart, M. E.

B. A. Mazin, B. Bumble, P. K. Day, M. E. Eckart, S. Golwala, J. Zmuidzinas, and F. A. Harrison, “Position sensitive x-ray spectrophotometer using microwave kinetic inductance detectors,” Appl. Phys. Lett. 89(22), 222507 (2006).
[Crossref]

Endo, A.

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

Ferrari, L.

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

Flatte, M. E.

B. V. Olson, E. A. Kadlec, J. K. Kim, J. F. Klem, S. D. Hawkins, E. A. Shaner, and M. E. Flatte, “Intensity-and Temperature-dependent carrier recombination in InAs/In As1- xSbx type-II superlattices,” Phys. Rev. Appl. 3(4), 044010 (2015).
[Crossref]

Fritz, I. J.

I. J. Fritz, B. L. Doyle, J. E. Schirber, E. D. Jones, L. R. Dawson, and T. J. Drummond, “Influence of built-in strain on Hall effect in InGaAs/GaAs quantum well structures with p-type modulation doping,” Appl. Phys. Lett. 49(10), 581–583 (1986).
[Crossref]

Fu, Y.

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterizing and Modeling Nonlinear Intermodulation Distortions in Modified Uni-Traveling Carrier Photodiodes,” IEEE J. Quantum Electron. 47(10), 1312–1319 (2011).
[Crossref]

Gao, J.

M. R. Vissers, J. Gao, D. S. Wisbey, D. A. Hite, C. C. Tsuei, A. D. Corcoles, M. Steffen, and D. P. Pappas, “Low loss superconducting titanium nitride coplanar waveguide resonators,” Appl. Phys. Lett. 97(23), 232509 (2010).
[Crossref]

Gao, J. R.

R. Barends, J. J. A. Baselmans, S. J. C. Yates, J. R. Gao, J. N. Hovenier, and T. M. Klapwijk, “Quasiparticle relaxation in optically excited high-Q superconducting resonators,” Phys. Rev. Lett. 100(25), 257002 (2008).
[Crossref] [PubMed]

J. J. A. Baselmans, S. J. C. Yates, P. de Korte, H. Hoevers, R. Barends, J. N. Hovenier, J. R. Gao, and T. M. Klapwijk, “Development of high-Q superconducting resonators for use as kinetic inductance detectors,” Adv. Space Res. 40(5), 708–713 (2007).
[Crossref]

Giordano, C.

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

Giordano, R. F.

S. Dixon, R. F. Giordano, and H. Jacobs, “Semiconductor conductivity measurements using a high-sensitivity microwave technique,” J. Appl. Phys. 45(6), 2570–2578 (1974).
[Crossref]

Golwala, S.

B. A. Mazin, B. Bumble, P. K. Day, M. E. Eckart, S. Golwala, J. Zmuidzinas, and F. A. Harrison, “Position sensitive x-ray spectrophotometer using microwave kinetic inductance detectors,” Appl. Phys. Lett. 89(22), 222507 (2006).
[Crossref]

Gong, S.

R. Liu, R. Lu, C. Roberts, S. Gong, J. W. Allen, M. S. Allen, B. R. Wenner, and D. Wasserman, “Multiplexed infrared photodetection using resonant radio-frequency circuits,” Appl. Phys. Lett. 108(6), 061101 (2016).
[Crossref]

Harbison, J. P.

E. Yablonovitch, R. Bhat, J. P. Harbison, and R. A. Logan, “Survey of defect mediated recombination lifetimes in GaAs epilayers grown by different methods,” Appl. Phys. Lett. 50(17), 1197–1199 (1987).
[Crossref]

Harrison, F. A.

B. A. Mazin, B. Bumble, P. K. Day, M. E. Eckart, S. Golwala, J. Zmuidzinas, and F. A. Harrison, “Position sensitive x-ray spectrophotometer using microwave kinetic inductance detectors,” Appl. Phys. Lett. 89(22), 222507 (2006).
[Crossref]

Hawkins, S. D.

B. V. Olson, E. A. Kadlec, J. K. Kim, J. F. Klem, S. D. Hawkins, E. A. Shaner, and M. E. Flatte, “Intensity-and Temperature-dependent carrier recombination in InAs/In As1- xSbx type-II superlattices,” Phys. Rev. Appl. 3(4), 044010 (2015).
[Crossref]

Hite, D. A.

M. R. Vissers, J. Gao, D. S. Wisbey, D. A. Hite, C. C. Tsuei, A. D. Corcoles, M. Steffen, and D. P. Pappas, “Low loss superconducting titanium nitride coplanar waveguide resonators,” Appl. Phys. Lett. 97(23), 232509 (2010).
[Crossref]

Hoevers, H.

J. J. A. Baselmans, S. J. C. Yates, P. de Korte, H. Hoevers, R. Barends, J. N. Hovenier, J. R. Gao, and T. M. Klapwijk, “Development of high-Q superconducting resonators for use as kinetic inductance detectors,” Adv. Space Res. 40(5), 708–713 (2007).
[Crossref]

Hoffmann, C.

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

Hovenier, J. N.

R. Barends, J. J. A. Baselmans, S. J. C. Yates, J. R. Gao, J. N. Hovenier, and T. M. Klapwijk, “Quasiparticle relaxation in optically excited high-Q superconducting resonators,” Phys. Rev. Lett. 100(25), 257002 (2008).
[Crossref] [PubMed]

J. J. A. Baselmans, S. J. C. Yates, P. de Korte, H. Hoevers, R. Barends, J. N. Hovenier, J. R. Gao, and T. M. Klapwijk, “Development of high-Q superconducting resonators for use as kinetic inductance detectors,” Adv. Space Res. 40(5), 708–713 (2007).
[Crossref]

Hsu, W. C.

H. M. Shieh, W. C. Hsu, and C. L. Wu, “Very high two‐dimensional electron gas concentrations with enhanced mobilities in selectively double‐δ‐doped GaAs/InGaAs pseudomorphic single quantum well heterostructures,” Appl. Phys. Lett. 63(4), 509–511 (1993).
[Crossref]

Hu, Y.

Huang, S. H.

S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
[Crossref]

Huffaker, D. L.

S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
[Crossref]

Hutchinson, M. N.

Iiyama, K.

T. Suzuki, H. Takita, C. T. Nguyen, and K. Iiyama, “Carrier recombination lifetime in InAs thin films bonded on low-k flexible substrates,” AIP Adv. 2(4), 042105 (2012).
[Crossref]

Jacobs, H.

S. Dixon, R. F. Giordano, and H. Jacobs, “Semiconductor conductivity measurements using a high-sensitivity microwave technique,” J. Appl. Phys. 45(6), 2570–2578 (1974).
[Crossref]

Jallipalli, A.

S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
[Crossref]

Jones, E. D.

I. J. Fritz, B. L. Doyle, J. E. Schirber, E. D. Jones, L. R. Dawson, and T. J. Drummond, “Influence of built-in strain on Hall effect in InGaAs/GaAs quantum well structures with p-type modulation doping,” Appl. Phys. Lett. 49(10), 581–583 (1986).
[Crossref]

Kadlec, E. A.

B. V. Olson, E. A. Kadlec, J. K. Kim, J. F. Klem, S. D. Hawkins, E. A. Shaner, and M. E. Flatte, “Intensity-and Temperature-dependent carrier recombination in InAs/In As1- xSbx type-II superlattices,” Phys. Rev. Appl. 3(4), 044010 (2015).
[Crossref]

Khoshakhlagh, A.

S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
[Crossref]

Kim, J. K.

B. V. Olson, E. A. Kadlec, J. K. Kim, J. F. Klem, S. D. Hawkins, E. A. Shaner, and M. E. Flatte, “Intensity-and Temperature-dependent carrier recombination in InAs/In As1- xSbx type-II superlattices,” Phys. Rev. Appl. 3(4), 044010 (2015).
[Crossref]

Klapwijk, T. M.

R. Barends, J. J. A. Baselmans, S. J. C. Yates, J. R. Gao, J. N. Hovenier, and T. M. Klapwijk, “Quasiparticle relaxation in optically excited high-Q superconducting resonators,” Phys. Rev. Lett. 100(25), 257002 (2008).
[Crossref] [PubMed]

J. J. A. Baselmans, S. J. C. Yates, P. de Korte, H. Hoevers, R. Barends, J. N. Hovenier, J. R. Gao, and T. M. Klapwijk, “Development of high-Q superconducting resonators for use as kinetic inductance detectors,” Adv. Space Res. 40(5), 708–713 (2007).
[Crossref]

Klem, J. F.

B. V. Olson, E. A. Kadlec, J. K. Kim, J. F. Klem, S. D. Hawkins, E. A. Shaner, and M. E. Flatte, “Intensity-and Temperature-dependent carrier recombination in InAs/In As1- xSbx type-II superlattices,” Phys. Rev. Appl. 3(4), 044010 (2015).
[Crossref]

Langman, E.

LeClair, S. R.

M. Tabib-Azar, D. Akinwande, G. E. Ponchak, and S. R. LeClair, “Evanescent microwave probes on high-resistivity silicon and its application in characterization of semiconductors,” Rev. Sci. Instrum. 70(7), 3083–3086 (1999).
[Crossref]

Leclercq, S.

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

LeDuc, H. G.

P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broadband superconducting detector suitable for use in large arrays,” Nature 425(6960), 817–821 (2003).
[Crossref] [PubMed]

Li, Z.

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterizing and Modeling Nonlinear Intermodulation Distortions in Modified Uni-Traveling Carrier Photodiodes,” IEEE J. Quantum Electron. 47(10), 1312–1319 (2011).
[Crossref]

Liu, R.

R. Liu, R. Lu, C. Roberts, S. Gong, J. W. Allen, M. S. Allen, B. R. Wenner, and D. Wasserman, “Multiplexed infrared photodetection using resonant radio-frequency circuits,” Appl. Phys. Lett. 108(6), 061101 (2016).
[Crossref]

Logan, R. A.

E. Yablonovitch, R. Bhat, J. P. Harbison, and R. A. Logan, “Survey of defect mediated recombination lifetimes in GaAs epilayers grown by different methods,” Appl. Phys. Lett. 50(17), 1197–1199 (1987).
[Crossref]

Lu, R.

R. Liu, R. Lu, C. Roberts, S. Gong, J. W. Allen, M. S. Allen, B. R. Wenner, and D. Wasserman, “Multiplexed infrared photodetection using resonant radio-frequency circuits,” Appl. Phys. Lett. 108(6), 061101 (2016).
[Crossref]

Macias-Perez, J.

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

Marks, B. S.

Masetti, G.

G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility against carrier concentration in arsenic-, phosorus-, and boron-doped silicon,” IEEE T. Electron Dev. 30(7), 764–769 (1983).
[Crossref]

Mauskopf, P.

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

S. Doyle, P. Mauskopf, J. Naylon, A. Porch, and C. Duncombe, “Lumped element kinetic inductance detectors,” J. Low Temp. Phys. 151(1–2), 530–536 (2008).
[Crossref]

Mazin, B. A.

G. Ulbricht, B. A. Mazin, P. Szypryt, A. B. Walter, C. Bockstiegel, and B. Bumble, “Highly multiplexible thermal kinetic inductance detectors for X-Ray imaging spectroscopy,” Appl. Phys. Lett. 106(25), 251103 (2015).
[Crossref]

B. A. Mazin, B. Bumble, S. R. Meeker, K. O’Brien, S. McHugh, and E. Langman, “A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics,” Opt. Express 20(2), 1503–1511 (2012).
[Crossref] [PubMed]

B. A. Mazin, B. Bumble, P. K. Day, M. E. Eckart, S. Golwala, J. Zmuidzinas, and F. A. Harrison, “Position sensitive x-ray spectrophotometer using microwave kinetic inductance detectors,” Appl. Phys. Lett. 89(22), 222507 (2006).
[Crossref]

P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broadband superconducting detector suitable for use in large arrays,” Nature 425(6960), 817–821 (2003).
[Crossref] [PubMed]

McHugh, S.

Meeker, S. R.

Menyuk, C. R.

Miller, A.

J. J. A. Baselmans, S. J. C. Yates, B. Young, B. Cabrera, and A. Miller, “Long quasiparticle lifetime in aluminum microwave kinetic inductance detectors using coaxial stray light filters,” AIP Conf. Proc. 1185(1), 160–163 (2009).
[Crossref]

Monfardini, A.

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

Naylon, J.

S. Doyle, P. Mauskopf, J. Naylon, A. Porch, and C. Duncombe, “Lumped element kinetic inductance detectors,” J. Low Temp. Phys. 151(1–2), 530–536 (2008).
[Crossref]

Nguyen, C. T.

T. Suzuki, H. Takita, C. T. Nguyen, and K. Iiyama, “Carrier recombination lifetime in InAs thin films bonded on low-k flexible substrates,” AIP Adv. 2(4), 042105 (2012).
[Crossref]

O’Brien, K.

Olson, B. V.

B. V. Olson, E. A. Kadlec, J. K. Kim, J. F. Klem, S. D. Hawkins, E. A. Shaner, and M. E. Flatte, “Intensity-and Temperature-dependent carrier recombination in InAs/In As1- xSbx type-II superlattices,” Phys. Rev. Appl. 3(4), 044010 (2015).
[Crossref]

Pan, H.

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterizing and Modeling Nonlinear Intermodulation Distortions in Modified Uni-Traveling Carrier Photodiodes,” IEEE J. Quantum Electron. 47(10), 1312–1319 (2011).
[Crossref]

Pappas, D. P.

M. R. Vissers, J. Gao, D. S. Wisbey, D. A. Hite, C. C. Tsuei, A. D. Corcoles, M. Steffen, and D. P. Pappas, “Low loss superconducting titanium nitride coplanar waveguide resonators,” Appl. Phys. Lett. 97(23), 232509 (2010).
[Crossref]

Ponchak, G. E.

M. Tabib-Azar, D. Akinwande, G. E. Ponchak, and S. R. LeClair, “Evanescent microwave probes on high-resistivity silicon and its application in characterization of semiconductors,” Rev. Sci. Instrum. 70(7), 3083–3086 (1999).
[Crossref]

Porch, A.

S. Doyle, P. Mauskopf, J. Naylon, A. Porch, and C. Duncombe, “Lumped element kinetic inductance detectors,” J. Low Temp. Phys. 151(1–2), 530–536 (2008).
[Crossref]

Richards, P. L.

J. Zmuidzinas and P. L. Richards, “Superconducting detectors and mixers for millimeter and submillimeter astrophysics,” Proc. IEEE 92(10), 1597–1616 (2004).
[Crossref]

Roberts, C.

R. Liu, R. Lu, C. Roberts, S. Gong, J. W. Allen, M. S. Allen, B. R. Wenner, and D. Wasserman, “Multiplexed infrared photodetection using resonant radio-frequency circuits,” Appl. Phys. Lett. 108(6), 061101 (2016).
[Crossref]

Roesch, M.

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

Schirber, J. E.

I. J. Fritz, B. L. Doyle, J. E. Schirber, E. D. Jones, L. R. Dawson, and T. J. Drummond, “Influence of built-in strain on Hall effect in InGaAs/GaAs quantum well structures with p-type modulation doping,” Appl. Phys. Lett. 49(10), 581–583 (1986).
[Crossref]

Schmid, W.

J. Dziewior and W. Schmid, “Auger coefficients for highly doped and highly excited silicon,” Appl. Phys. Lett. 31(5), 346–348 (1977).
[Crossref]

Schuster, K. F.

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

Seeds, A. J.

A. J. Seeds, “Microwave photonics,” IEEE T. Microw. Theory 50(3), 877–887 (2002).
[Crossref]

Severi, M.

G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility against carrier concentration in arsenic-, phosorus-, and boron-doped silicon,” IEEE T. Electron Dev. 30(7), 764–769 (1983).
[Crossref]

Shaner, E. A.

B. V. Olson, E. A. Kadlec, J. K. Kim, J. F. Klem, S. D. Hawkins, E. A. Shaner, and M. E. Flatte, “Intensity-and Temperature-dependent carrier recombination in InAs/In As1- xSbx type-II superlattices,” Phys. Rev. Appl. 3(4), 044010 (2015).
[Crossref]

Shieh, H. M.

H. M. Shieh, W. C. Hsu, and C. L. Wu, “Very high two‐dimensional electron gas concentrations with enhanced mobilities in selectively double‐δ‐doped GaAs/InGaAs pseudomorphic single quantum well heterostructures,” Appl. Phys. Lett. 63(4), 509–511 (1993).
[Crossref]

Solmi, S.

G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility against carrier concentration in arsenic-, phosorus-, and boron-doped silicon,” IEEE T. Electron Dev. 30(7), 764–769 (1983).
[Crossref]

Soref, R.

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quant. 12(6), 1678–1687 (2006).
[Crossref]

Steffen, M.

M. R. Vissers, J. Gao, D. S. Wisbey, D. A. Hite, C. C. Tsuei, A. D. Corcoles, M. Steffen, and D. P. Pappas, “Low loss superconducting titanium nitride coplanar waveguide resonators,” Appl. Phys. Lett. 97(23), 232509 (2010).
[Crossref]

Suzuki, T.

T. Suzuki, H. Takita, C. T. Nguyen, and K. Iiyama, “Carrier recombination lifetime in InAs thin films bonded on low-k flexible substrates,” AIP Adv. 2(4), 042105 (2012).
[Crossref]

Swenson, L.

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

Szypryt, P.

G. Ulbricht, B. A. Mazin, P. Szypryt, A. B. Walter, C. Bockstiegel, and B. Bumble, “Highly multiplexible thermal kinetic inductance detectors for X-Ray imaging spectroscopy,” Appl. Phys. Lett. 106(25), 251103 (2015).
[Crossref]

Tabib-Azar, M.

M. Tabib-Azar, D. Akinwande, G. E. Ponchak, and S. R. LeClair, “Evanescent microwave probes on high-resistivity silicon and its application in characterization of semiconductors,” Rev. Sci. Instrum. 70(7), 3083–3086 (1999).
[Crossref]

Takita, H.

T. Suzuki, H. Takita, C. T. Nguyen, and K. Iiyama, “Carrier recombination lifetime in InAs thin films bonded on low-k flexible substrates,” AIP Adv. 2(4), 042105 (2012).
[Crossref]

Tsuei, C. C.

M. R. Vissers, J. Gao, D. S. Wisbey, D. A. Hite, C. C. Tsuei, A. D. Corcoles, M. Steffen, and D. P. Pappas, “Low loss superconducting titanium nitride coplanar waveguide resonators,” Appl. Phys. Lett. 97(23), 232509 (2010).
[Crossref]

Tucker, C.

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

Ulbricht, G.

G. Ulbricht, B. A. Mazin, P. Szypryt, A. B. Walter, C. Bockstiegel, and B. Bumble, “Highly multiplexible thermal kinetic inductance detectors for X-Ray imaging spectroscopy,” Appl. Phys. Lett. 106(25), 251103 (2015).
[Crossref]

Urick, V. J.

Vayonakis, A.

P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broadband superconducting detector suitable for use in large arrays,” Nature 425(6960), 817–821 (2003).
[Crossref] [PubMed]

Vescovi, C.

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

Vissers, M. R.

M. R. Vissers, J. Gao, D. S. Wisbey, D. A. Hite, C. C. Tsuei, A. D. Corcoles, M. Steffen, and D. P. Pappas, “Low loss superconducting titanium nitride coplanar waveguide resonators,” Appl. Phys. Lett. 97(23), 232509 (2010).
[Crossref]

Walter, A. B.

G. Ulbricht, B. A. Mazin, P. Szypryt, A. B. Walter, C. Bockstiegel, and B. Bumble, “Highly multiplexible thermal kinetic inductance detectors for X-Ray imaging spectroscopy,” Appl. Phys. Lett. 106(25), 251103 (2015).
[Crossref]

Wasserman, D.

R. Liu, R. Lu, C. Roberts, S. Gong, J. W. Allen, M. S. Allen, B. R. Wenner, and D. Wasserman, “Multiplexed infrared photodetection using resonant radio-frequency circuits,” Appl. Phys. Lett. 108(6), 061101 (2016).
[Crossref]

Wenner, B. R.

R. Liu, R. Lu, C. Roberts, S. Gong, J. W. Allen, M. S. Allen, B. R. Wenner, and D. Wasserman, “Multiplexed infrared photodetection using resonant radio-frequency circuits,” Appl. Phys. Lett. 108(6), 061101 (2016).
[Crossref]

Williams, K. J.

Wisbey, D. S.

M. R. Vissers, J. Gao, D. S. Wisbey, D. A. Hite, C. C. Tsuei, A. D. Corcoles, M. Steffen, and D. P. Pappas, “Low loss superconducting titanium nitride coplanar waveguide resonators,” Appl. Phys. Lett. 97(23), 232509 (2010).
[Crossref]

Wu, C. L.

H. M. Shieh, W. C. Hsu, and C. L. Wu, “Very high two‐dimensional electron gas concentrations with enhanced mobilities in selectively double‐δ‐doped GaAs/InGaAs pseudomorphic single quantum well heterostructures,” Appl. Phys. Lett. 63(4), 509–511 (1993).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, R. Bhat, J. P. Harbison, and R. A. Logan, “Survey of defect mediated recombination lifetimes in GaAs epilayers grown by different methods,” Appl. Phys. Lett. 50(17), 1197–1199 (1987).
[Crossref]

Yates, S. J. C.

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

J. J. A. Baselmans, S. J. C. Yates, B. Young, B. Cabrera, and A. Miller, “Long quasiparticle lifetime in aluminum microwave kinetic inductance detectors using coaxial stray light filters,” AIP Conf. Proc. 1185(1), 160–163 (2009).
[Crossref]

R. Barends, J. J. A. Baselmans, S. J. C. Yates, J. R. Gao, J. N. Hovenier, and T. M. Klapwijk, “Quasiparticle relaxation in optically excited high-Q superconducting resonators,” Phys. Rev. Lett. 100(25), 257002 (2008).
[Crossref] [PubMed]

J. J. A. Baselmans, S. J. C. Yates, P. de Korte, H. Hoevers, R. Barends, J. N. Hovenier, J. R. Gao, and T. M. Klapwijk, “Development of high-Q superconducting resonators for use as kinetic inductance detectors,” Adv. Space Res. 40(5), 708–713 (2007).
[Crossref]

Young, B.

J. J. A. Baselmans, S. J. C. Yates, B. Young, B. Cabrera, and A. Miller, “Long quasiparticle lifetime in aluminum microwave kinetic inductance detectors using coaxial stray light filters,” AIP Conf. Proc. 1185(1), 160–163 (2009).
[Crossref]

Zmuidzinas, J.

J. Zmuidzinas, “Superconducting microresonators: Physics and Applications,” Annu. Rev. Condens. Matter Phys. 3(1), 169–214 (2012).
[Crossref]

B. A. Mazin, B. Bumble, P. K. Day, M. E. Eckart, S. Golwala, J. Zmuidzinas, and F. A. Harrison, “Position sensitive x-ray spectrophotometer using microwave kinetic inductance detectors,” Appl. Phys. Lett. 89(22), 222507 (2006).
[Crossref]

J. Zmuidzinas and P. L. Richards, “Superconducting detectors and mixers for millimeter and submillimeter astrophysics,” Proc. IEEE 92(10), 1597–1616 (2004).
[Crossref]

P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broadband superconducting detector suitable for use in large arrays,” Nature 425(6960), 817–821 (2003).
[Crossref] [PubMed]

Adv. Space Res. (1)

J. J. A. Baselmans, S. J. C. Yates, P. de Korte, H. Hoevers, R. Barends, J. N. Hovenier, J. R. Gao, and T. M. Klapwijk, “Development of high-Q superconducting resonators for use as kinetic inductance detectors,” Adv. Space Res. 40(5), 708–713 (2007).
[Crossref]

AIP Adv. (1)

T. Suzuki, H. Takita, C. T. Nguyen, and K. Iiyama, “Carrier recombination lifetime in InAs thin films bonded on low-k flexible substrates,” AIP Adv. 2(4), 042105 (2012).
[Crossref]

AIP Conf. Proc. (1)

J. J. A. Baselmans, S. J. C. Yates, B. Young, B. Cabrera, and A. Miller, “Long quasiparticle lifetime in aluminum microwave kinetic inductance detectors using coaxial stray light filters,” AIP Conf. Proc. 1185(1), 160–163 (2009).
[Crossref]

Annu. Rev. Condens. Matter Phys. (1)

J. Zmuidzinas, “Superconducting microresonators: Physics and Applications,” Annu. Rev. Condens. Matter Phys. 3(1), 169–214 (2012).
[Crossref]

Appl. Phys. Lett. (9)

G. Ulbricht, B. A. Mazin, P. Szypryt, A. B. Walter, C. Bockstiegel, and B. Bumble, “Highly multiplexible thermal kinetic inductance detectors for X-Ray imaging spectroscopy,” Appl. Phys. Lett. 106(25), 251103 (2015).
[Crossref]

B. A. Mazin, B. Bumble, P. K. Day, M. E. Eckart, S. Golwala, J. Zmuidzinas, and F. A. Harrison, “Position sensitive x-ray spectrophotometer using microwave kinetic inductance detectors,” Appl. Phys. Lett. 89(22), 222507 (2006).
[Crossref]

M. R. Vissers, J. Gao, D. S. Wisbey, D. A. Hite, C. C. Tsuei, A. D. Corcoles, M. Steffen, and D. P. Pappas, “Low loss superconducting titanium nitride coplanar waveguide resonators,” Appl. Phys. Lett. 97(23), 232509 (2010).
[Crossref]

E. Yablonovitch, R. Bhat, J. P. Harbison, and R. A. Logan, “Survey of defect mediated recombination lifetimes in GaAs epilayers grown by different methods,” Appl. Phys. Lett. 50(17), 1197–1199 (1987).
[Crossref]

R. Liu, R. Lu, C. Roberts, S. Gong, J. W. Allen, M. S. Allen, B. R. Wenner, and D. Wasserman, “Multiplexed infrared photodetection using resonant radio-frequency circuits,” Appl. Phys. Lett. 108(6), 061101 (2016).
[Crossref]

S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
[Crossref]

I. J. Fritz, B. L. Doyle, J. E. Schirber, E. D. Jones, L. R. Dawson, and T. J. Drummond, “Influence of built-in strain on Hall effect in InGaAs/GaAs quantum well structures with p-type modulation doping,” Appl. Phys. Lett. 49(10), 581–583 (1986).
[Crossref]

H. M. Shieh, W. C. Hsu, and C. L. Wu, “Very high two‐dimensional electron gas concentrations with enhanced mobilities in selectively double‐δ‐doped GaAs/InGaAs pseudomorphic single quantum well heterostructures,” Appl. Phys. Lett. 63(4), 509–511 (1993).
[Crossref]

J. Dziewior and W. Schmid, “Auger coefficients for highly doped and highly excited silicon,” Appl. Phys. Lett. 31(5), 346–348 (1977).
[Crossref]

Astrophys. J. Suppl. Ser. (1)

A. Monfardini, A. Benoit, A. Bideaud, L. Swenson, A. Cruciani, P. Camus, C. Hoffmann, F. X. Desert, S. Dolye, P. Ade, P. Mauskopf, C. Tucker, M. Roesch, S. Leclercq, K. F. Schuster, A. Endo, A. Baryshev, J. J. A. Baselmans, L. Ferrari, S. J. C. Yates, O. Bourrion, J. Macias-Perez, C. Vescovi, M. Calvo, and C. Giordano, “A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope,” Astrophys. J. Suppl. Ser. 194(2), 24 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterizing and Modeling Nonlinear Intermodulation Distortions in Modified Uni-Traveling Carrier Photodiodes,” IEEE J. Quantum Electron. 47(10), 1312–1319 (2011).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quant. 12(6), 1678–1687 (2006).
[Crossref]

IEEE T. Electron Dev. (1)

G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility against carrier concentration in arsenic-, phosorus-, and boron-doped silicon,” IEEE T. Electron Dev. 30(7), 764–769 (1983).
[Crossref]

IEEE T. Microw. Theory (2)

N. Dagli, “Wide-bandwidth lasers and modulators for RF photonics,” IEEE T. Microw. Theory 47(7), 1151–1171 (1999).
[Crossref]

A. J. Seeds, “Microwave photonics,” IEEE T. Microw. Theory 50(3), 877–887 (2002).
[Crossref]

J. Appl. Phys. (1)

S. Dixon, R. F. Giordano, and H. Jacobs, “Semiconductor conductivity measurements using a high-sensitivity microwave technique,” J. Appl. Phys. 45(6), 2570–2578 (1974).
[Crossref]

J. Lightwave Technol. (1)

J. Low Temp. Phys. (1)

S. Doyle, P. Mauskopf, J. Naylon, A. Porch, and C. Duncombe, “Lumped element kinetic inductance detectors,” J. Low Temp. Phys. 151(1–2), 530–536 (2008).
[Crossref]

Nature (1)

P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broadband superconducting detector suitable for use in large arrays,” Nature 425(6960), 817–821 (2003).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. Appl. (1)

B. V. Olson, E. A. Kadlec, J. K. Kim, J. F. Klem, S. D. Hawkins, E. A. Shaner, and M. E. Flatte, “Intensity-and Temperature-dependent carrier recombination in InAs/In As1- xSbx type-II superlattices,” Phys. Rev. Appl. 3(4), 044010 (2015).
[Crossref]

Phys. Rev. Lett. (1)

R. Barends, J. J. A. Baselmans, S. J. C. Yates, J. R. Gao, J. N. Hovenier, and T. M. Klapwijk, “Quasiparticle relaxation in optically excited high-Q superconducting resonators,” Phys. Rev. Lett. 100(25), 257002 (2008).
[Crossref] [PubMed]

Proc. IEEE (1)

J. Zmuidzinas and P. L. Richards, “Superconducting detectors and mixers for millimeter and submillimeter astrophysics,” Proc. IEEE 92(10), 1597–1616 (2004).
[Crossref]

Rev. Sci. Instrum. (1)

M. Tabib-Azar, D. Akinwande, G. E. Ponchak, and S. R. LeClair, “Evanescent microwave probes on high-resistivity silicon and its application in characterization of semiconductors,” Rev. Sci. Instrum. 70(7), 3083–3086 (1999).
[Crossref]

Semicond. Sci. Technol. (1)

E. Coué and J. P. Chausse, “A microwave method for electrical measurement of semiconductors: theory and experiment,” Semicond. Sci. Technol. 15(2), 178–183 (2000).
[Crossref]

Other (2)

O. Madelung, Semiconductors: Data Handbook (Springer, 2004).

D. L. Rode, Semiconductors and Semimetals (Elsevier, 1975), Chap. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Overhead and cross-sectional schematic of single-element detector with relevant dimensions. (b) RF response (insertion loss, S21) of detectors fabricated on a SI GaAs wafer as a function of split gap size. (c) 3D schematic of photo-excited detector with (d) experimental data showing RF spectra of dark (blue solid) and photo-excited detector (blue dashed), demonstrating the quenching of the RF resonance under photo-excitation.

Fig. 2
Fig. 2

(a) Spectral response and (b) spatial response experimental set-ups. Inserted plot in (b) shows the beam profile for the exciting laser in the spatial response set-up. Cross-sectional schematic of detector using (c) wafer absorbing material and (d) epitaxial absorber.

Fig. 3
Fig. 3

Normalized spectral response of the epi-GaAs (black) and HR-Si (red) detector samples.

Fig. 4
Fig. 4

Transmitted (readout) signal as a function of incident optical power for RRFPs with capacitive gaps G1 = 20µm using different absorber materials: epitaxial InAs (green), InGaAs/GaAs QWs (blue), and epitaxial GaAs (grey), as well as wafers of SI GaAs (black) and HR Si (red).

Fig. 5
Fig. 5

(a) Simulated electric field distribution, on resonance, for the bottom arms of the SRR on a RRFP resonant circuit with 80µm capacitive gap. (b) Detector response as a function of the position of the incident laser along the bottom arms of the RF resonant detector simulated in (a).

Fig. 6
Fig. 6

(a) Schematic of RF resonant circuit. Detector response as a function of position (b) perpendicular to busline, through capacitive gap and (c) parallel to busline through capacitive gap, for RF resonators with capacitive gaps of 20 µm (green), 40 µm (blue), 80 µm (red), and 120 µm (black). Detector response is collected along the dashed lines in the schematic, dotted lines are guides to the eye. Simulations of RF electric field magnitude on resonance at semiconductor surface for RRFPs with (d) 20 µm, (e) 40 µm, (f) 80 µm, and (g) 120µm capacitive gaps.

Fig. 7
Fig. 7

Peak responsivity for RF detector structures as a function of SRR gap size (all other SRR geometries are unchanged). Responsivity is measured, for each resonator, at the spatial location where the response is largest. Thus the large gap size structures have the incident light positioned near the edge of the SRR gap, while the smaller gap sizes are measured with the laser spot centered in the gap.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ=q( μ n n+ μ p p ) ,  μ n,p = q m n,p * τ sc  , n=p=G τ r

Metrics