Abstract

We report superior terahertz parametric generation from potassium titanyl phosphate (KTP) over congruent-grown lithium niobate (CLN) and lithium tantalate (CLT) in terms of parametric gain and laser damage resistance. Under the same pump and crystal configurations, the signal emerged first from KTP, 5% Mg-doped CLN, CLN, and then finally from CLT. The signal growth rate in KTP was comparable to that in 5%-Mg-doped CLN, but the signal power from KTP reached a much higher value after all the other crystals were damaged by the pump laser. We further demonstrate seeded terahertz parametric amplification in an edge-cut KTP at 5.74 THz. The THz parametric amplifier (TPA) employs a 17-mm long KTP gain crystal, pumped by a passively Q-switched pump laser at 1064 nm and seeded by a continuous-wave diode laser tuned to the signal wavelength at 1086.2 nm. With 5.8-mJ energy in a 520-ps pump pulse and 100-mW seed signal power, we measured 5-W peak-power THz output from the KTP TPA with 22% pump depletion. In comparison, we measured no detectable THz output power from a similar edge-cut CLN TPA under the same pump power, detection scheme, and crystal configuration, when tuning the seed laser wavelength to 1072.2 nm and attempting to generate a radiation at 2.1 THz.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Off-axis terahertz parametric oscillator

Yu-Chung Chiu, Tsong-Dong Wang, Po-Cheng Wang, and Yen-Chieh Huang
J. Opt. Soc. Am. B 36(1) 42-47 (2019)

Discovery of high-gain stimulated polariton scattering near 4  THz from lithium niobate

Yu-Chung Chiu, Tsong-Dong Wang, Gang Zhao, and Yen-Chieh Huang
Opt. Lett. 42(23) 4897-4900 (2017)

Stimulated polariton scattering in an intracavity RbTiOPO4 crystal generating frequency-tunable THz output

Tiago A. Ortega, Helen M. Pask, David J. Spence, and Andrew J. Lee
Opt. Express 24(10) 10254-10264 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 34, R1–R14 (2001).
  2. E. Castro-Camus and M. Alfaro, “Photoconductive devices for terahertz pulsed spectroscopy: a review [Invited],” Photonics Res. 4(3), A36–A42 (2016).
    [Crossref]
  3. M. S. Vitiello, G. Scalari, B. Williams, and P. De Natale, “Quantum cascade lasers: 20 years of challenges,” Opt. Express 23(4), 5167–5182 (2015).
    [Crossref] [PubMed]
  4. X. Xie, J. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006).
    [Crossref] [PubMed]
  5. J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
    [Crossref]
  6. N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C. S. Kee, D. K. Ko, J. Lee, K. Kitamura, and S. Takekawa, “Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses,” Appl. Phys. Lett. 93(4), 041104 (2008).
    [Crossref]
  7. W. Wang, Z. Cong, X. Chen, X. Zhang, Z. Qin, G. Tang, N. Li, C. Wang, and Q. Lu, “Terahertz parametric oscillator based on KTiOPO4 crystal,” Opt. Lett. 39(13), 3706–3709 (2014).
    [Crossref] [PubMed]
  8. W. Wang, Z. Cong, Z. Liu, X. Zhang, Z. Qin, G. Tang, N. Li, Y. Zhang, and Q. Lu, “THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal,” Opt. Express 22(14), 17092–17098 (2014).
    [Crossref] [PubMed]
  9. S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014).
    [Crossref] [PubMed]
  10. J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
    [Crossref]
  11. V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett. 88(4), 041110 (2006).
    [Crossref]
  12. J. D. Bierlein and H. Vanherzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B 6(4), 622–633 (1989).
    [Crossref]
  13. G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
    [Crossref]
  14. L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
    [Crossref]
  15. K. Kawase, J. Shikata, K. Imai, and H. Ito, “Transform-limited, narrow-linewidth, terahertz-wave parametric generator,” Appl. Phys. Lett. 78(19), 2819–2821 (2001).
    [Crossref]
  16. K. Kato and E. Takaoka, “Sellmeier and thermo-optic dispersion formulas for KTP,” Appl. Opt. 41(24), 5040–5044 (2002).
    [Crossref] [PubMed]
  17. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, n(e), in congruent lithium niobate,” Opt. Lett. 22(20), 1553–1555 (1997).
    [Crossref] [PubMed]
  18. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28(3), 194–196 (2003).
    [Crossref] [PubMed]
  19. R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter 12(23), 5053–5059 (2000).
    [Crossref]
  20. T. D. Wang, Y. C. Huang, M. Y. Chuang, Y. H. Lin, C. H. Lee, Y. Y. Lin, F. Y. Lin, and G. Kh. Kitaeva, “Long-range parametric amplification of THz wave with absorption loss exceeding parametric gain,” Opt. Express 21(2), 2452–2462 (2013).
    [Crossref] [PubMed]
  21. Y. C. Chiu, Y. C. Huang, and C. H. Chen, “Parametric laser pulse shortening,” Opt. Lett. 39(16), 4792–4795 (2014).
    [Crossref] [PubMed]
  22. A. S. Barker, A. A. Ballman, and J. A. Ditzenberger, “Infrared study of the lattice vibrations in LiTaO3,” Phys. Rev. B 2(10), 4233–4239 (1970).
    [Crossref]
  23. H. Jang, G. Strömqvist, V. Pasiskevicius, and C. Canalias, “Control of forward stimulated polariton scattering in periodically-poled KTP crystals,” Opt. Express 21(22), 27277–27283 (2013).
    [Crossref] [PubMed]
  24. J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25(7), B6 (2008).
    [Crossref]
  25. Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide,” Appl. Phys. B 73(5-6), 511–514 (2001).
    [Crossref]
  26. J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of terahertz-wave output from LiNbO(3) optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24(4), 202–204 (1999).
    [Crossref] [PubMed]
  27. K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
    [Crossref] [PubMed]

2016 (1)

E. Castro-Camus and M. Alfaro, “Photoconductive devices for terahertz pulsed spectroscopy: a review [Invited],” Photonics Res. 4(3), A36–A42 (2016).
[Crossref]

2015 (1)

2014 (4)

2013 (2)

2011 (1)

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

2008 (2)

N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C. S. Kee, D. K. Ko, J. Lee, K. Kitamura, and S. Takekawa, “Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses,” Appl. Phys. Lett. 93(4), 041104 (2008).
[Crossref]

J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25(7), B6 (2008).
[Crossref]

2006 (2)

X. Xie, J. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006).
[Crossref] [PubMed]

V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett. 88(4), 041110 (2006).
[Crossref]

2005 (1)

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

2003 (1)

2002 (1)

2001 (4)

K. Kawase, J. Shikata, K. Imai, and H. Ito, “Transform-limited, narrow-linewidth, terahertz-wave parametric generator,” Appl. Phys. Lett. 78(19), 2819–2821 (2001).
[Crossref]

Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide,” Appl. Phys. B 73(5-6), 511–514 (2001).
[Crossref]

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 34, R1–R14 (2001).

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[Crossref] [PubMed]

2000 (2)

R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter 12(23), 5053–5059 (2000).
[Crossref]

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

1999 (1)

1997 (1)

1989 (1)

1988 (1)

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

1970 (1)

A. S. Barker, A. A. Ballman, and J. A. Ditzenberger, “Infrared study of the lattice vibrations in LiTaO3,” Phys. Rev. B 2(10), 4233–4239 (1970).
[Crossref]

Alfaro, M.

E. Castro-Camus and M. Alfaro, “Photoconductive devices for terahertz pulsed spectroscopy: a review [Invited],” Photonics Res. 4(3), A36–A42 (2016).
[Crossref]

Avetisyan, Y.

Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide,” Appl. Phys. B 73(5-6), 511–514 (2001).
[Crossref]

Ballman, A. A.

A. S. Barker, A. A. Ballman, and J. A. Ditzenberger, “Infrared study of the lattice vibrations in LiTaO3,” Phys. Rev. B 2(10), 4233–4239 (1970).
[Crossref]

Barker, A. S.

A. S. Barker, A. A. Ballman, and J. A. Ditzenberger, “Infrared study of the lattice vibrations in LiTaO3,” Phys. Rev. B 2(10), 4233–4239 (1970).
[Crossref]

Bartal, B.

Bierlein, J. D.

Blau, P.

Booske, J. H.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

Bourson, P.

R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter 12(23), 5053–5059 (2000).
[Crossref]

Brehat, F.

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

Bruner, A.

Canalias, C.

H. Jang, G. Strömqvist, V. Pasiskevicius, and C. Canalias, “Control of forward stimulated polariton scattering in periodically-poled KTP crystals,” Opt. Express 21(22), 27277–27283 (2013).
[Crossref] [PubMed]

V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett. 88(4), 041110 (2006).
[Crossref]

Carabatos-Nedelec, C.

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

Castro-Camus, E.

E. Castro-Camus and M. Alfaro, “Photoconductive devices for terahertz pulsed spectroscopy: a review [Invited],” Photonics Res. 4(3), A36–A42 (2016).
[Crossref]

Chen, C. H.

Chen, X.

Chiu, Y. C.

Chuang, M. Y.

Cong, Z.

Dai, J.

X. Xie, J. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006).
[Crossref] [PubMed]

De Natale, P.

Ditzenberger, J. A.

A. S. Barker, A. A. Ballman, and J. A. Ditzenberger, “Infrared study of the lattice vibrations in LiTaO3,” Phys. Rev. B 2(10), 4233–4239 (1970).
[Crossref]

Dobbs, R. J.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

Eger, D.

Fontana, M. D.

R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter 12(23), 5053–5059 (2000).
[Crossref]

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

Hayashi, S.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014).
[Crossref] [PubMed]

Hebling, J.

J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25(7), B6 (2008).
[Crossref]

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Hoffmann, M. C.

Huang, Y. C.

Imai, K.

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[Crossref] [PubMed]

K. Kawase, J. Shikata, K. Imai, and H. Ito, “Transform-limited, narrow-linewidth, terahertz-wave parametric generator,” Appl. Phys. Lett. 78(19), 2819–2821 (2001).
[Crossref]

Ito, H.

K. Kawase, J. Shikata, K. Imai, and H. Ito, “Transform-limited, narrow-linewidth, terahertz-wave parametric generator,” Appl. Phys. Lett. 78(19), 2819–2821 (2001).
[Crossref]

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 34, R1–R14 (2001).

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[Crossref] [PubMed]

Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide,” Appl. Phys. B 73(5-6), 511–514 (2001).
[Crossref]

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of terahertz-wave output from LiNbO(3) optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24(4), 202–204 (1999).
[Crossref] [PubMed]

Jang, H.

Joye, C. D.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

Jundt, D. H.

Jung, C.

N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C. S. Kee, D. K. Ko, J. Lee, K. Kitamura, and S. Takekawa, “Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses,” Appl. Phys. Lett. 93(4), 041104 (2008).
[Crossref]

Kang, C.

N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C. S. Kee, D. K. Ko, J. Lee, K. Kitamura, and S. Takekawa, “Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses,” Appl. Phys. Lett. 93(4), 041104 (2008).
[Crossref]

Karino, K.

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

Kato, K.

Katz, M.

Kawase, K.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014).
[Crossref] [PubMed]

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 34, R1–R14 (2001).

K. Kawase, J. Shikata, K. Imai, and H. Ito, “Transform-limited, narrow-linewidth, terahertz-wave parametric generator,” Appl. Phys. Lett. 78(19), 2819–2821 (2001).
[Crossref]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[Crossref] [PubMed]

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of terahertz-wave output from LiNbO(3) optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24(4), 202–204 (1999).
[Crossref] [PubMed]

Kee, C. S.

N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C. S. Kee, D. K. Ko, J. Lee, K. Kitamura, and S. Takekawa, “Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses,” Appl. Phys. Lett. 93(4), 041104 (2008).
[Crossref]

Kitaeva, G. Kh.

Kitamura, K.

N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C. S. Kee, D. K. Ko, J. Lee, K. Kitamura, and S. Takekawa, “Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses,” Appl. Phys. Lett. 93(4), 041104 (2008).
[Crossref]

Ko, D. K.

N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C. S. Kee, D. K. Ko, J. Lee, K. Kitamura, and S. Takekawa, “Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses,” Appl. Phys. Lett. 93(4), 041104 (2008).
[Crossref]

Kory, C. L.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

Kugel, G. E.

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

Kuhl, J.

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Laurell, F.

V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett. 88(4), 041110 (2006).
[Crossref]

Lee, C. H.

Lee, J.

N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C. S. Kee, D. K. Ko, J. Lee, K. Kitamura, and S. Takekawa, “Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses,” Appl. Phys. Lett. 93(4), 041104 (2008).
[Crossref]

Lee, Y. L.

N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C. S. Kee, D. K. Ko, J. Lee, K. Kitamura, and S. Takekawa, “Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses,” Appl. Phys. Lett. 93(4), 041104 (2008).
[Crossref]

Li, N.

Lin, F. Y.

Lin, Y. H.

Lin, Y. Y.

Liu, Z.

Lu, Q.

Mangin, J.

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

Marnier, G.

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

Minamide, H.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014).
[Crossref] [PubMed]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[Crossref] [PubMed]

Mouras, R.

R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter 12(23), 5053–5059 (2000).
[Crossref]

Nawata, K.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014).
[Crossref] [PubMed]

Neil, G. R.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

Nelson, K. A.

Oron, M. B.

Pálfalvi, L.

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Park, G.-S.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

Park, J.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

Pasiskevicius, V.

H. Jang, G. Strömqvist, V. Pasiskevicius, and C. Canalias, “Control of forward stimulated polariton scattering in periodically-poled KTP crystals,” Opt. Express 21(22), 27277–27283 (2013).
[Crossref] [PubMed]

V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett. 88(4), 041110 (2006).
[Crossref]

Péter, Á.

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Polgár, K.

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Postnikov, A. V.

R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter 12(23), 5053–5059 (2000).
[Crossref]

Qin, Z.

Ruschin, S.

Sasaki, Y.

Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide,” Appl. Phys. B 73(5-6), 511–514 (2001).
[Crossref]

Sato, M.

Scalari, G.

Shikata, J.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014).
[Crossref] [PubMed]

K. Kawase, J. Shikata, K. Imai, and H. Ito, “Transform-limited, narrow-linewidth, terahertz-wave parametric generator,” Appl. Phys. Lett. 78(19), 2819–2821 (2001).
[Crossref]

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 34, R1–R14 (2001).

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[Crossref] [PubMed]

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of terahertz-wave output from LiNbO(3) optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24(4), 202–204 (1999).
[Crossref] [PubMed]

Strömqvist, G.

Taira, T.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014).
[Crossref] [PubMed]

Takaoka, E.

Takekawa, S.

N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C. S. Kee, D. K. Ko, J. Lee, K. Kitamura, and S. Takekawa, “Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses,” Appl. Phys. Lett. 93(4), 041104 (2008).
[Crossref]

Tang, G.

Taniuchi, T.

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of terahertz-wave output from LiNbO(3) optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24(4), 202–204 (1999).
[Crossref] [PubMed]

Temkin, R. J.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

Vanherzeele, H.

Vitiello, M. S.

Wang, C.

Wang, T. D.

Wang, W.

Williams, B.

Wyncke, B.

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

Xie, X.

X. Xie, J. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006).
[Crossref] [PubMed]

Yeh, K.-L.

Yoo, H. K.

N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C. S. Kee, D. K. Ko, J. Lee, K. Kitamura, and S. Takekawa, “Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses,” Appl. Phys. Lett. 93(4), 041104 (2008).
[Crossref]

Yu, N. E.

N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C. S. Kee, D. K. Ko, J. Lee, K. Kitamura, and S. Takekawa, “Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses,” Appl. Phys. Lett. 93(4), 041104 (2008).
[Crossref]

Zhang, X.

Zhang, X.-C.

X. Xie, J. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006).
[Crossref] [PubMed]

Zhang, Y.

Appl. Opt. (2)

Appl. Phys. B (1)

Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide,” Appl. Phys. B 73(5-6), 511–514 (2001).
[Crossref]

Appl. Phys. Lett. (3)

K. Kawase, J. Shikata, K. Imai, and H. Ito, “Transform-limited, narrow-linewidth, terahertz-wave parametric generator,” Appl. Phys. Lett. 78(19), 2819–2821 (2001).
[Crossref]

V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett. 88(4), 041110 (2006).
[Crossref]

N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C. S. Kee, D. K. Ko, J. Lee, K. Kitamura, and S. Takekawa, “Simultaneous forward and backward terahertz generations in periodically poled stoichiometric LiTaO3 crystal using femtosecond pulses,” Appl. Phys. Lett. 93(4), 041104 (2008).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011).
[Crossref]

J. Appl. Phys. (1)

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. C Solid State Phys. (1)

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C Solid State Phys. 21(32), 5565–5583 (1988).
[Crossref]

J. Phys. Condens. Matter (1)

R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter 12(23), 5053–5059 (2000).
[Crossref]

J. Phys. D Appl. Phys. (1)

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 34, R1–R14 (2001).

Opt. Express (4)

Opt. Lett. (5)

Photonics Res. (1)

E. Castro-Camus and M. Alfaro, “Photoconductive devices for terahertz pulsed spectroscopy: a review [Invited],” Photonics Res. 4(3), A36–A42 (2016).
[Crossref]

Phys. Rev. B (1)

A. S. Barker, A. A. Ballman, and J. A. Ditzenberger, “Infrared study of the lattice vibrations in LiTaO3,” Phys. Rev. B 2(10), 4233–4239 (1970).
[Crossref]

Phys. Rev. Lett. (1)

X. Xie, J. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006).
[Crossref] [PubMed]

Sci. Rep. (1)

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup of the TPG in KTP, Mg:CLN, CLN, and CLT crystals. The pump laser is a Q-switched Nd:YAG laser at 1064 nm, producing 520-ps pulses at a 10-Hz rate. The Nd:YAG amplifier that follows the microchip laser boosts up the pump energy to a few mJ. HWP: half-wave plate, PBS: polarization beam splitter, QWP: quarter-wave plate.
Fig. 2
Fig. 2 (a) Measured Stokes (signal) energy from the KTP, Mg:CLN, CLN, and CLT crystals versus pump energy. The last data points for Mg:CLN, CLN, and CLT correspond to the onsets of laser damage in the crystals. Among all crystals, KTP has the lowest TPG threshold and a TPG growth rate comparable to that of Mg:CLN. (b) Measured TPG signal spectrum for KTP, Mg:CLN, CLN, and CLT. The solid lines are Lorentzian fitting curves.
Fig. 3
Fig. 3 (a) Experimental setup for the KTP TPA. The system is similar to that in Fig. 1, except that the signal wave is now seeded by a tunable external-cavity diode laser (ECDL). The photograph at the crystal output is a typical view on an infrared detection card when multiple Stokes waves were generated under an intense pump. (b) Detailed configuration of the KTP crystal in the TPA. The crystal shape was a trapezoid in the x-y plane. The THz radiation is extracted from the total-internal-reflection point of the pump and signal on the top side of the crystal. The pump beam continues to amplify the signal upon reflection.
Fig. 4
Fig. 4 (a) Measured output Stokes energy versus pump energy. Saturation of the 1st-Stokes wave is a consequence of the generation of high-order Stokes waves. (b) Measured 1st-Stokes signal spectra from TPG and TPA at 1.1 mJ pump energy, indicating a narrow-line radiation for the signal wave and thus the THz wave from the TPA.
Fig. 5
Fig. 5 (a) Measured 1st-Stokes energy efficiency and THz-wave peak power versus pump energy. The roll-off of the 1st-Stokes efficiency is caused by the generation of high-order Stokes, which also causes the saturation of the THz-wave radiation. (b) Measured THz pulses in the Golay cell, indicating a signal-to-noise ratio of about 10.

Tables (1)

Tables Icon

Table 1 Summary of the material properties for KTP, Mg:CLN, CLN, and CLT. KTP shows the largest FOM for SPS.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P so = P si e g s L .
g s = α T 2cosφ [ 1+16cosφ ( Γ α T ) 2 1 ]~ 2Γ cosφ α T 2cosφ .
Γ= 2 ω s ω T ε 0 c 3 n s n T n p d eff × I p .
P so = P si e A d ¯ eff I p B α ¯ T .
d ¯ eff,th = [ 1 A P so d P so d I p ] th .
α ¯ T = A d ¯ eff I p ln( P so P si ) B .
d ¯ eff =m d ¯ eff,th .
FO M SPS = ( Γ α T ) 2 d eff 2 / α T 2 λ s λ THz n s n T n p .

Metrics