Abstract

The characteristics of a convex-concave linear resonator under the thermal lensing effect are theoretically analyzed to find an analytical model for designing end-pumped solid-state lasers with flexible cavity lengths. By exploiting the design model, the power scaling for continuous-wave operation under strong thermal lensing can be easily achieved in the proposed resonator with different cavity lengths. Furthermore, the proposed resonator is applied to explore the exclusive influence of cavity length on the self-mode-locked (SML) operation. It is discovered that the lasing longitudinal modes will split into multiple groups in optical spectrum to lead to a multi-pulse mode-locked temporal state when the cavity length increases. Finally, a theoretical model is derived to reconstruct the experimental results of SML operation to deduce a simple relationship between the group number of lasing modes and the cavity length.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modelling end-pumped passively Q-switched Nd-doped crystal lasers: manifestation by a Nd:YVO4/Cr4+:YAG system with a concave-convex resonator

P. H. Tuan, C. C. Chang, F. L. Chang, C. Y. Lee, C. L. Sung, C. Y. Cho, Y. F. Chen, and K. W. Su
Opt. Express 25(3) 1710-1722 (2017)

Exploiting birefringent thermal lensing effect to manipulate polarization states of an Nd:YVO4 self-mode-locked laser

P. H. Tuan, M. C. Tsai, and Y. F. Chen
Opt. Express 25(23) 29000-29009 (2017)

Dynamics of solid-state lasers pumped by mode-locked lasers

Barbara Wellmann, David J Spence, and David W Coutts
Opt. Express 23(4) 4441-4452 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
    [Crossref]
  2. W. Koechner, “Thermal lensing in a Nd:YAG laser rod,” Appl. Opt. 9(11), 2548–2553 (1970).
    [Crossref] [PubMed]
  3. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
    [Crossref]
  4. S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28(4), 997–1009 (1992).
    [Crossref]
  5. Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, “Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 29–34 (1997).
    [Crossref]
  6. W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D 34(16), 2381–2395 (2001).
    [Crossref]
  7. M. Tsunekane, N. Taguchi, and H. Inaba, “Improvement of thermal effects in a diode-end-pumped, composite Tm:YAG rod with undoped ends,” Appl. Opt. 38(9), 1788–1791 (1999).
    [Crossref] [PubMed]
  8. Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions,” Opt. Express 16(25), 21155–21160 (2008).
    [Crossref] [PubMed]
  9. I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50(3), 133–140 (2014).
    [Crossref]
  10. J. Song, A. Liu, K. Okino, and K. Ueda, “Control of the thermal lensing effect with different pump light distributions,” Appl. Opt. 36(30), 8051–8055 (1997).
    [Crossref] [PubMed]
  11. M. Frede, R. Wilhelm, M. Brendel, C. Fallnich, F. Seifert, B. Willke, and K. Danzmann, “High power fundamental mode Nd:YAG laser with efficient birefringence compensation,” Opt. Express 12(15), 3581–3589 (2004).
    [Crossref] [PubMed]
  12. M. S. Roth, E. W. Wyss, T. Graf, and H. P. Weber, “End-pumped Nd:YAG laser with self-adaptive compensation of the thermal lens,” IEEE J. Quantum Electron. 40(12), 1700–1703 (2004).
    [Crossref]
  13. H. Chen, Q. Liu, X. Yan, and M. Gong, “High power Q-switched TEM00 Nd:YVO4 laser with self-adaptive compensation of thermal lensing effect,” Laser Phys. 20(7), 1594–1597 (2010).
    [Crossref]
  14. Y. F. Chen, “Pump-to-mode size ratio dependence of thermal loading in diode-end-pumped solid-state lasers,” J. Opt. Soc. Am. B 17(11), 1835–1840 (2000).
    [Crossref]
  15. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
    [Crossref]
  16. B. J. Garrec, G. J. Razé, P. Y. Thro, and M. Gilbert, “High-average-power diode-array-pumped frequency-doubled YAG laser,” Opt. Lett. 21(24), 1990–1992 (1996).
    [Crossref] [PubMed]
  17. S. H. Cho, B. E. Bouma, E. P. Ippen, and J. G. Fujimoto, “Low-repetition-rate high-peak-power Kerr-lens mode-locked Ti:Al2O3 laser with a multiple-pass cavity,” Opt. Lett. 24(6), 417–419 (1999).
    [Crossref] [PubMed]
  18. W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).
  19. R. B. Chesler and D. Maydan, “Convex-concave resonators for TEM00 operation of solid-state ion lasers,” J. Appl. Phys. 43(5), 2254–2257 (1972).
    [Crossref]
  20. W. A. Clarkson, R. Koch, and D. C. Hanna, “Room-temperature diode-bar-pumped Nd:YAG laser at 946 nm,” Opt. Lett. 21(10), 737–739 (1996).
    [Crossref] [PubMed]
  21. J. J. Kasinski, W. Hughes, D. DiBiase, P. Bournes, and R. Burnham, “One Joule output from a diode-array-pumped Nd:YAG laser with side-pumped rod geometry,” IEEE J. Quantum Electron. 28(4), 977–985 (1992).
    [Crossref]
  22. C. Y. Cho, Y. P. Huang, Y. J. Huang, Y. C. Chen, K. W. Su, and Y. F. Chen, “Compact high-pulse-energy passively Q-switched Nd:YLF laser with an ultra-low-magnification unstable resonator: application for efficient optical parametric oscillator,” Opt. Express 21(2), 1489–1495 (2013).
    [Crossref] [PubMed]
  23. G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y2O3 ceramic laser,” Opt. Lett. 32(18), 2741–2743 (2007).
    [Crossref] [PubMed]
  24. H. C. Liang, R. C. Chen, Y. J. Huang, K. W. Su, and Y. F. Chen, “Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd:YVO4 laser,” Opt. Express 16(25), 21149–21154 (2008).
    [Crossref] [PubMed]
  25. F. Krausz, T. Brabec, and C. Spielmann, “Self-starting passive mode locking,” Opt. Lett. 16(4), 235–237 (1991).
    [Crossref] [PubMed]
  26. F. Bretenaker and N. Treps, Laser: 50 Years of Discoveries (World Scientific, 2015).
  27. E. Hechit, Optics, 4th ed. (Addison-Wesley, 1998), Chap. 5.
  28. N. Hodgson and H. Weber, Laser Resonators and Beam Propagation, 2nd ed. (Springer, 2005), Chaps. 8 and 12.
  29. A. Agnesi, E. Piccinini, and G. C. Reali, “Influence of thermal effects in Kerr-lens mode-locked femtosecond Cr4+:forsterite lasers,” Opt. Commun. 135(1–3), 77–82 (1997).
    [Crossref]
  30. A. Agnesi, C. Pennacchio, G. C. Reali, and V. Kubecek, “High-power diode-pumped picosecond Nd(3+):YVO(4) laser,” Opt. Lett. 22(21), 1645–1647 (1997).
    [Crossref] [PubMed]
  31. P. Li, Q. P. Wang, X. Y. Zhang, J. Lian, J. Chang, Z. J. Liu, S. Z. Fan, and X. H. Chen, “Compact and efficient Kerr-lens mode-locked diode-pumped actively Q-switched YVO4-Nd:YVO4 laser,” Opt. Commun. 283(24), 5139–5144 (2010).
    [Crossref]
  32. H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 35(1), 4–6 (2010).
    [Crossref] [PubMed]
  33. Y. F. Chen, H. C. Liang, J. C. Tung, K. W. Su, Y. Y. Zhang, H. J. Zhang, H. H. Yu, and J. Y. Wang, “Spontaneous subpicosecond pulse formation with pulse repetition rate of 80 GHz in a diode-pumped Nd:SrGdGa3O7 disordered crystal laser,” Opt. Lett. 37(4), 461–463 (2012).
    [Crossref] [PubMed]
  34. H. C. Liang, T. W. Wu, J. C. Tung, C. H. Tsou, K. F. Huang, and Y. F. Chen, “Total self-mode locking of multi-pass geometric modes in diode-pumped Nd:YVO4 lasers,” Laser Phys. Lett. 10(10), 105804 (2013).
    [Crossref]
  35. Y. Zhang, H. Yu, H. Zhang, A. Di Lieto, M. Tonelli, and J. Wang, “Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate,” Opt. Lett. 41(12), 2692–2695 (2016).
    [Crossref] [PubMed]
  36. Y. Zhang, H. Yu, H. Zhang, X. Xu, J. Xu, and J. Wang, “Self-mode-locked Laguerre-Gaussian beam with staged topological charge by thermal-optical field coupling,” Opt. Express 24(5), 5514–5522 (2016).
    [Crossref]
  37. C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence,” Opt. Lett. 41(8), 1781–1784 (2016).
    [Crossref] [PubMed]
  38. H. Liu, J. Nees, and G. Mourou, “Diode-pumped Kerr-lens mode-locked Yb:KY(WO4)2 laser,” Opt. Lett. 26(21), 1723–1725 (2001).
    [Crossref] [PubMed]
  39. M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
    [Crossref] [PubMed]
  40. Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
    [Crossref]
  41. Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B 103(4), 841–846 (2011).
    [Crossref]

2016 (3)

2015 (2)

M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
[Crossref] [PubMed]

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

2014 (1)

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50(3), 133–140 (2014).
[Crossref]

2013 (2)

2012 (1)

2011 (1)

Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B 103(4), 841–846 (2011).
[Crossref]

2010 (3)

P. Li, Q. P. Wang, X. Y. Zhang, J. Lian, J. Chang, Z. J. Liu, S. Z. Fan, and X. H. Chen, “Compact and efficient Kerr-lens mode-locked diode-pumped actively Q-switched YVO4-Nd:YVO4 laser,” Opt. Commun. 283(24), 5139–5144 (2010).
[Crossref]

H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 35(1), 4–6 (2010).
[Crossref] [PubMed]

H. Chen, Q. Liu, X. Yan, and M. Gong, “High power Q-switched TEM00 Nd:YVO4 laser with self-adaptive compensation of thermal lensing effect,” Laser Phys. 20(7), 1594–1597 (2010).
[Crossref]

2008 (2)

2007 (1)

2004 (2)

M. Frede, R. Wilhelm, M. Brendel, C. Fallnich, F. Seifert, B. Willke, and K. Danzmann, “High power fundamental mode Nd:YAG laser with efficient birefringence compensation,” Opt. Express 12(15), 3581–3589 (2004).
[Crossref] [PubMed]

M. S. Roth, E. W. Wyss, T. Graf, and H. P. Weber, “End-pumped Nd:YAG laser with self-adaptive compensation of the thermal lens,” IEEE J. Quantum Electron. 40(12), 1700–1703 (2004).
[Crossref]

2001 (2)

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D 34(16), 2381–2395 (2001).
[Crossref]

H. Liu, J. Nees, and G. Mourou, “Diode-pumped Kerr-lens mode-locked Yb:KY(WO4)2 laser,” Opt. Lett. 26(21), 1723–1725 (2001).
[Crossref] [PubMed]

2000 (1)

1999 (2)

1997 (4)

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, “Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 29–34 (1997).
[Crossref]

J. Song, A. Liu, K. Okino, and K. Ueda, “Control of the thermal lensing effect with different pump light distributions,” Appl. Opt. 36(30), 8051–8055 (1997).
[Crossref] [PubMed]

A. Agnesi, E. Piccinini, and G. C. Reali, “Influence of thermal effects in Kerr-lens mode-locked femtosecond Cr4+:forsterite lasers,” Opt. Commun. 135(1–3), 77–82 (1997).
[Crossref]

A. Agnesi, C. Pennacchio, G. C. Reali, and V. Kubecek, “High-power diode-pumped picosecond Nd(3+):YVO(4) laser,” Opt. Lett. 22(21), 1645–1647 (1997).
[Crossref] [PubMed]

1996 (2)

1994 (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

1992 (2)

S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28(4), 997–1009 (1992).
[Crossref]

J. J. Kasinski, W. Hughes, D. DiBiase, P. Bournes, and R. Burnham, “One Joule output from a diode-array-pumped Nd:YAG laser with side-pumped rod geometry,” IEEE J. Quantum Electron. 28(4), 977–985 (1992).
[Crossref]

1991 (1)

1990 (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

1988 (1)

T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
[Crossref]

1972 (1)

R. B. Chesler and D. Maydan, “Convex-concave resonators for TEM00 operation of solid-state ion lasers,” J. Appl. Phys. 43(5), 2254–2257 (1972).
[Crossref]

1970 (1)

Agnesi, A.

A. Agnesi, E. Piccinini, and G. C. Reali, “Influence of thermal effects in Kerr-lens mode-locked femtosecond Cr4+:forsterite lasers,” Opt. Commun. 135(1–3), 77–82 (1997).
[Crossref]

A. Agnesi, C. Pennacchio, G. C. Reali, and V. Kubecek, “High-power diode-pumped picosecond Nd(3+):YVO(4) laser,” Opt. Lett. 22(21), 1645–1647 (1997).
[Crossref] [PubMed]

Bouma, B. E.

Bournes, P.

J. J. Kasinski, W. Hughes, D. DiBiase, P. Bournes, and R. Burnham, “One Joule output from a diode-array-pumped Nd:YAG laser with side-pumped rod geometry,” IEEE J. Quantum Electron. 28(4), 977–985 (1992).
[Crossref]

Bowers, M. S.

S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28(4), 997–1009 (1992).
[Crossref]

Brabec, T.

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Brendel, M.

Burnham, R.

J. J. Kasinski, W. Hughes, D. DiBiase, P. Bournes, and R. Burnham, “One Joule output from a diode-array-pumped Nd:YAG laser with side-pumped rod geometry,” IEEE J. Quantum Electron. 28(4), 977–985 (1992).
[Crossref]

Byer, R. L.

T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
[Crossref]

Chang, J.

P. Li, Q. P. Wang, X. Y. Zhang, J. Lian, J. Chang, Z. J. Liu, S. Z. Fan, and X. H. Chen, “Compact and efficient Kerr-lens mode-locked diode-pumped actively Q-switched YVO4-Nd:YVO4 laser,” Opt. Commun. 283(24), 5139–5144 (2010).
[Crossref]

Chang, M. T.

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
[Crossref] [PubMed]

Chang, Y. T.

Chen, H.

H. Chen, Q. Liu, X. Yan, and M. Gong, “High power Q-switched TEM00 Nd:YVO4 laser with self-adaptive compensation of thermal lensing effect,” Laser Phys. 20(7), 1594–1597 (2010).
[Crossref]

Chen, R. C.

Chen, X. H.

P. Li, Q. P. Wang, X. Y. Zhang, J. Lian, J. Chang, Z. J. Liu, S. Z. Fan, and X. H. Chen, “Compact and efficient Kerr-lens mode-locked diode-pumped actively Q-switched YVO4-Nd:YVO4 laser,” Opt. Commun. 283(24), 5139–5144 (2010).
[Crossref]

Chen, Y. C.

Chen, Y. F.

C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence,” Opt. Lett. 41(8), 1781–1784 (2016).
[Crossref] [PubMed]

M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
[Crossref] [PubMed]

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

H. C. Liang, T. W. Wu, J. C. Tung, C. H. Tsou, K. F. Huang, and Y. F. Chen, “Total self-mode locking of multi-pass geometric modes in diode-pumped Nd:YVO4 lasers,” Laser Phys. Lett. 10(10), 105804 (2013).
[Crossref]

C. Y. Cho, Y. P. Huang, Y. J. Huang, Y. C. Chen, K. W. Su, and Y. F. Chen, “Compact high-pulse-energy passively Q-switched Nd:YLF laser with an ultra-low-magnification unstable resonator: application for efficient optical parametric oscillator,” Opt. Express 21(2), 1489–1495 (2013).
[Crossref] [PubMed]

Y. F. Chen, H. C. Liang, J. C. Tung, K. W. Su, Y. Y. Zhang, H. J. Zhang, H. H. Yu, and J. Y. Wang, “Spontaneous subpicosecond pulse formation with pulse repetition rate of 80 GHz in a diode-pumped Nd:SrGdGa3O7 disordered crystal laser,” Opt. Lett. 37(4), 461–463 (2012).
[Crossref] [PubMed]

Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B 103(4), 841–846 (2011).
[Crossref]

H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 35(1), 4–6 (2010).
[Crossref] [PubMed]

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions,” Opt. Express 16(25), 21155–21160 (2008).
[Crossref] [PubMed]

H. C. Liang, R. C. Chen, Y. J. Huang, K. W. Su, and Y. F. Chen, “Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd:YVO4 laser,” Opt. Express 16(25), 21149–21154 (2008).
[Crossref] [PubMed]

Y. F. Chen, “Pump-to-mode size ratio dependence of thermal loading in diode-end-pumped solid-state lasers,” J. Opt. Soc. Am. B 17(11), 1835–1840 (2000).
[Crossref]

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, “Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 29–34 (1997).
[Crossref]

Cheng, H. P.

Chesler, R. B.

R. B. Chesler and D. Maydan, “Convex-concave resonators for TEM00 operation of solid-state ion lasers,” J. Appl. Phys. 43(5), 2254–2257 (1972).
[Crossref]

Chiang, P. Y.

Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B 103(4), 841–846 (2011).
[Crossref]

Cho, C. Y.

Cho, S. H.

Clarkson, W. A.

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D 34(16), 2381–2395 (2001).
[Crossref]

W. A. Clarkson, R. Koch, and D. C. Hanna, “Room-temperature diode-bar-pumped Nd:YAG laser at 946 nm,” Opt. Lett. 21(10), 737–739 (1996).
[Crossref] [PubMed]

Cousins, A. K.

S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28(4), 997–1009 (1992).
[Crossref]

Danzmann, K.

Di Lieto, A.

DiBiase, D.

J. J. Kasinski, W. Hughes, D. DiBiase, P. Bournes, and R. Burnham, “One Joule output from a diode-array-pumped Nd:YAG laser with side-pumped rod geometry,” IEEE J. Quantum Electron. 28(4), 977–985 (1992).
[Crossref]

Fallnich, C.

Fan, S. Z.

P. Li, Q. P. Wang, X. Y. Zhang, J. Lian, J. Chang, Z. J. Liu, S. Z. Fan, and X. H. Chen, “Compact and efficient Kerr-lens mode-locked diode-pumped actively Q-switched YVO4-Nd:YVO4 laser,” Opt. Commun. 283(24), 5139–5144 (2010).
[Crossref]

Fan, T. Y.

T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
[Crossref]

Fields, R. A.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Fincher, C. L.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Frede, M.

Fujimoto, J. G.

Garrec, B. J.

Giesen, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Gilbert, M.

Gong, M.

H. Chen, Q. Liu, X. Yan, and M. Gong, “High power Q-switched TEM00 Nd:YVO4 laser with self-adaptive compensation of thermal lensing effect,” Laser Phys. 20(7), 1594–1597 (2010).
[Crossref]

Graf, T.

M. S. Roth, E. W. Wyss, T. Graf, and H. P. Weber, “End-pumped Nd:YAG laser with self-adaptive compensation of the thermal lens,” IEEE J. Quantum Electron. 40(12), 1700–1703 (2004).
[Crossref]

Hanna, D. C.

Huang, K. F.

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

H. C. Liang, T. W. Wu, J. C. Tung, C. H. Tsou, K. F. Huang, and Y. F. Chen, “Total self-mode locking of multi-pass geometric modes in diode-pumped Nd:YVO4 lasers,” Laser Phys. Lett. 10(10), 105804 (2013).
[Crossref]

Huang, T. M.

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, “Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 29–34 (1997).
[Crossref]

Huang, W. C.

Huang, Y. J.

Huang, Y. P.

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Hughes, W.

J. J. Kasinski, W. Hughes, D. DiBiase, P. Bournes, and R. Burnham, “One Joule output from a diode-array-pumped Nd:YAG laser with side-pumped rod geometry,” IEEE J. Quantum Electron. 28(4), 977–985 (1992).
[Crossref]

Inaba, H.

Innocenzi, M. E.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Ippen, E. P.

Kao, C. F.

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, “Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 29–34 (1997).
[Crossref]

Kasinski, J. J.

J. J. Kasinski, W. Hughes, D. DiBiase, P. Bournes, and R. Burnham, “One Joule output from a diode-array-pumped Nd:YAG laser with side-pumped rod geometry,” IEEE J. Quantum Electron. 28(4), 977–985 (1992).
[Crossref]

Koch, R.

Koechner, W.

Krausz, F.

Kubecek, V.

Kuznetsov, I. I.

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50(3), 133–140 (2014).
[Crossref]

Lee, C. Y.

Li, P.

P. Li, Q. P. Wang, X. Y. Zhang, J. Lian, J. Chang, Z. J. Liu, S. Z. Fan, and X. H. Chen, “Compact and efficient Kerr-lens mode-locked diode-pumped actively Q-switched YVO4-Nd:YVO4 laser,” Opt. Commun. 283(24), 5139–5144 (2010).
[Crossref]

Lian, J.

P. Li, Q. P. Wang, X. Y. Zhang, J. Lian, J. Chang, Z. J. Liu, S. Z. Fan, and X. H. Chen, “Compact and efficient Kerr-lens mode-locked diode-pumped actively Q-switched YVO4-Nd:YVO4 laser,” Opt. Commun. 283(24), 5139–5144 (2010).
[Crossref]

Liang, H. C.

C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence,” Opt. Lett. 41(8), 1781–1784 (2016).
[Crossref] [PubMed]

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
[Crossref] [PubMed]

H. C. Liang, T. W. Wu, J. C. Tung, C. H. Tsou, K. F. Huang, and Y. F. Chen, “Total self-mode locking of multi-pass geometric modes in diode-pumped Nd:YVO4 lasers,” Laser Phys. Lett. 10(10), 105804 (2013).
[Crossref]

Y. F. Chen, H. C. Liang, J. C. Tung, K. W. Su, Y. Y. Zhang, H. J. Zhang, H. H. Yu, and J. Y. Wang, “Spontaneous subpicosecond pulse formation with pulse repetition rate of 80 GHz in a diode-pumped Nd:SrGdGa3O7 disordered crystal laser,” Opt. Lett. 37(4), 461–463 (2012).
[Crossref] [PubMed]

Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B 103(4), 841–846 (2011).
[Crossref]

H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 35(1), 4–6 (2010).
[Crossref] [PubMed]

H. C. Liang, R. C. Chen, Y. J. Huang, K. W. Su, and Y. F. Chen, “Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd:YVO4 laser,” Opt. Express 16(25), 21149–21154 (2008).
[Crossref] [PubMed]

Lin, Y. C.

Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B 103(4), 841–846 (2011).
[Crossref]

Liu, A.

Liu, H.

Liu, Q.

H. Chen, Q. Liu, X. Yan, and M. Gong, “High power Q-switched TEM00 Nd:YVO4 laser with self-adaptive compensation of thermal lensing effect,” Laser Phys. 20(7), 1594–1597 (2010).
[Crossref]

Liu, Z. J.

P. Li, Q. P. Wang, X. Y. Zhang, J. Lian, J. Chang, Z. J. Liu, S. Z. Fan, and X. H. Chen, “Compact and efficient Kerr-lens mode-locked diode-pumped actively Q-switched YVO4-Nd:YVO4 laser,” Opt. Commun. 283(24), 5139–5144 (2010).
[Crossref]

Maydan, D.

R. B. Chesler and D. Maydan, “Convex-concave resonators for TEM00 operation of solid-state ion lasers,” J. Appl. Phys. 43(5), 2254–2257 (1972).
[Crossref]

Mourou, G.

Mukhin, I. B.

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50(3), 133–140 (2014).
[Crossref]

Nees, J.

Okino, K.

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Palashov, O. V.

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50(3), 133–140 (2014).
[Crossref]

Pennacchio, C.

Piccinini, E.

A. Agnesi, E. Piccinini, and G. C. Reali, “Influence of thermal effects in Kerr-lens mode-locked femtosecond Cr4+:forsterite lasers,” Opt. Commun. 135(1–3), 77–82 (1997).
[Crossref]

Qian, L. J.

Razé, G. J.

Reali, G. C.

A. Agnesi, C. Pennacchio, G. C. Reali, and V. Kubecek, “High-power diode-pumped picosecond Nd(3+):YVO(4) laser,” Opt. Lett. 22(21), 1645–1647 (1997).
[Crossref] [PubMed]

A. Agnesi, E. Piccinini, and G. C. Reali, “Influence of thermal effects in Kerr-lens mode-locked femtosecond Cr4+:forsterite lasers,” Opt. Commun. 135(1–3), 77–82 (1997).
[Crossref]

Roth, M. S.

M. S. Roth, E. W. Wyss, T. Graf, and H. P. Weber, “End-pumped Nd:YAG laser with self-adaptive compensation of the thermal lens,” IEEE J. Quantum Electron. 40(12), 1700–1703 (2004).
[Crossref]

Seamans, J. F.

S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28(4), 997–1009 (1992).
[Crossref]

Seifert, F.

Silin, D. E.

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50(3), 133–140 (2014).
[Crossref]

Song, J.

Spielmann, C.

Su, K. W.

M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
[Crossref] [PubMed]

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

C. Y. Cho, Y. P. Huang, Y. J. Huang, Y. C. Chen, K. W. Su, and Y. F. Chen, “Compact high-pulse-energy passively Q-switched Nd:YLF laser with an ultra-low-magnification unstable resonator: application for efficient optical parametric oscillator,” Opt. Express 21(2), 1489–1495 (2013).
[Crossref] [PubMed]

Y. F. Chen, H. C. Liang, J. C. Tung, K. W. Su, Y. Y. Zhang, H. J. Zhang, H. H. Yu, and J. Y. Wang, “Spontaneous subpicosecond pulse formation with pulse repetition rate of 80 GHz in a diode-pumped Nd:SrGdGa3O7 disordered crystal laser,” Opt. Lett. 37(4), 461–463 (2012).
[Crossref] [PubMed]

H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 35(1), 4–6 (2010).
[Crossref] [PubMed]

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions,” Opt. Express 16(25), 21155–21160 (2008).
[Crossref] [PubMed]

H. C. Liang, R. C. Chen, Y. J. Huang, K. W. Su, and Y. F. Chen, “Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd:YVO4 laser,” Opt. Express 16(25), 21149–21154 (2008).
[Crossref] [PubMed]

Sung, C. L.

Taguchi, N.

Tang, D. Y.

Thro, P. Y.

Tidwell, S. C.

S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28(4), 997–1009 (1992).
[Crossref]

Tonelli, M.

Tsou, C. H.

H. C. Liang, T. W. Wu, J. C. Tung, C. H. Tsou, K. F. Huang, and Y. F. Chen, “Total self-mode locking of multi-pass geometric modes in diode-pumped Nd:YVO4 lasers,” Laser Phys. Lett. 10(10), 105804 (2013).
[Crossref]

Tsunekane, M.

Tung, J. C.

H. C. Liang, T. W. Wu, J. C. Tung, C. H. Tsou, K. F. Huang, and Y. F. Chen, “Total self-mode locking of multi-pass geometric modes in diode-pumped Nd:YVO4 lasers,” Laser Phys. Lett. 10(10), 105804 (2013).
[Crossref]

Y. F. Chen, H. C. Liang, J. C. Tung, K. W. Su, Y. Y. Zhang, H. J. Zhang, H. H. Yu, and J. Y. Wang, “Spontaneous subpicosecond pulse formation with pulse repetition rate of 80 GHz in a diode-pumped Nd:SrGdGa3O7 disordered crystal laser,” Opt. Lett. 37(4), 461–463 (2012).
[Crossref] [PubMed]

Ueda, K.

Vadimova, O. L.

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50(3), 133–140 (2014).
[Crossref]

Voss, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Vyatkin, A. G.

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50(3), 133–140 (2014).
[Crossref]

Wang, C. L.

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, “Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 29–34 (1997).
[Crossref]

Wang, J.

Wang, J. Y.

Wang, Q. P.

P. Li, Q. P. Wang, X. Y. Zhang, J. Lian, J. Chang, Z. J. Liu, S. Z. Fan, and X. H. Chen, “Compact and efficient Kerr-lens mode-locked diode-pumped actively Q-switched YVO4-Nd:YVO4 laser,” Opt. Commun. 283(24), 5139–5144 (2010).
[Crossref]

Wang, S. C.

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, “Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 29–34 (1997).
[Crossref]

Weber, H. P.

M. S. Roth, E. W. Wyss, T. Graf, and H. P. Weber, “End-pumped Nd:YAG laser with self-adaptive compensation of the thermal lens,” IEEE J. Quantum Electron. 40(12), 1700–1703 (2004).
[Crossref]

Wilhelm, R.

Willke, B.

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Wu, T. W.

H. C. Liang, T. W. Wu, J. C. Tung, C. H. Tsou, K. F. Huang, and Y. F. Chen, “Total self-mode locking of multi-pass geometric modes in diode-pumped Nd:YVO4 lasers,” Laser Phys. Lett. 10(10), 105804 (2013).
[Crossref]

Wyss, E. W.

M. S. Roth, E. W. Wyss, T. Graf, and H. P. Weber, “End-pumped Nd:YAG laser with self-adaptive compensation of the thermal lens,” IEEE J. Quantum Electron. 40(12), 1700–1703 (2004).
[Crossref]

Xie, G. Q.

Xu, J.

Xu, X.

Yan, X.

H. Chen, Q. Liu, X. Yan, and M. Gong, “High power Q-switched TEM00 Nd:YVO4 laser with self-adaptive compensation of thermal lensing effect,” Laser Phys. 20(7), 1594–1597 (2010).
[Crossref]

Yu, H.

Yu, H. H.

Yura, H. T.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Zhang, H.

Zhang, H. J.

Zhang, X. Y.

P. Li, Q. P. Wang, X. Y. Zhang, J. Lian, J. Chang, Z. J. Liu, S. Z. Fan, and X. H. Chen, “Compact and efficient Kerr-lens mode-locked diode-pumped actively Q-switched YVO4-Nd:YVO4 laser,” Opt. Commun. 283(24), 5139–5144 (2010).
[Crossref]

Zhang, Y.

Zhang, Y. Y.

Zhao, L. M.

Zhuang, W. Z.

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (2)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B 103(4), 841–846 (2011).
[Crossref]

Appl. Phys. Lett. (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

IEEE J. Quantum Electron. (5)

S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28(4), 997–1009 (1992).
[Crossref]

T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
[Crossref]

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50(3), 133–140 (2014).
[Crossref]

M. S. Roth, E. W. Wyss, T. Graf, and H. P. Weber, “End-pumped Nd:YAG laser with self-adaptive compensation of the thermal lens,” IEEE J. Quantum Electron. 40(12), 1700–1703 (2004).
[Crossref]

J. J. Kasinski, W. Hughes, D. DiBiase, P. Bournes, and R. Burnham, “One Joule output from a diode-array-pumped Nd:YAG laser with side-pumped rod geometry,” IEEE J. Quantum Electron. 28(4), 977–985 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, “Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 29–34 (1997).
[Crossref]

J. Appl. Phys. (1)

R. B. Chesler and D. Maydan, “Convex-concave resonators for TEM00 operation of solid-state ion lasers,” J. Appl. Phys. 43(5), 2254–2257 (1972).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D 34(16), 2381–2395 (2001).
[Crossref]

Laser Photonics Rev. (1)

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

Laser Phys. (1)

H. Chen, Q. Liu, X. Yan, and M. Gong, “High power Q-switched TEM00 Nd:YVO4 laser with self-adaptive compensation of thermal lensing effect,” Laser Phys. 20(7), 1594–1597 (2010).
[Crossref]

Laser Phys. Lett. (1)

H. C. Liang, T. W. Wu, J. C. Tung, C. H. Tsou, K. F. Huang, and Y. F. Chen, “Total self-mode locking of multi-pass geometric modes in diode-pumped Nd:YVO4 lasers,” Laser Phys. Lett. 10(10), 105804 (2013).
[Crossref]

Opt. Commun. (2)

A. Agnesi, E. Piccinini, and G. C. Reali, “Influence of thermal effects in Kerr-lens mode-locked femtosecond Cr4+:forsterite lasers,” Opt. Commun. 135(1–3), 77–82 (1997).
[Crossref]

P. Li, Q. P. Wang, X. Y. Zhang, J. Lian, J. Chang, Z. J. Liu, S. Z. Fan, and X. H. Chen, “Compact and efficient Kerr-lens mode-locked diode-pumped actively Q-switched YVO4-Nd:YVO4 laser,” Opt. Commun. 283(24), 5139–5144 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (11)

B. J. Garrec, G. J. Razé, P. Y. Thro, and M. Gilbert, “High-average-power diode-array-pumped frequency-doubled YAG laser,” Opt. Lett. 21(24), 1990–1992 (1996).
[Crossref] [PubMed]

S. H. Cho, B. E. Bouma, E. P. Ippen, and J. G. Fujimoto, “Low-repetition-rate high-peak-power Kerr-lens mode-locked Ti:Al2O3 laser with a multiple-pass cavity,” Opt. Lett. 24(6), 417–419 (1999).
[Crossref] [PubMed]

F. Krausz, T. Brabec, and C. Spielmann, “Self-starting passive mode locking,” Opt. Lett. 16(4), 235–237 (1991).
[Crossref] [PubMed]

G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y2O3 ceramic laser,” Opt. Lett. 32(18), 2741–2743 (2007).
[Crossref] [PubMed]

W. A. Clarkson, R. Koch, and D. C. Hanna, “Room-temperature diode-bar-pumped Nd:YAG laser at 946 nm,” Opt. Lett. 21(10), 737–739 (1996).
[Crossref] [PubMed]

C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence,” Opt. Lett. 41(8), 1781–1784 (2016).
[Crossref] [PubMed]

H. Liu, J. Nees, and G. Mourou, “Diode-pumped Kerr-lens mode-locked Yb:KY(WO4)2 laser,” Opt. Lett. 26(21), 1723–1725 (2001).
[Crossref] [PubMed]

Y. Zhang, H. Yu, H. Zhang, A. Di Lieto, M. Tonelli, and J. Wang, “Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate,” Opt. Lett. 41(12), 2692–2695 (2016).
[Crossref] [PubMed]

H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 35(1), 4–6 (2010).
[Crossref] [PubMed]

Y. F. Chen, H. C. Liang, J. C. Tung, K. W. Su, Y. Y. Zhang, H. J. Zhang, H. H. Yu, and J. Y. Wang, “Spontaneous subpicosecond pulse formation with pulse repetition rate of 80 GHz in a diode-pumped Nd:SrGdGa3O7 disordered crystal laser,” Opt. Lett. 37(4), 461–463 (2012).
[Crossref] [PubMed]

A. Agnesi, C. Pennacchio, G. C. Reali, and V. Kubecek, “High-power diode-pumped picosecond Nd(3+):YVO(4) laser,” Opt. Lett. 22(21), 1645–1647 (1997).
[Crossref] [PubMed]

Other (4)

F. Bretenaker and N. Treps, Laser: 50 Years of Discoveries (World Scientific, 2015).

E. Hechit, Optics, 4th ed. (Addison-Wesley, 1998), Chap. 5.

N. Hodgson and H. Weber, Laser Resonators and Beam Propagation, 2nd ed. (Springer, 2005), Chaps. 8 and 12.

W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental configuration for the end-pumped laser with the convex-concave resonator.
Fig. 2
Fig. 2 Numerical calculations of effective mode size ωc as a function of the refractive power D with different R1 and R2 for the convex-concave resonator.
Fig. 3
Fig. 3 CW performances of average output power versus input pump power for the cases of (a) concave-plano and (b) convex-concave resonators with Lcav = 80, 180, 280, and 480 mm. (c) The beam quality factor and laser transverse patterns versus input pump power for the convex-concave resonator with Lcav = 80 mm.
Fig. 4
Fig. 4 The measured (blue solid lines) and reconstructed (red dashed lines) optical spectra of SML operation in the convex-concave resonator under an input pump power Pin = 12 W with Lcav to be (a) 90, (b) 190, and (c) 290 mm.
Fig. 5
Fig. 5 The measured (upper row) and reconstructed (lower row) mode-locked pulse trains corresponding to optical spectra shown in Figs. 4(a)-4(c) with a time span of 10 ns.
Fig. 6
Fig. 6 The long-term behavior of mode-locked pulse trains in the time span of 5 μs for the cases of Lcav to be (a) 90, (b) 190, and (c) 290 mm, respectively.
Fig. 7
Fig. 7 The relationship between the group number of lasing modes and the cavity length for the SML operations in the convex-concave resonator.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

g i * = g i D d j ( 1 d i R i ),i,j=1,2&ij
( d 1 d 1 2 R 1 )( d 2 d 2 2 R 2 ) D 2 [ g 1 ( d 1 d 1 d 2 R 2 )+ g 2 ( d 2 d 1 d 2 R 1 ) ]D+ g 1 g 2 =0
D i = R j ( d 1 + d 2 ) d i R j d 1 d 2 ,i,j=1,2&ij.
D crit = 1 6| R 1 | .
ω c = λ L * π g 2 * g 1 * (1 g 1 * g 2 * ) [ ( 1 d 1 R 1 ) 2 + ( d 1 L * ) 2 g 1 * (1 g 1 * g 2 * ) g 2 * ] ,
ω c = 6λ| R 1 | π ( 5 R 2 3| R 1 | 3 R 2 +3| R 1 | + 3 R 2 +3| R 1 | 5 R 2 3| R 1 | ) .
φ m (λ)= n= M 0 M 0 C n+ M 0 2 M 0 e in ϕ m δ(λ λ m nΔλ) ,
Φ(λ)= m=1 M 1 A m φ m (λ) ,
I(λ)=| 1 π m=1 M 1 n= M 0 M 0 A m C n+ M 0 2 M 0 e in ϕ m ΓΔ λ 2 ( λ λ m nΔλ ) 2 + ( ΓΔλ ) 2 |,
Ψ(t)= 1 2 2 M 0 m=1 M 1 n= M 0 M 0 A m C n+ M 0 2 M 0 e i ω m t e in( Δωt+ ϕ m ) = m=1 M 1 A m e i ω m t { cos[ ( Δωt+ ϕ m ) /2 ] } 2 M 0 ,

Metrics