Abstract

We report a new type of plasmonic nanoscale ridge aperture and its fabrication process which is based on layer-by-layer planar lithography. This new fabrication method allows us to create desired nanoscale features of a plasmonic ridge waveguide nanoscale aperture, which helps to confine a near-field spot to sub-wavelength dimensions. Numerical simulations using Finite Element Method (FEM) are performed to calculate the near-field distribution around the exit of the aperture. Measurements using scattering near-field scanning optical microscopy (s-NSOM) confirm the design and demonstrate that the aperture is capable of producing focused spots in the ridge gap at the exit of the aperture. The planar lithography process is a step toward mass production of such plasmonic structures for applications including heat-assisted magnetic recording (HAMR).

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of bowtie aperture antennas for producing sub-20 nm optical spots

Yang Chen, Jianfeng Chen, Xianfan Xu, and Jiaru Chu
Opt. Express 23(7) 9093-9099 (2015)

Nanoscale ridge aperture as near-field transducer for heat-assisted magnetic recording

Nan Zhou, Edward C. Kinzel, and Xianfan Xu
Appl. Opt. 50(31) G42-G46 (2011)

Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture

Nicholas Murphy-DuBay, Liang Wang, Edward C. Kinzel, Sreemanth M. V. Uppuluri, and X. Xu
Opt. Express 16(4) 2584-2589 (2008)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D Appl. Phys. 45(43), 433001 (2012).
    [Crossref]
  3. D. R. Mason, S. G. Menabde, S. Yu, and N. Park, “Plasmonic excitations of 1D metal-dielectric interfaces in 2D systems: 1D surface plasmon polaritons,” Sci. Rep. 4, 4536 (2014).
    [Crossref] [PubMed]
  4. J. Zhang and L. Zhang, “Nanostructures for surface plasmons,” Adv. Opt. Photonics 4(2), 157–321 (2012).
    [Crossref]
  5. M.-K. Kim, H. Sim, S. J. Yoon, S.-H. Gong, C. W. Ahn, Y.-H. Cho, and Y.-H. Lee, “Squeezing photons into a point-like space,” Nano Lett. 15(6), 4102–4107 (2015).
    [Crossref] [PubMed]
  6. Y. Wang, Z. Du, Y. Park, C. Chen, X. Zhang, and L. Pan, “Quasi-3D plasmonic coupling scheme for near-field optical lithography and imaging,” Opt. Lett. 40(16), 3918–3921 (2015).
    [Crossref] [PubMed]
  7. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
    [Crossref]
  8. Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, “Plasmonic nanolithography: A review,” Plasmonics 6(30), 565–580 (2011).
    [Crossref]
  9. X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near field optical data storage,” Jpn. J. Appl. Phys. 41(1), 1632–1635 (2002).
    [Crossref]
  10. K. Şendur, W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
    [Crossref]
  11. N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, “Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16(4), 2584–2589 (2008).
    [Crossref] [PubMed]
  12. S. M. Uppuluri, E. C. Kinzel, Y. Li, and X. Xu, “Parallel optical nanolithography using nanoscale bowtie aperture array,” Opt. Express 18(7), 7369–7375 (2010).
    [Crossref] [PubMed]
  13. X. Wen, A. Datta, L. M. Traverso, L. Pan, X. Xu, and E. E. Moon, “High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field,” Sci. Rep. 5, 16192 (2015).
    [Crossref] [PubMed]
  14. N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
    [Crossref]
  15. M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, Ganping Ju, Yiao-Tee Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
    [Crossref]
  16. M. P. Sharrock, “Time-dependent magnetic phenomena and particle-size effects in recording media,” IEEE Trans. Magn. 26(1), 193–197 (1990).
    [Crossref]
  17. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
    [Crossref]
  18. B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5Pb m^2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
    [Crossref]
  19. N. Zhou, Y. Li, L. Traverso, and X. Xu, “Optical and thermal behaviors of plasmonic bowtie aperture and its NSOM characterization for heat-assisted magnetic recording,” IEEE Trans. Magn. 52(2), 1100105 (2016).
  20. T. Matsumoto, K. Nakamura, T. Nishida, H. Hieda, A. Kikitsu, K. Naito, and T. Koda, “Thermally assisted magnetic recording on a bit-patterned medium by using a near-field optical head with a beaked metallic plate,” Appl. Phys. Lett. 93(3), 031108 (2008).
    [Crossref]
  21. Y. Chen, J. Chen, X. Xu, and J. Chu, “Fabrication of bowtie aperture antennas for producing sub-20 nm optical spots,” Opt. Express 23(7), 9093–9099 (2015).
    [Crossref] [PubMed]
  22. J. B. Leen, P. Hansen, Y.-T. Cheng, A. Gibby, and L. Hesselink, “Near-field optical data storage using C-apertures,” Appl. Phys. Lett. 97(7), 073111 (2010).
    [Crossref]
  23. P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  24. N. Zhou, Y. Li, and X. Xu, “Resolving near-field from high order signals of scattering near-field scanning optical microscopy,” Opt. Express 22(15), 18715–18723 (2014).
    [Crossref] [PubMed]
  25. R. Esteban, R. Vogelgesang, and K. Kern, “Apertureless near-field optical microscopy: differences between heterodyne interferometric and non-interferometric images,” Ultramicroscopy 111(9-10), 1469–1474 (2011).
    [Crossref] [PubMed]

2016 (1)

N. Zhou, Y. Li, L. Traverso, and X. Xu, “Optical and thermal behaviors of plasmonic bowtie aperture and its NSOM characterization for heat-assisted magnetic recording,” IEEE Trans. Magn. 52(2), 1100105 (2016).

2015 (4)

Y. Chen, J. Chen, X. Xu, and J. Chu, “Fabrication of bowtie aperture antennas for producing sub-20 nm optical spots,” Opt. Express 23(7), 9093–9099 (2015).
[Crossref] [PubMed]

M.-K. Kim, H. Sim, S. J. Yoon, S.-H. Gong, C. W. Ahn, Y.-H. Cho, and Y.-H. Lee, “Squeezing photons into a point-like space,” Nano Lett. 15(6), 4102–4107 (2015).
[Crossref] [PubMed]

Y. Wang, Z. Du, Y. Park, C. Chen, X. Zhang, and L. Pan, “Quasi-3D plasmonic coupling scheme for near-field optical lithography and imaging,” Opt. Lett. 40(16), 3918–3921 (2015).
[Crossref] [PubMed]

X. Wen, A. Datta, L. M. Traverso, L. Pan, X. Xu, and E. E. Moon, “High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field,” Sci. Rep. 5, 16192 (2015).
[Crossref] [PubMed]

2014 (3)

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

D. R. Mason, S. G. Menabde, S. Yu, and N. Park, “Plasmonic excitations of 1D metal-dielectric interfaces in 2D systems: 1D surface plasmon polaritons,” Sci. Rep. 4, 4536 (2014).
[Crossref] [PubMed]

N. Zhou, Y. Li, and X. Xu, “Resolving near-field from high order signals of scattering near-field scanning optical microscopy,” Opt. Express 22(15), 18715–18723 (2014).
[Crossref] [PubMed]

2012 (2)

J. Zhang and L. Zhang, “Nanostructures for surface plasmons,” Adv. Opt. Photonics 4(2), 157–321 (2012).
[Crossref]

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D Appl. Phys. 45(43), 433001 (2012).
[Crossref]

2011 (2)

Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, “Plasmonic nanolithography: A review,” Plasmonics 6(30), 565–580 (2011).
[Crossref]

R. Esteban, R. Vogelgesang, and K. Kern, “Apertureless near-field optical microscopy: differences between heterodyne interferometric and non-interferometric images,” Ultramicroscopy 111(9-10), 1469–1474 (2011).
[Crossref] [PubMed]

2010 (3)

J. B. Leen, P. Hansen, Y.-T. Cheng, A. Gibby, and L. Hesselink, “Near-field optical data storage using C-apertures,” Appl. Phys. Lett. 97(7), 073111 (2010).
[Crossref]

S. M. Uppuluri, E. C. Kinzel, Y. Li, and X. Xu, “Parallel optical nanolithography using nanoscale bowtie aperture array,” Opt. Express 18(7), 7369–7375 (2010).
[Crossref] [PubMed]

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5Pb m^2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

2009 (2)

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

2008 (3)

N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, “Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16(4), 2584–2589 (2008).
[Crossref] [PubMed]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, Ganping Ju, Yiao-Tee Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

T. Matsumoto, K. Nakamura, T. Nishida, H. Hieda, A. Kikitsu, K. Naito, and T. Koda, “Thermally assisted magnetic recording on a bit-patterned medium by using a near-field optical head with a beaked metallic plate,” Appl. Phys. Lett. 93(3), 031108 (2008).
[Crossref]

2004 (1)

K. Şendur, W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
[Crossref]

2002 (1)

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near field optical data storage,” Jpn. J. Appl. Phys. 41(1), 1632–1635 (2002).
[Crossref]

1990 (1)

M. P. Sharrock, “Time-dependent magnetic phenomena and particle-size effects in recording media,” IEEE Trans. Magn. 26(1), 193–197 (1990).
[Crossref]

1972 (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Ahn, C. W.

M.-K. Kim, H. Sim, S. J. Yoon, S.-H. Gong, C. W. Ahn, Y.-H. Cho, and Y.-H. Lee, “Squeezing photons into a point-like space,” Nano Lett. 15(6), 4102–4107 (2015).
[Crossref] [PubMed]

Albrecht, T. R.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5Pb m^2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Balamane, H.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5Pb m^2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Boone, T. D.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5Pb m^2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Challener, W.

K. Şendur, W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
[Crossref]

Challener, W. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, Ganping Ju, Yiao-Tee Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Chen, C.

Chen, J.

Chen, Y.

Cheng, Y.-T.

J. B. Leen, P. Hansen, Y.-T. Cheng, A. Gibby, and L. Hesselink, “Near-field optical data storage using C-apertures,” Appl. Phys. Lett. 97(7), 073111 (2010).
[Crossref]

Cho, Y.-H.

M.-K. Kim, H. Sim, S. J. Yoon, S.-H. Gong, C. W. Ahn, Y.-H. Cho, and Y.-H. Lee, “Squeezing photons into a point-like space,” Nano Lett. 15(6), 4102–4107 (2015).
[Crossref] [PubMed]

Christy, R.-W.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, J.

Datta, A.

X. Wen, A. Datta, L. M. Traverso, L. Pan, X. Xu, and E. E. Moon, “High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field,” Sci. Rep. 5, 16192 (2015).
[Crossref] [PubMed]

Deutsch, B.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Dobisz, E.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5Pb m^2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Du, Z.

Erden, M. F.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, Ganping Ju, Yiao-Tee Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Esteban, R.

R. Esteban, R. Vogelgesang, and K. Kern, “Apertureless near-field optical microscopy: differences between heterodyne interferometric and non-interferometric images,” Ultramicroscopy 111(9-10), 1469–1474 (2011).
[Crossref] [PubMed]

Fu, Y.

Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, “Plasmonic nanolithography: A review,” Plasmonics 6(30), 565–580 (2011).
[Crossref]

Gage, E. C.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, Ganping Ju, Yiao-Tee Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Ganping Ju,

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, Ganping Ju, Yiao-Tee Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Gao, K.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Gibby, A.

J. B. Leen, P. Hansen, Y.-T. Cheng, A. Gibby, and L. Hesselink, “Near-field optical data storage using C-apertures,” Appl. Phys. Lett. 97(7), 073111 (2010).
[Crossref]

Gokemeijer, N. J.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Gong, S.-H.

M.-K. Kim, H. Sim, S. J. Yoon, S.-H. Gong, C. W. Ahn, Y.-H. Cho, and Y.-H. Lee, “Squeezing photons into a point-like space,” Nano Lett. 15(6), 4102–4107 (2015).
[Crossref] [PubMed]

Hammack, A. T.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Hansen, P.

J. B. Leen, P. Hansen, Y.-T. Cheng, A. Gibby, and L. Hesselink, “Near-field optical data storage using C-apertures,” Appl. Phys. Lett. 97(7), 073111 (2010).
[Crossref]

Hayashi, S.

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D Appl. Phys. 45(43), 433001 (2012).
[Crossref]

Hellwig, O.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5Pb m^2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Hesselink, L.

J. B. Leen, P. Hansen, Y.-T. Cheng, A. Gibby, and L. Hesselink, “Near-field optical data storage using C-apertures,” Appl. Phys. Lett. 97(7), 073111 (2010).
[Crossref]

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near field optical data storage,” Jpn. J. Appl. Phys. 41(1), 1632–1635 (2002).
[Crossref]

Hieda, H.

T. Matsumoto, K. Nakamura, T. Nishida, H. Hieda, A. Kikitsu, K. Naito, and T. Koda, “Thermally assisted magnetic recording on a bit-patterned medium by using a near-field optical head with a beaked metallic plate,” Appl. Phys. Lett. 93(3), 031108 (2008).
[Crossref]

Hirotsune, A.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5Pb m^2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Hsia, Y. T.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Itagi, A. V.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Johnson, P. B.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Ju, G.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Karns, D.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Katine, J. A.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5Pb m^2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Kercher, D. S.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5Pb m^2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Kern, K.

R. Esteban, R. Vogelgesang, and K. Kern, “Apertureless near-field optical microscopy: differences between heterodyne interferometric and non-interferometric images,” Ultramicroscopy 111(9-10), 1469–1474 (2011).
[Crossref] [PubMed]

Kikitsu, A.

T. Matsumoto, K. Nakamura, T. Nishida, H. Hieda, A. Kikitsu, K. Naito, and T. Koda, “Thermally assisted magnetic recording on a bit-patterned medium by using a near-field optical head with a beaked metallic plate,” Appl. Phys. Lett. 93(3), 031108 (2008).
[Crossref]

Kim, M.-K.

M.-K. Kim, H. Sim, S. J. Yoon, S.-H. Gong, C. W. Ahn, Y.-H. Cho, and Y.-H. Lee, “Squeezing photons into a point-like space,” Nano Lett. 15(6), 4102–4107 (2015).
[Crossref] [PubMed]

Kinzel, E. C.

Koda, T.

T. Matsumoto, K. Nakamura, T. Nishida, H. Hieda, A. Kikitsu, K. Naito, and T. Koda, “Thermally assisted magnetic recording on a bit-patterned medium by using a near-field optical head with a beaked metallic plate,” Appl. Phys. Lett. 93(3), 031108 (2008).
[Crossref]

Kryder, M. H.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, Ganping Ju, Yiao-Tee Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Lee, Y.-H.

M.-K. Kim, H. Sim, S. J. Yoon, S.-H. Gong, C. W. Ahn, Y.-H. Cho, and Y.-H. Lee, “Squeezing photons into a point-like space,” Nano Lett. 15(6), 4102–4107 (2015).
[Crossref] [PubMed]

Leen, J. B.

J. B. Leen, P. Hansen, Y.-T. Cheng, A. Gibby, and L. Hesselink, “Near-field optical data storage using C-apertures,” Appl. Phys. Lett. 97(7), 073111 (2010).
[Crossref]

Li, F.

Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, “Plasmonic nanolithography: A review,” Plasmonics 6(30), 565–580 (2011).
[Crossref]

Li, J.-L.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5Pb m^2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Li, Y.

Liu, H.

Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, “Plasmonic nanolithography: A review,” Plasmonics 6(30), 565–580 (2011).
[Crossref]

Lu, Z.

Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, “Plasmonic nanolithography: A review,” Plasmonics 6(30), 565–580 (2011).
[Crossref]

Mason, D. R.

D. R. Mason, S. G. Menabde, S. Yu, and N. Park, “Plasmonic excitations of 1D metal-dielectric interfaces in 2D systems: 1D surface plasmon polaritons,” Sci. Rep. 4, 4536 (2014).
[Crossref] [PubMed]

Matsumoto, T.

T. Matsumoto, K. Nakamura, T. Nishida, H. Hieda, A. Kikitsu, K. Naito, and T. Koda, “Thermally assisted magnetic recording on a bit-patterned medium by using a near-field optical head with a beaked metallic plate,” Appl. Phys. Lett. 93(3), 031108 (2008).
[Crossref]

McDaniel, T. W.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, Ganping Ju, Yiao-Tee Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Menabde, S. G.

D. R. Mason, S. G. Menabde, S. Yu, and N. Park, “Plasmonic excitations of 1D metal-dielectric interfaces in 2D systems: 1D surface plasmon polaritons,” Sci. Rep. 4, 4536 (2014).
[Crossref] [PubMed]

Moon, E. E.

X. Wen, A. Datta, L. M. Traverso, L. Pan, X. Xu, and E. E. Moon, “High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field,” Sci. Rep. 5, 16192 (2015).
[Crossref] [PubMed]

Murphy-DuBay, N.

Naito, K.

T. Matsumoto, K. Nakamura, T. Nishida, H. Hieda, A. Kikitsu, K. Naito, and T. Koda, “Thermally assisted magnetic recording on a bit-patterned medium by using a near-field optical head with a beaked metallic plate,” Appl. Phys. Lett. 93(3), 031108 (2008).
[Crossref]

Nakamura, K.

T. Matsumoto, K. Nakamura, T. Nishida, H. Hieda, A. Kikitsu, K. Naito, and T. Koda, “Thermally assisted magnetic recording on a bit-patterned medium by using a near-field optical head with a beaked metallic plate,” Appl. Phys. Lett. 93(3), 031108 (2008).
[Crossref]

Nemoto, H.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5Pb m^2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Nishida, T.

T. Matsumoto, K. Nakamura, T. Nishida, H. Hieda, A. Kikitsu, K. Naito, and T. Koda, “Thermally assisted magnetic recording on a bit-patterned medium by using a near-field optical head with a beaked metallic plate,” Appl. Phys. Lett. 93(3), 031108 (2008).
[Crossref]

Novotny, L.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Okamoto, T.

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D Appl. Phys. 45(43), 433001 (2012).
[Crossref]

Pan, L.

X. Wen, A. Datta, L. M. Traverso, L. Pan, X. Xu, and E. E. Moon, “High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field,” Sci. Rep. 5, 16192 (2015).
[Crossref] [PubMed]

Y. Wang, Z. Du, Y. Park, C. Chen, X. Zhang, and L. Pan, “Quasi-3D plasmonic coupling scheme for near-field optical lithography and imaging,” Opt. Lett. 40(16), 3918–3921 (2015).
[Crossref] [PubMed]

Park, N.

D. R. Mason, S. G. Menabde, S. Yu, and N. Park, “Plasmonic excitations of 1D metal-dielectric interfaces in 2D systems: 1D surface plasmon polaritons,” Sci. Rep. 4, 4536 (2014).
[Crossref] [PubMed]

Park, Y.

Peng, C.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

K. Şendur, W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
[Crossref]

Peng, W.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Peng, Y.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Poon, C. C.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5Pb m^2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Rawat, V.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5Pb m^2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Robertson, N.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5Pb m^2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Rottmayer, R. E.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, Ganping Ju, Yiao-Tee Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Ruiz, R.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5Pb m^2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Scholz, W.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Seigler, M. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Sendur, K.

K. Şendur, W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
[Crossref]

Sharrock, M. P.

M. P. Sharrock, “Time-dependent magnetic phenomena and particle-size effects in recording media,” IEEE Trans. Magn. 26(1), 193–197 (1990).
[Crossref]

Shi, X.

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near field optical data storage,” Jpn. J. Appl. Phys. 41(1), 1632–1635 (2002).
[Crossref]

Sim, H.

M.-K. Kim, H. Sim, S. J. Yoon, S.-H. Gong, C. W. Ahn, Y.-H. Cho, and Y.-H. Lee, “Squeezing photons into a point-like space,” Nano Lett. 15(6), 4102–4107 (2015).
[Crossref] [PubMed]

Stipe, B. C.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5Pb m^2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Strand, T. C.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5Pb m^2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Sun, Q.

Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, “Plasmonic nanolithography: A review,” Plasmonics 6(30), 565–580 (2011).
[Crossref]

Terris, B. D.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5Pb m^2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Traverso, L.

N. Zhou, Y. Li, L. Traverso, and X. Xu, “Optical and thermal behaviors of plasmonic bowtie aperture and its NSOM characterization for heat-assisted magnetic recording,” IEEE Trans. Magn. 52(2), 1100105 (2016).

Traverso, L. M.

X. Wen, A. Datta, L. M. Traverso, L. Pan, X. Xu, and E. E. Moon, “High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field,” Sci. Rep. 5, 16192 (2015).
[Crossref] [PubMed]

Uppuluri, S. M.

Uppuluri, S. M. V.

Vogelgesang, R.

R. Esteban, R. Vogelgesang, and K. Kern, “Apertureless near-field optical microscopy: differences between heterodyne interferometric and non-interferometric images,” Ultramicroscopy 111(9-10), 1469–1474 (2011).
[Crossref] [PubMed]

Wang, L.

Wang, T.

Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, “Plasmonic nanolithography: A review,” Plasmonics 6(30), 565–580 (2011).
[Crossref]

Wang, Y.

Wen, X.

X. Wen, A. Datta, L. M. Traverso, L. Pan, X. Xu, and E. E. Moon, “High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field,” Sci. Rep. 5, 16192 (2015).
[Crossref] [PubMed]

Xie, Z.

Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, “Plasmonic nanolithography: A review,” Plasmonics 6(30), 565–580 (2011).
[Crossref]

Xu, X.

N. Zhou, Y. Li, L. Traverso, and X. Xu, “Optical and thermal behaviors of plasmonic bowtie aperture and its NSOM characterization for heat-assisted magnetic recording,” IEEE Trans. Magn. 52(2), 1100105 (2016).

X. Wen, A. Datta, L. M. Traverso, L. Pan, X. Xu, and E. E. Moon, “High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field,” Sci. Rep. 5, 16192 (2015).
[Crossref] [PubMed]

Y. Chen, J. Chen, X. Xu, and J. Chu, “Fabrication of bowtie aperture antennas for producing sub-20 nm optical spots,” Opt. Express 23(7), 9093–9099 (2015).
[Crossref] [PubMed]

N. Zhou, Y. Li, and X. Xu, “Resolving near-field from high order signals of scattering near-field scanning optical microscopy,” Opt. Express 22(15), 18715–18723 (2014).
[Crossref] [PubMed]

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

S. M. Uppuluri, E. C. Kinzel, Y. Li, and X. Xu, “Parallel optical nanolithography using nanoscale bowtie aperture array,” Opt. Express 18(7), 7369–7375 (2010).
[Crossref] [PubMed]

N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, “Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16(4), 2584–2589 (2008).
[Crossref] [PubMed]

Yang, X.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Yiao-Tee Hsia,

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, Ganping Ju, Yiao-Tee Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Yoon, S. J.

M.-K. Kim, H. Sim, S. J. Yoon, S.-H. Gong, C. W. Ahn, Y.-H. Cho, and Y.-H. Lee, “Squeezing photons into a point-like space,” Nano Lett. 15(6), 4102–4107 (2015).
[Crossref] [PubMed]

Yu, S.

D. R. Mason, S. G. Menabde, S. Yu, and N. Park, “Plasmonic excitations of 1D metal-dielectric interfaces in 2D systems: 1D surface plasmon polaritons,” Sci. Rep. 4, 4536 (2014).
[Crossref] [PubMed]

Yu, W.

Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, “Plasmonic nanolithography: A review,” Plasmonics 6(30), 565–580 (2011).
[Crossref]

Zhang, H.

Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, “Plasmonic nanolithography: A review,” Plasmonics 6(30), 565–580 (2011).
[Crossref]

Zhang, J.

J. Zhang and L. Zhang, “Nanostructures for surface plasmons,” Adv. Opt. Photonics 4(2), 157–321 (2012).
[Crossref]

Zhang, L.

J. Zhang and L. Zhang, “Nanostructures for surface plasmons,” Adv. Opt. Photonics 4(2), 157–321 (2012).
[Crossref]

Zhang, X.

Zhou, N.

N. Zhou, Y. Li, L. Traverso, and X. Xu, “Optical and thermal behaviors of plasmonic bowtie aperture and its NSOM characterization for heat-assisted magnetic recording,” IEEE Trans. Magn. 52(2), 1100105 (2016).

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

N. Zhou, Y. Li, and X. Xu, “Resolving near-field from high order signals of scattering near-field scanning optical microscopy,” Opt. Express 22(15), 18715–18723 (2014).
[Crossref] [PubMed]

Zhu, X.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Adv. Opt. Photonics (2)

J. Zhang and L. Zhang, “Nanostructures for surface plasmons,” Adv. Opt. Photonics 4(2), 157–321 (2012).
[Crossref]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Appl. Phys. Lett. (2)

T. Matsumoto, K. Nakamura, T. Nishida, H. Hieda, A. Kikitsu, K. Naito, and T. Koda, “Thermally assisted magnetic recording on a bit-patterned medium by using a near-field optical head with a beaked metallic plate,” Appl. Phys. Lett. 93(3), 031108 (2008).
[Crossref]

J. B. Leen, P. Hansen, Y.-T. Cheng, A. Gibby, and L. Hesselink, “Near-field optical data storage using C-apertures,” Appl. Phys. Lett. 97(7), 073111 (2010).
[Crossref]

IEEE Trans. Magn. (2)

N. Zhou, Y. Li, L. Traverso, and X. Xu, “Optical and thermal behaviors of plasmonic bowtie aperture and its NSOM characterization for heat-assisted magnetic recording,” IEEE Trans. Magn. 52(2), 1100105 (2016).

M. P. Sharrock, “Time-dependent magnetic phenomena and particle-size effects in recording media,” IEEE Trans. Magn. 26(1), 193–197 (1990).
[Crossref]

J. Appl. Phys. (1)

K. Şendur, W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
[Crossref]

J. Phys. D Appl. Phys. (1)

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D Appl. Phys. 45(43), 433001 (2012).
[Crossref]

Jpn. J. Appl. Phys. (1)

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near field optical data storage,” Jpn. J. Appl. Phys. 41(1), 1632–1635 (2002).
[Crossref]

Nano Lett. (1)

M.-K. Kim, H. Sim, S. J. Yoon, S.-H. Gong, C. W. Ahn, Y.-H. Cho, and Y.-H. Lee, “Squeezing photons into a point-like space,” Nano Lett. 15(6), 4102–4107 (2015).
[Crossref] [PubMed]

Nanophotonics (1)

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Nat. Photonics (2)

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5Pb m^2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Plasmonics (1)

Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, “Plasmonic nanolithography: A review,” Plasmonics 6(30), 565–580 (2011).
[Crossref]

Proc. IEEE (1)

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, Ganping Ju, Yiao-Tee Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Sci. Rep. (2)

X. Wen, A. Datta, L. M. Traverso, L. Pan, X. Xu, and E. E. Moon, “High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field,” Sci. Rep. 5, 16192 (2015).
[Crossref] [PubMed]

D. R. Mason, S. G. Menabde, S. Yu, and N. Park, “Plasmonic excitations of 1D metal-dielectric interfaces in 2D systems: 1D surface plasmon polaritons,” Sci. Rep. 4, 4536 (2014).
[Crossref] [PubMed]

Ultramicroscopy (1)

R. Esteban, R. Vogelgesang, and K. Kern, “Apertureless near-field optical microscopy: differences between heterodyne interferometric and non-interferometric images,” Ultramicroscopy 111(9-10), 1469–1474 (2011).
[Crossref] [PubMed]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the fabrication. (a) Cross section view of the process to create the aperture lines. (b) Schematic of the final aperture. (c) Top view of the substrate cutting process for s-NSOM measurements. (d) Side view of the thinning of the wall to create the apertures.

Fig. 2
Fig. 2

SEM images of the structure during intermediate steps. (a) Exposed and developed HSQ lines (scale bar is 200nm). (b) Aperture lines on edge of the substrate after crystal guided cut (scale bar is 1 μm). (c) Zoomed cross section picture of 2 apertures (Inset scale bar is 200 nm).

Fig. 3
Fig. 3

(a) Electromagnetic simulation model for the cross sectional ridge waveguide apertures. (b) Electric field distribution taken 5nm above the exit plane of the apertures for the model depicted in (a). Electric field (z component) within the (c) metal layer and (d) HSQ layer. (c) and (d) are plotted in logarithmic scale for better clarity. (e) Decay of electric field within the HSQ and metal layer.

Fig. 4
Fig. 4

Electric field distributions for (a) d = 20 nm, (b) d = 45 nm and (c) d = 75 nm when the other dimensions are fixed according to Fig. 3(a). Electric field distributions for (d) w = 40 nm, (e) w = 120 nm and (f) w = 220 nm when the other dimensions are fixed according to Fig. 3(a). (g) Electric field enhancement and (h) Spot size for varying values of w and d. The electric field distribution plots are taken 5nm above the exit plane of the apertures and the incident electric field was considered to be 1V/m.

Fig. 5
Fig. 5

Far-field images of apertures. a) Front view of a far field image. b) Top view of the schematic.

Fig. 6
Fig. 6

Experimental characterization of the apertures. (a) SEM image of the aperture, (b) AFM topography of the aperture, (c) s-NSOM signal collected at the 2nd harmonic of the tip oscillation frequency from the aperture of (a) and (d) s-NSOM signal collected at the 3rd harmonic of the tip oscillation frequency from the aperture of (a). The scale bar in these figures is 250 nm.

Metrics