Abstract

Silicon solar cells are the most widely deployed modules owing to their low-cost manufacture, large market, and suitable efficiencies for residential and commercial use. Methods to increase their solar energy collection must be easily integrated into module fabrication. We perform a theoretical and experimental study on the light collection properties of an encapsulant that incorporates a periodic array of air prisms, which overlay the metallic front contacts of silicon solar cells. We show that the light collection efficiency induced by the encapsulant depends on both the shape of the prisms and angle of incidence of incoming light. We elucidate the changes in collection efficiency in terms of the ray paths and reflection mechanisms in the encapsulant. We fabricated the encapsulant from a commercial silicone and studied the change in the external quantum efficiency (EQE) on an encapsulated, standard silicon solar cell. We observe efficiency enhancements, as compared to a uniform encapsulant, over the visible to near infrared region for a range of incident angles. This work demonstrates exactly how a periodic air prism architecture increases light collection, and how it may be designed to maximize light collection over the widest range of incident angles.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of the light trapping effect on the performance of silicon-based solar cells: absorption enhancement

Hamid Heidarzadeh, Ali Rostami, Samiye Matloub, Mahboubeh Dolatyari, and Ghassem Rostami
Appl. Opt. 54(12) 3591-3601 (2015)

Design of nanostructured plasmonic back contacts for thin-film silicon solar cells

Ulrich W. Paetzold, Etienne Moulin, Bart E. Pieters, Reinhard Carius, and Uwe Rau
Opt. Express 19(S6) A1219-A1230 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. I. Chappell, “The v-groove multijunction solar cell,” IEEE Trans. Electron Dev. 26(7), 1091–1097 (1979).
    [Crossref]
  2. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
    [Crossref]
  3. S. Bailey, N. Fatemi, G. A. Landis, D. Brinker, and M. Faur, “Application of v-groove technology to InP solar cells,” in 2nd Indium Phosphide Relat. Mater.,Int. Conf. (1990).
    [Crossref]
  4. T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90(16), 2647–2656 (2006).
    [Crossref]
  5. K. J. Weber, V. Everett, P. N. K. Deenapanray, E. Franklin, and A. W. Blakers, “Modeling of static concentrator modules incorporating lambertian or v-groove rear reflectors,” Sol. Energy Mater. Sol. Cells 90(12), 1741–1749 (2006).
    [Crossref]
  6. T. Uematsu, Y. Yazawa, K. Tsutsui, Y. Miyamura, H. Ohtsuka, T. Warabisako, and T. Joge, “Design and characterization of flat-plate static-concentrator photovoltaic modules,” Sol. Energy Mater. Sol. Cells 67(1–4), 441–448 (2001).
    [Crossref]
  7. T. Uematsu, Y. Yazawa, T. Joge, and S. Kokunai, “Fabrication and characterization of a flat-plate static-concentrator photovoltaic module,” Sol. Energy Mater. Sol. Cells 67(1–4), 425–434 (2001).
    [Crossref]
  8. T. Uematsu, Y. Yazawa, Y. Miyamura, S. Muramatsu, H. Ohtsuka, K. Tsutsui, and T. Warabisako, “Static concentrator photovoltaic module with prism array,” Sol. Energy Mater. Sol. Cells 67(1–4), 415–423 (2001).
    [Crossref]
  9. R. Leutz and H. Ries, “Microstructured light guides overcoming the two-dimensional concentration limit,” Appl. Opt. 44(32), 6885–6889 (2005).
    [Crossref] [PubMed]
  10. A. W. Blakers, “Shading losses of solar-cell metal grids,” J. Appl. Phys. 71(10), 5237–5241 (1992).
    [Crossref]
  11. M. F. Stuckings and A. W. Blakers, “A study of shading and resistive loss from the fingers of encapsulated solar cells,” Sol. Energy Mater. Sol. Cells 59(3), 233–242 (1999).
    [Crossref]
  12. T. Li, C. L. Zhou, Y. Song, H. F. Yang, Z. H. Gao, Y. Duan, Y. Z. Li, Z. G. Liu, and W. J. Wang, “Theoretical analysis and experimental study of optical loss of metal contacts of crystalline silicon solar cells,” Wuli Xuebao 60(9), 098801 (2011).
  13. J. Jaus, H. Pantsar, J. Eckert, M. Duell, H. Herfurth, and D. Doble, “Light management for reduction of bus bar and gridline shadowing in photovoltaic modules,” in 35th IEEE Photovoltaic Spec. Conf. (IEEE, 2010), 979–983.
    [Crossref]
  14. R. Ebner, M. Schwark, B. Kubicek, G. Újvári, W. Mühleisen, C. Hirschl, L. Neumaier, M. Pedevilla, J. Scheurer, A. Plösch, A. Kogler, W. Krumlacher, and H. Muckenhuber, “Increased power output of crystalline silicon pv modules by alternative interconnection applications,” in 28th Eur. Photovoltaic Sol. Energy Conf., Proc. Int. Conf. (2013).
  15. T.-D. Cheng, Y.-P. Chen, and P.-C. Chen, “Efficiency improvement of photovoltaic module via grid diffusers in eva encapsulation layer,” 28th Eur. Photovoltaic Sol. Energy Conf., Proc. Int. Conf. (2012).
  16. I. Mingareev, R. Berlich, T. J. Eichelkraut, H. Herfurth, S. Heinemann, and M. C. Richardson, “Diffractive optical elements utilized for efficiency enhancement of photovoltaic modules,” Opt. Express 19(12), 11397–11404 (2011).
    [Crossref] [PubMed]
  17. L. Kuna, G. C. Eder, C. Leiner, and G. Peharz, “Reducing shadowing losses with femtosecond-laser-written deflective optical elements in the bulk of EVA encapsulation,” Prog. Photovolt. Res. Appl. 23(9), 1120–1130 (2015).
    [Crossref]
  18. M. J. Nowlan, “Photovoltaic cell and process,” United States Patent US5076857 A (1991).
  19. O. Korech, J. M. Gordon, E. A. Katz, D. Feuermann, and N. Eisenberg, “Dielectric microconcentrators for efficiency enhancement in concentrator solar cells,” Opt. Lett. 32(19), 2789–2791 (2007).
    [Crossref] [PubMed]
  20. K. R. McIntosh, J. N. Cotsell, J. S. Cumpston, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and eva encapsulants for conventional silicon pv modules: a ray-tracing study,” in 34th IEEE Photovoltaic Spec. Conf. (2009), 1649–1654.
    [Crossref]
  21. M. Winter, M. R. Vogt, H. Holst, and P. P. Altermatt, “Combining structures on different length scales in ray tracing: analysis of optical losses in solar cell modules,” Opt. Quantum Electron. 47(6), 1373–1379 (2015).
    [Crossref]
  22. S. Kann, M. J. Shiao, C. Honeyman, A. Perea, J. Jones, C. Smith, B. Gallagher, S. Moskowitz, J. Baca, S. Rumery, A. Holm, and K. O’Brien, Solar Market Insight Report 2016 Q3,” SEIA (2016).

2015 (2)

L. Kuna, G. C. Eder, C. Leiner, and G. Peharz, “Reducing shadowing losses with femtosecond-laser-written deflective optical elements in the bulk of EVA encapsulation,” Prog. Photovolt. Res. Appl. 23(9), 1120–1130 (2015).
[Crossref]

M. Winter, M. R. Vogt, H. Holst, and P. P. Altermatt, “Combining structures on different length scales in ray tracing: analysis of optical losses in solar cell modules,” Opt. Quantum Electron. 47(6), 1373–1379 (2015).
[Crossref]

2011 (2)

I. Mingareev, R. Berlich, T. J. Eichelkraut, H. Herfurth, S. Heinemann, and M. C. Richardson, “Diffractive optical elements utilized for efficiency enhancement of photovoltaic modules,” Opt. Express 19(12), 11397–11404 (2011).
[Crossref] [PubMed]

T. Li, C. L. Zhou, Y. Song, H. F. Yang, Z. H. Gao, Y. Duan, Y. Z. Li, Z. G. Liu, and W. J. Wang, “Theoretical analysis and experimental study of optical loss of metal contacts of crystalline silicon solar cells,” Wuli Xuebao 60(9), 098801 (2011).

2007 (1)

2006 (2)

T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90(16), 2647–2656 (2006).
[Crossref]

K. J. Weber, V. Everett, P. N. K. Deenapanray, E. Franklin, and A. W. Blakers, “Modeling of static concentrator modules incorporating lambertian or v-groove rear reflectors,” Sol. Energy Mater. Sol. Cells 90(12), 1741–1749 (2006).
[Crossref]

2005 (1)

2001 (3)

T. Uematsu, Y. Yazawa, K. Tsutsui, Y. Miyamura, H. Ohtsuka, T. Warabisako, and T. Joge, “Design and characterization of flat-plate static-concentrator photovoltaic modules,” Sol. Energy Mater. Sol. Cells 67(1–4), 441–448 (2001).
[Crossref]

T. Uematsu, Y. Yazawa, T. Joge, and S. Kokunai, “Fabrication and characterization of a flat-plate static-concentrator photovoltaic module,” Sol. Energy Mater. Sol. Cells 67(1–4), 425–434 (2001).
[Crossref]

T. Uematsu, Y. Yazawa, Y. Miyamura, S. Muramatsu, H. Ohtsuka, K. Tsutsui, and T. Warabisako, “Static concentrator photovoltaic module with prism array,” Sol. Energy Mater. Sol. Cells 67(1–4), 415–423 (2001).
[Crossref]

1999 (1)

M. F. Stuckings and A. W. Blakers, “A study of shading and resistive loss from the fingers of encapsulated solar cells,” Sol. Energy Mater. Sol. Cells 59(3), 233–242 (1999).
[Crossref]

1992 (1)

A. W. Blakers, “Shading losses of solar-cell metal grids,” J. Appl. Phys. 71(10), 5237–5241 (1992).
[Crossref]

1987 (1)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

1979 (1)

T. I. Chappell, “The v-groove multijunction solar cell,” IEEE Trans. Electron Dev. 26(7), 1091–1097 (1979).
[Crossref]

Altermatt, P. P.

M. Winter, M. R. Vogt, H. Holst, and P. P. Altermatt, “Combining structures on different length scales in ray tracing: analysis of optical losses in solar cell modules,” Opt. Quantum Electron. 47(6), 1373–1379 (2015).
[Crossref]

Berlich, R.

Blakers, A. W.

K. J. Weber, V. Everett, P. N. K. Deenapanray, E. Franklin, and A. W. Blakers, “Modeling of static concentrator modules incorporating lambertian or v-groove rear reflectors,” Sol. Energy Mater. Sol. Cells 90(12), 1741–1749 (2006).
[Crossref]

M. F. Stuckings and A. W. Blakers, “A study of shading and resistive loss from the fingers of encapsulated solar cells,” Sol. Energy Mater. Sol. Cells 59(3), 233–242 (1999).
[Crossref]

A. W. Blakers, “Shading losses of solar-cell metal grids,” J. Appl. Phys. 71(10), 5237–5241 (1992).
[Crossref]

Campbell, P.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

Chappell, T. I.

T. I. Chappell, “The v-groove multijunction solar cell,” IEEE Trans. Electron Dev. 26(7), 1091–1097 (1979).
[Crossref]

Chen, P.-C.

T.-D. Cheng, Y.-P. Chen, and P.-C. Chen, “Efficiency improvement of photovoltaic module via grid diffusers in eva encapsulation layer,” 28th Eur. Photovoltaic Sol. Energy Conf., Proc. Int. Conf. (2012).

Chen, Y.-P.

T.-D. Cheng, Y.-P. Chen, and P.-C. Chen, “Efficiency improvement of photovoltaic module via grid diffusers in eva encapsulation layer,” 28th Eur. Photovoltaic Sol. Energy Conf., Proc. Int. Conf. (2012).

Cheng, T.-D.

T.-D. Cheng, Y.-P. Chen, and P.-C. Chen, “Efficiency improvement of photovoltaic module via grid diffusers in eva encapsulation layer,” 28th Eur. Photovoltaic Sol. Energy Conf., Proc. Int. Conf. (2012).

Cotsell, J. N.

K. R. McIntosh, J. N. Cotsell, J. S. Cumpston, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and eva encapsulants for conventional silicon pv modules: a ray-tracing study,” in 34th IEEE Photovoltaic Spec. Conf. (2009), 1649–1654.
[Crossref]

Cumpston, J. S.

K. R. McIntosh, J. N. Cotsell, J. S. Cumpston, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and eva encapsulants for conventional silicon pv modules: a ray-tracing study,” in 34th IEEE Photovoltaic Spec. Conf. (2009), 1649–1654.
[Crossref]

Deenapanray, P. N. K.

K. J. Weber, V. Everett, P. N. K. Deenapanray, E. Franklin, and A. W. Blakers, “Modeling of static concentrator modules incorporating lambertian or v-groove rear reflectors,” Sol. Energy Mater. Sol. Cells 90(12), 1741–1749 (2006).
[Crossref]

Doble, D.

J. Jaus, H. Pantsar, J. Eckert, M. Duell, H. Herfurth, and D. Doble, “Light management for reduction of bus bar and gridline shadowing in photovoltaic modules,” in 35th IEEE Photovoltaic Spec. Conf. (IEEE, 2010), 979–983.
[Crossref]

Duan, Y.

T. Li, C. L. Zhou, Y. Song, H. F. Yang, Z. H. Gao, Y. Duan, Y. Z. Li, Z. G. Liu, and W. J. Wang, “Theoretical analysis and experimental study of optical loss of metal contacts of crystalline silicon solar cells,” Wuli Xuebao 60(9), 098801 (2011).

Duell, M.

J. Jaus, H. Pantsar, J. Eckert, M. Duell, H. Herfurth, and D. Doble, “Light management for reduction of bus bar and gridline shadowing in photovoltaic modules,” in 35th IEEE Photovoltaic Spec. Conf. (IEEE, 2010), 979–983.
[Crossref]

Ebner, R.

R. Ebner, M. Schwark, B. Kubicek, G. Újvári, W. Mühleisen, C. Hirschl, L. Neumaier, M. Pedevilla, J. Scheurer, A. Plösch, A. Kogler, W. Krumlacher, and H. Muckenhuber, “Increased power output of crystalline silicon pv modules by alternative interconnection applications,” in 28th Eur. Photovoltaic Sol. Energy Conf., Proc. Int. Conf. (2013).

Eckert, J.

J. Jaus, H. Pantsar, J. Eckert, M. Duell, H. Herfurth, and D. Doble, “Light management for reduction of bus bar and gridline shadowing in photovoltaic modules,” in 35th IEEE Photovoltaic Spec. Conf. (IEEE, 2010), 979–983.
[Crossref]

Eder, G. C.

L. Kuna, G. C. Eder, C. Leiner, and G. Peharz, “Reducing shadowing losses with femtosecond-laser-written deflective optical elements in the bulk of EVA encapsulation,” Prog. Photovolt. Res. Appl. 23(9), 1120–1130 (2015).
[Crossref]

Eichelkraut, T. J.

Eisenberg, N.

Everett, V.

K. J. Weber, V. Everett, P. N. K. Deenapanray, E. Franklin, and A. W. Blakers, “Modeling of static concentrator modules incorporating lambertian or v-groove rear reflectors,” Sol. Energy Mater. Sol. Cells 90(12), 1741–1749 (2006).
[Crossref]

Feuermann, D.

Franklin, E.

K. J. Weber, V. Everett, P. N. K. Deenapanray, E. Franklin, and A. W. Blakers, “Modeling of static concentrator modules incorporating lambertian or v-groove rear reflectors,” Sol. Energy Mater. Sol. Cells 90(12), 1741–1749 (2006).
[Crossref]

Fuyuki, T.

T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90(16), 2647–2656 (2006).
[Crossref]

Gao, Z. H.

T. Li, C. L. Zhou, Y. Song, H. F. Yang, Z. H. Gao, Y. Duan, Y. Z. Li, Z. G. Liu, and W. J. Wang, “Theoretical analysis and experimental study of optical loss of metal contacts of crystalline silicon solar cells,” Wuli Xuebao 60(9), 098801 (2011).

Gordon, J. M.

Green, M. A.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

Heinemann, S.

Herfurth, H.

I. Mingareev, R. Berlich, T. J. Eichelkraut, H. Herfurth, S. Heinemann, and M. C. Richardson, “Diffractive optical elements utilized for efficiency enhancement of photovoltaic modules,” Opt. Express 19(12), 11397–11404 (2011).
[Crossref] [PubMed]

J. Jaus, H. Pantsar, J. Eckert, M. Duell, H. Herfurth, and D. Doble, “Light management for reduction of bus bar and gridline shadowing in photovoltaic modules,” in 35th IEEE Photovoltaic Spec. Conf. (IEEE, 2010), 979–983.
[Crossref]

Hirschl, C.

R. Ebner, M. Schwark, B. Kubicek, G. Újvári, W. Mühleisen, C. Hirschl, L. Neumaier, M. Pedevilla, J. Scheurer, A. Plösch, A. Kogler, W. Krumlacher, and H. Muckenhuber, “Increased power output of crystalline silicon pv modules by alternative interconnection applications,” in 28th Eur. Photovoltaic Sol. Energy Conf., Proc. Int. Conf. (2013).

Holst, H.

M. Winter, M. R. Vogt, H. Holst, and P. P. Altermatt, “Combining structures on different length scales in ray tracing: analysis of optical losses in solar cell modules,” Opt. Quantum Electron. 47(6), 1373–1379 (2015).
[Crossref]

Jaus, J.

J. Jaus, H. Pantsar, J. Eckert, M. Duell, H. Herfurth, and D. Doble, “Light management for reduction of bus bar and gridline shadowing in photovoltaic modules,” in 35th IEEE Photovoltaic Spec. Conf. (IEEE, 2010), 979–983.
[Crossref]

Joge, T.

T. Uematsu, Y. Yazawa, T. Joge, and S. Kokunai, “Fabrication and characterization of a flat-plate static-concentrator photovoltaic module,” Sol. Energy Mater. Sol. Cells 67(1–4), 425–434 (2001).
[Crossref]

T. Uematsu, Y. Yazawa, K. Tsutsui, Y. Miyamura, H. Ohtsuka, T. Warabisako, and T. Joge, “Design and characterization of flat-plate static-concentrator photovoltaic modules,” Sol. Energy Mater. Sol. Cells 67(1–4), 441–448 (2001).
[Crossref]

Katz, E. A.

Ketola, B. M.

K. R. McIntosh, J. N. Cotsell, J. S. Cumpston, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and eva encapsulants for conventional silicon pv modules: a ray-tracing study,” in 34th IEEE Photovoltaic Spec. Conf. (2009), 1649–1654.
[Crossref]

Kogler, A.

R. Ebner, M. Schwark, B. Kubicek, G. Újvári, W. Mühleisen, C. Hirschl, L. Neumaier, M. Pedevilla, J. Scheurer, A. Plösch, A. Kogler, W. Krumlacher, and H. Muckenhuber, “Increased power output of crystalline silicon pv modules by alternative interconnection applications,” in 28th Eur. Photovoltaic Sol. Energy Conf., Proc. Int. Conf. (2013).

Kokunai, S.

T. Uematsu, Y. Yazawa, T. Joge, and S. Kokunai, “Fabrication and characterization of a flat-plate static-concentrator photovoltaic module,” Sol. Energy Mater. Sol. Cells 67(1–4), 425–434 (2001).
[Crossref]

Korech, O.

Krumlacher, W.

R. Ebner, M. Schwark, B. Kubicek, G. Újvári, W. Mühleisen, C. Hirschl, L. Neumaier, M. Pedevilla, J. Scheurer, A. Plösch, A. Kogler, W. Krumlacher, and H. Muckenhuber, “Increased power output of crystalline silicon pv modules by alternative interconnection applications,” in 28th Eur. Photovoltaic Sol. Energy Conf., Proc. Int. Conf. (2013).

Kubicek, B.

R. Ebner, M. Schwark, B. Kubicek, G. Újvári, W. Mühleisen, C. Hirschl, L. Neumaier, M. Pedevilla, J. Scheurer, A. Plösch, A. Kogler, W. Krumlacher, and H. Muckenhuber, “Increased power output of crystalline silicon pv modules by alternative interconnection applications,” in 28th Eur. Photovoltaic Sol. Energy Conf., Proc. Int. Conf. (2013).

Kuna, L.

L. Kuna, G. C. Eder, C. Leiner, and G. Peharz, “Reducing shadowing losses with femtosecond-laser-written deflective optical elements in the bulk of EVA encapsulation,” Prog. Photovolt. Res. Appl. 23(9), 1120–1130 (2015).
[Crossref]

Leiner, C.

L. Kuna, G. C. Eder, C. Leiner, and G. Peharz, “Reducing shadowing losses with femtosecond-laser-written deflective optical elements in the bulk of EVA encapsulation,” Prog. Photovolt. Res. Appl. 23(9), 1120–1130 (2015).
[Crossref]

Leutz, R.

Li, T.

T. Li, C. L. Zhou, Y. Song, H. F. Yang, Z. H. Gao, Y. Duan, Y. Z. Li, Z. G. Liu, and W. J. Wang, “Theoretical analysis and experimental study of optical loss of metal contacts of crystalline silicon solar cells,” Wuli Xuebao 60(9), 098801 (2011).

Li, Y. Z.

T. Li, C. L. Zhou, Y. Song, H. F. Yang, Z. H. Gao, Y. Duan, Y. Z. Li, Z. G. Liu, and W. J. Wang, “Theoretical analysis and experimental study of optical loss of metal contacts of crystalline silicon solar cells,” Wuli Xuebao 60(9), 098801 (2011).

Liu, Z. G.

T. Li, C. L. Zhou, Y. Song, H. F. Yang, Z. H. Gao, Y. Duan, Y. Z. Li, Z. G. Liu, and W. J. Wang, “Theoretical analysis and experimental study of optical loss of metal contacts of crystalline silicon solar cells,” Wuli Xuebao 60(9), 098801 (2011).

McIntosh, K. R.

K. R. McIntosh, J. N. Cotsell, J. S. Cumpston, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and eva encapsulants for conventional silicon pv modules: a ray-tracing study,” in 34th IEEE Photovoltaic Spec. Conf. (2009), 1649–1654.
[Crossref]

Mingareev, I.

Miyamura, Y.

T. Uematsu, Y. Yazawa, Y. Miyamura, S. Muramatsu, H. Ohtsuka, K. Tsutsui, and T. Warabisako, “Static concentrator photovoltaic module with prism array,” Sol. Energy Mater. Sol. Cells 67(1–4), 415–423 (2001).
[Crossref]

T. Uematsu, Y. Yazawa, K. Tsutsui, Y. Miyamura, H. Ohtsuka, T. Warabisako, and T. Joge, “Design and characterization of flat-plate static-concentrator photovoltaic modules,” Sol. Energy Mater. Sol. Cells 67(1–4), 441–448 (2001).
[Crossref]

Muckenhuber, H.

R. Ebner, M. Schwark, B. Kubicek, G. Újvári, W. Mühleisen, C. Hirschl, L. Neumaier, M. Pedevilla, J. Scheurer, A. Plösch, A. Kogler, W. Krumlacher, and H. Muckenhuber, “Increased power output of crystalline silicon pv modules by alternative interconnection applications,” in 28th Eur. Photovoltaic Sol. Energy Conf., Proc. Int. Conf. (2013).

Mühleisen, W.

R. Ebner, M. Schwark, B. Kubicek, G. Újvári, W. Mühleisen, C. Hirschl, L. Neumaier, M. Pedevilla, J. Scheurer, A. Plösch, A. Kogler, W. Krumlacher, and H. Muckenhuber, “Increased power output of crystalline silicon pv modules by alternative interconnection applications,” in 28th Eur. Photovoltaic Sol. Energy Conf., Proc. Int. Conf. (2013).

Muramatsu, S.

T. Uematsu, Y. Yazawa, Y. Miyamura, S. Muramatsu, H. Ohtsuka, K. Tsutsui, and T. Warabisako, “Static concentrator photovoltaic module with prism array,” Sol. Energy Mater. Sol. Cells 67(1–4), 415–423 (2001).
[Crossref]

Neumaier, L.

R. Ebner, M. Schwark, B. Kubicek, G. Újvári, W. Mühleisen, C. Hirschl, L. Neumaier, M. Pedevilla, J. Scheurer, A. Plösch, A. Kogler, W. Krumlacher, and H. Muckenhuber, “Increased power output of crystalline silicon pv modules by alternative interconnection applications,” in 28th Eur. Photovoltaic Sol. Energy Conf., Proc. Int. Conf. (2013).

Norris, A. W.

K. R. McIntosh, J. N. Cotsell, J. S. Cumpston, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and eva encapsulants for conventional silicon pv modules: a ray-tracing study,” in 34th IEEE Photovoltaic Spec. Conf. (2009), 1649–1654.
[Crossref]

Ohtsuka, H.

T. Uematsu, Y. Yazawa, Y. Miyamura, S. Muramatsu, H. Ohtsuka, K. Tsutsui, and T. Warabisako, “Static concentrator photovoltaic module with prism array,” Sol. Energy Mater. Sol. Cells 67(1–4), 415–423 (2001).
[Crossref]

T. Uematsu, Y. Yazawa, K. Tsutsui, Y. Miyamura, H. Ohtsuka, T. Warabisako, and T. Joge, “Design and characterization of flat-plate static-concentrator photovoltaic modules,” Sol. Energy Mater. Sol. Cells 67(1–4), 441–448 (2001).
[Crossref]

Pantsar, H.

J. Jaus, H. Pantsar, J. Eckert, M. Duell, H. Herfurth, and D. Doble, “Light management for reduction of bus bar and gridline shadowing in photovoltaic modules,” in 35th IEEE Photovoltaic Spec. Conf. (IEEE, 2010), 979–983.
[Crossref]

Pedevilla, M.

R. Ebner, M. Schwark, B. Kubicek, G. Újvári, W. Mühleisen, C. Hirschl, L. Neumaier, M. Pedevilla, J. Scheurer, A. Plösch, A. Kogler, W. Krumlacher, and H. Muckenhuber, “Increased power output of crystalline silicon pv modules by alternative interconnection applications,” in 28th Eur. Photovoltaic Sol. Energy Conf., Proc. Int. Conf. (2013).

Peharz, G.

L. Kuna, G. C. Eder, C. Leiner, and G. Peharz, “Reducing shadowing losses with femtosecond-laser-written deflective optical elements in the bulk of EVA encapsulation,” Prog. Photovolt. Res. Appl. 23(9), 1120–1130 (2015).
[Crossref]

Plösch, A.

R. Ebner, M. Schwark, B. Kubicek, G. Újvári, W. Mühleisen, C. Hirschl, L. Neumaier, M. Pedevilla, J. Scheurer, A. Plösch, A. Kogler, W. Krumlacher, and H. Muckenhuber, “Increased power output of crystalline silicon pv modules by alternative interconnection applications,” in 28th Eur. Photovoltaic Sol. Energy Conf., Proc. Int. Conf. (2013).

Powell, N. E.

K. R. McIntosh, J. N. Cotsell, J. S. Cumpston, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and eva encapsulants for conventional silicon pv modules: a ray-tracing study,” in 34th IEEE Photovoltaic Spec. Conf. (2009), 1649–1654.
[Crossref]

Richardson, M. C.

Ries, H.

Scheurer, J.

R. Ebner, M. Schwark, B. Kubicek, G. Újvári, W. Mühleisen, C. Hirschl, L. Neumaier, M. Pedevilla, J. Scheurer, A. Plösch, A. Kogler, W. Krumlacher, and H. Muckenhuber, “Increased power output of crystalline silicon pv modules by alternative interconnection applications,” in 28th Eur. Photovoltaic Sol. Energy Conf., Proc. Int. Conf. (2013).

Schwark, M.

R. Ebner, M. Schwark, B. Kubicek, G. Újvári, W. Mühleisen, C. Hirschl, L. Neumaier, M. Pedevilla, J. Scheurer, A. Plösch, A. Kogler, W. Krumlacher, and H. Muckenhuber, “Increased power output of crystalline silicon pv modules by alternative interconnection applications,” in 28th Eur. Photovoltaic Sol. Energy Conf., Proc. Int. Conf. (2013).

Song, Y.

T. Li, C. L. Zhou, Y. Song, H. F. Yang, Z. H. Gao, Y. Duan, Y. Z. Li, Z. G. Liu, and W. J. Wang, “Theoretical analysis and experimental study of optical loss of metal contacts of crystalline silicon solar cells,” Wuli Xuebao 60(9), 098801 (2011).

Stuckings, M. F.

M. F. Stuckings and A. W. Blakers, “A study of shading and resistive loss from the fingers of encapsulated solar cells,” Sol. Energy Mater. Sol. Cells 59(3), 233–242 (1999).
[Crossref]

Tsutsui, K.

T. Uematsu, Y. Yazawa, Y. Miyamura, S. Muramatsu, H. Ohtsuka, K. Tsutsui, and T. Warabisako, “Static concentrator photovoltaic module with prism array,” Sol. Energy Mater. Sol. Cells 67(1–4), 415–423 (2001).
[Crossref]

T. Uematsu, Y. Yazawa, K. Tsutsui, Y. Miyamura, H. Ohtsuka, T. Warabisako, and T. Joge, “Design and characterization of flat-plate static-concentrator photovoltaic modules,” Sol. Energy Mater. Sol. Cells 67(1–4), 441–448 (2001).
[Crossref]

Uematsu, T.

T. Uematsu, Y. Yazawa, T. Joge, and S. Kokunai, “Fabrication and characterization of a flat-plate static-concentrator photovoltaic module,” Sol. Energy Mater. Sol. Cells 67(1–4), 425–434 (2001).
[Crossref]

T. Uematsu, Y. Yazawa, K. Tsutsui, Y. Miyamura, H. Ohtsuka, T. Warabisako, and T. Joge, “Design and characterization of flat-plate static-concentrator photovoltaic modules,” Sol. Energy Mater. Sol. Cells 67(1–4), 441–448 (2001).
[Crossref]

T. Uematsu, Y. Yazawa, Y. Miyamura, S. Muramatsu, H. Ohtsuka, K. Tsutsui, and T. Warabisako, “Static concentrator photovoltaic module with prism array,” Sol. Energy Mater. Sol. Cells 67(1–4), 415–423 (2001).
[Crossref]

Újvári, G.

R. Ebner, M. Schwark, B. Kubicek, G. Újvári, W. Mühleisen, C. Hirschl, L. Neumaier, M. Pedevilla, J. Scheurer, A. Plösch, A. Kogler, W. Krumlacher, and H. Muckenhuber, “Increased power output of crystalline silicon pv modules by alternative interconnection applications,” in 28th Eur. Photovoltaic Sol. Energy Conf., Proc. Int. Conf. (2013).

Uraoka, Y.

T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90(16), 2647–2656 (2006).
[Crossref]

Vogt, M. R.

M. Winter, M. R. Vogt, H. Holst, and P. P. Altermatt, “Combining structures on different length scales in ray tracing: analysis of optical losses in solar cell modules,” Opt. Quantum Electron. 47(6), 1373–1379 (2015).
[Crossref]

Wang, W. J.

T. Li, C. L. Zhou, Y. Song, H. F. Yang, Z. H. Gao, Y. Duan, Y. Z. Li, Z. G. Liu, and W. J. Wang, “Theoretical analysis and experimental study of optical loss of metal contacts of crystalline silicon solar cells,” Wuli Xuebao 60(9), 098801 (2011).

Warabisako, T.

T. Uematsu, Y. Yazawa, K. Tsutsui, Y. Miyamura, H. Ohtsuka, T. Warabisako, and T. Joge, “Design and characterization of flat-plate static-concentrator photovoltaic modules,” Sol. Energy Mater. Sol. Cells 67(1–4), 441–448 (2001).
[Crossref]

T. Uematsu, Y. Yazawa, Y. Miyamura, S. Muramatsu, H. Ohtsuka, K. Tsutsui, and T. Warabisako, “Static concentrator photovoltaic module with prism array,” Sol. Energy Mater. Sol. Cells 67(1–4), 415–423 (2001).
[Crossref]

Weber, K. J.

K. J. Weber, V. Everett, P. N. K. Deenapanray, E. Franklin, and A. W. Blakers, “Modeling of static concentrator modules incorporating lambertian or v-groove rear reflectors,” Sol. Energy Mater. Sol. Cells 90(12), 1741–1749 (2006).
[Crossref]

Winter, M.

M. Winter, M. R. Vogt, H. Holst, and P. P. Altermatt, “Combining structures on different length scales in ray tracing: analysis of optical losses in solar cell modules,” Opt. Quantum Electron. 47(6), 1373–1379 (2015).
[Crossref]

Yagi, T.

T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90(16), 2647–2656 (2006).
[Crossref]

Yang, H. F.

T. Li, C. L. Zhou, Y. Song, H. F. Yang, Z. H. Gao, Y. Duan, Y. Z. Li, Z. G. Liu, and W. J. Wang, “Theoretical analysis and experimental study of optical loss of metal contacts of crystalline silicon solar cells,” Wuli Xuebao 60(9), 098801 (2011).

Yazawa, Y.

T. Uematsu, Y. Yazawa, K. Tsutsui, Y. Miyamura, H. Ohtsuka, T. Warabisako, and T. Joge, “Design and characterization of flat-plate static-concentrator photovoltaic modules,” Sol. Energy Mater. Sol. Cells 67(1–4), 441–448 (2001).
[Crossref]

T. Uematsu, Y. Yazawa, Y. Miyamura, S. Muramatsu, H. Ohtsuka, K. Tsutsui, and T. Warabisako, “Static concentrator photovoltaic module with prism array,” Sol. Energy Mater. Sol. Cells 67(1–4), 415–423 (2001).
[Crossref]

T. Uematsu, Y. Yazawa, T. Joge, and S. Kokunai, “Fabrication and characterization of a flat-plate static-concentrator photovoltaic module,” Sol. Energy Mater. Sol. Cells 67(1–4), 425–434 (2001).
[Crossref]

Zhou, C. L.

T. Li, C. L. Zhou, Y. Song, H. F. Yang, Z. H. Gao, Y. Duan, Y. Z. Li, Z. G. Liu, and W. J. Wang, “Theoretical analysis and experimental study of optical loss of metal contacts of crystalline silicon solar cells,” Wuli Xuebao 60(9), 098801 (2011).

Appl. Opt. (1)

IEEE Trans. Electron Dev. (1)

T. I. Chappell, “The v-groove multijunction solar cell,” IEEE Trans. Electron Dev. 26(7), 1091–1097 (1979).
[Crossref]

J. Appl. Phys. (2)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

A. W. Blakers, “Shading losses of solar-cell metal grids,” J. Appl. Phys. 71(10), 5237–5241 (1992).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

M. Winter, M. R. Vogt, H. Holst, and P. P. Altermatt, “Combining structures on different length scales in ray tracing: analysis of optical losses in solar cell modules,” Opt. Quantum Electron. 47(6), 1373–1379 (2015).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

L. Kuna, G. C. Eder, C. Leiner, and G. Peharz, “Reducing shadowing losses with femtosecond-laser-written deflective optical elements in the bulk of EVA encapsulation,” Prog. Photovolt. Res. Appl. 23(9), 1120–1130 (2015).
[Crossref]

Sol. Energy Mater. Sol. Cells (6)

M. F. Stuckings and A. W. Blakers, “A study of shading and resistive loss from the fingers of encapsulated solar cells,” Sol. Energy Mater. Sol. Cells 59(3), 233–242 (1999).
[Crossref]

T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90(16), 2647–2656 (2006).
[Crossref]

K. J. Weber, V. Everett, P. N. K. Deenapanray, E. Franklin, and A. W. Blakers, “Modeling of static concentrator modules incorporating lambertian or v-groove rear reflectors,” Sol. Energy Mater. Sol. Cells 90(12), 1741–1749 (2006).
[Crossref]

T. Uematsu, Y. Yazawa, K. Tsutsui, Y. Miyamura, H. Ohtsuka, T. Warabisako, and T. Joge, “Design and characterization of flat-plate static-concentrator photovoltaic modules,” Sol. Energy Mater. Sol. Cells 67(1–4), 441–448 (2001).
[Crossref]

T. Uematsu, Y. Yazawa, T. Joge, and S. Kokunai, “Fabrication and characterization of a flat-plate static-concentrator photovoltaic module,” Sol. Energy Mater. Sol. Cells 67(1–4), 425–434 (2001).
[Crossref]

T. Uematsu, Y. Yazawa, Y. Miyamura, S. Muramatsu, H. Ohtsuka, K. Tsutsui, and T. Warabisako, “Static concentrator photovoltaic module with prism array,” Sol. Energy Mater. Sol. Cells 67(1–4), 415–423 (2001).
[Crossref]

Wuli Xuebao (1)

T. Li, C. L. Zhou, Y. Song, H. F. Yang, Z. H. Gao, Y. Duan, Y. Z. Li, Z. G. Liu, and W. J. Wang, “Theoretical analysis and experimental study of optical loss of metal contacts of crystalline silicon solar cells,” Wuli Xuebao 60(9), 098801 (2011).

Other (7)

J. Jaus, H. Pantsar, J. Eckert, M. Duell, H. Herfurth, and D. Doble, “Light management for reduction of bus bar and gridline shadowing in photovoltaic modules,” in 35th IEEE Photovoltaic Spec. Conf. (IEEE, 2010), 979–983.
[Crossref]

R. Ebner, M. Schwark, B. Kubicek, G. Újvári, W. Mühleisen, C. Hirschl, L. Neumaier, M. Pedevilla, J. Scheurer, A. Plösch, A. Kogler, W. Krumlacher, and H. Muckenhuber, “Increased power output of crystalline silicon pv modules by alternative interconnection applications,” in 28th Eur. Photovoltaic Sol. Energy Conf., Proc. Int. Conf. (2013).

T.-D. Cheng, Y.-P. Chen, and P.-C. Chen, “Efficiency improvement of photovoltaic module via grid diffusers in eva encapsulation layer,” 28th Eur. Photovoltaic Sol. Energy Conf., Proc. Int. Conf. (2012).

M. J. Nowlan, “Photovoltaic cell and process,” United States Patent US5076857 A (1991).

S. Bailey, N. Fatemi, G. A. Landis, D. Brinker, and M. Faur, “Application of v-groove technology to InP solar cells,” in 2nd Indium Phosphide Relat. Mater.,Int. Conf. (1990).
[Crossref]

S. Kann, M. J. Shiao, C. Honeyman, A. Perea, J. Jones, C. Smith, B. Gallagher, S. Moskowitz, J. Baca, S. Rumery, A. Holm, and K. O’Brien, Solar Market Insight Report 2016 Q3,” SEIA (2016).

K. R. McIntosh, J. N. Cotsell, J. S. Cumpston, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and eva encapsulants for conventional silicon pv modules: a ray-tracing study,” in 34th IEEE Photovoltaic Spec. Conf. (2009), 1649–1654.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the geometry and placement of an air prism to attain TIR of incident light over a front contact.

Fig. 2
Fig. 2

Schematic of the cross-section of the air prism array with (a) isosceles and (b) right angled cross-sections. The tunable geometric parameter is the apex angle (A, 30° shown). The lines in red show a single ray path (θ = 30°), determined from a simulated ray trace, illustrating the altered path initiated with TIR off the face of the air prism. For right angled cross-sections, positive incident angles represent rays directed onto the slanted face of the air prism, with θ to the right of the normal incidence, as shown in (b). (c) The orientation of the solar cell with symmetric air prisms, so as to reduce contact loss over the span of a year. The solar cell is tilted so its surface normal is at the midpoint of the sun’s yearly latitudinal trajectory. The actual tilt will depend on geographic location. Dotted line indicates the midpoint of the trajectory, and the solid lines the conceptual operating range. (d) The orientation of the solar cell with symmetric air prisms, so as to reduce contact loss over the daily diurnal trajectory of the sun. The solar cell may also be tilted as in (c) along the latitudinal direction. (e) The orientation of the solar cell with asymmetric air prism, when the solar cell is laid flat on a horizontal surface, so as to reduce contact loss over the sun’s yearly latitudinal trajectory.

Fig. 3
Fig. 3

Light collection efficiency of air prism structured encapsulants mapped against apex angle and angle of incidence. (a) Collection efficiency for a solar cell covered with a SAPS. (b) Difference in the collection efficiency relative to a uniform encapsulant. (c) Collection efficiency for a solar cell covered with an AAPS. (d) Difference in the collection efficiency relative to a uniform encapsulant. Labels I to IV identify different regions in the parameter space.

Fig. 4
Fig. 4

Average light collection efficiency over the span of −60 to 60° as a function of apex angle.

Fig. 5
Fig. 5

Sample ray traces identifying the mechanism for light collection enhancement for the different labelled regions in Fig. 3 for the SAPS (a-d) and the AAPS (e-f). (a) Region I. Internal reflection on both sides. (A = 50°, θ = 0°). (b) Region II. Internal reflection on a single side (A = 45°, θ = 20°). (c) Region III. Refraction of light out of the encapsulant on both sides (A = 30°, θ = 0°). (d) Region IV. At this incident angle the air prism cannot support TIR, so partial refraction occurs through the air prism surface (A = 50°, AOI = 50°). (e) Region I. Entails internal reflection and losses due to refraction (A = 40°, θ = 20°). (f) Region II. Refraction of light out of the encapsulant occurs on both sides (A = 20°, θ = 20°). (g) Regime III. Light rays reach the contact (A = 40°, θ = −30°).

Fig. 6
Fig. 6

Schematic and images of the process to fabricate a film consisting of periodically spaced v-grooves. (a) A pattern of triangular prisms to template the resin with the inverted pattern. (b) A micro-machined, brass mold consisting of such triangular prisms, with the same periodic spacing as the contacts of a standard silicon solar cell (2.3 mm). Inset shows a close up image of one triangular prism: 200 μm base and 241 μm height. A silicone resin is poured over the brass mold and allowed to set. (d) Image of the resin after setting, showing the submerged brass mold. (e) In the last step, the PDMS inverted replica is peeled off the mold. (f) Image of the inverted replica. Inset shows a close up image of a v-groove. Scale bars = 2 mm.

Fig. 7
Fig. 7

(a) EQE measurements for solar cells at normal incidence for uncoated, uniform, and structured encapsulants. Insets show close up of the contacts when exposed to ambient light, for uniform (left) and structured (right) encapsulants. (b) Positional line-scan of the EQE at 532 nm in step sizes of 100 μm over a contact for both uniform and structured encapsulants. Beam diameter = 1 mm. Position = 0 μm corresponds to the center of the contact.

Fig. 8
Fig. 8

EQE at 532 nm as a function of incident angle for experimental (exp.) uniform and air prism encapsulants. Collection efficiency results for the simulated (sim.) SAPS structure (A = 45°) included for comparison.

Metrics