Abstract

The performance of a new high-flux solar simulator consisting of 18 × 2.5 kWel radiation modules has been evaluated. Grayscale images of the radiative flux distribution at the focus are acquired for each module individually using a water-cooled Lambertian target plate and a CCD camera. Raw images are corrected for dark current, normalized by the exposure time and calibrated with local absolute heat flux measurements to produce radiative flux maps with 180 µm resolution. The resulting measured peak flux is 1.0–1.5 ± 0.2 MW m−2 per radiation module and 21.7 ± 2 MW m−2 for the sum of all 18 radiation modules. Integrating the flux distribution for all 18 radiation modules over a circular area of 5 cm diameter yields a mean radiative flux of 3.8 MW m−2 and an incident radiative power of 7.5 kW. A Monte Carlo ray-tracing simulation of the simulator is calibrated with the experimental results. The agreement between experimental and numerical results is characterized in terms of a 4.2% difference in peak flux and correlation coefficients of 0.9990 and 0.9995 for the local and mean radial flux profiles, respectively. The best-fit simulation parameters include the lamp efficiency of 39.4% and the mirror surface error of 0.85 mrad.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical improvement for modulating a high flux solar simulator designed for solar thermal and thermochemical research

Leopoldo Martínez-Manuel, Manuel I. Peña-Cruz, Carlos A. Pineda-Arellano, J. Gonzalo Carrillo-Baeza, and Daniel A. May-Arrioja
Appl. Opt. 58(10) 2605-2615 (2019)

Novel solid-state solar thermal simulator supplying 30,000 suns by a fibre optical probe

Zeyad T. Alwahabi, Kimberley C.Y. Kueh, Gus J. Nathan, and Scott Cannon
Opt. Express 24(22) A1444-A1453 (2016)

New concept for a system suitable for solar simulation

I. Powell
Appl. Opt. 19(2) 329-334 (1980)

References

  • View by:
  • |
  • |
  • |

  1. R. Bader and W. Lipiński, “Thermochemical processes,” in Solar Energy, G.M. Crawley (World Scientific Publishing, 2016).
  2. C. Graves, S. D. Ebbesen, M. Mogensen, and K. S. Lackner, “Sustainable hydrocarbon fuels by recycling CO2 and H2 O with renewable or nuclear energy,” Renew. Sustain. Energy Rev. 15(1), 1–23 (2011).
    [Crossref]
  3. S. Rodat, S. Abanades, and G. Flamant, “Co-production of hydrogen and carbon black from solar thermal methane splitting in a tubular reactor prototype,” Sol. Energy 85(4), 645–652 (2011).
    [Crossref]
  4. A. Meier and A. Steinfeld, “Solar Energy in Thermochemical Processing,” in Solar Energy, C. Richter, D. Lincot, and C. A. Gueymard, eds. (Springer New York, 2013), pp. 521–552.
  5. G. Lêveque and S. Abanades, “Thermodynamic and kinetic study of the carbothermal reduction of SnO2 for solar thermochemical fuel generation,” Energy Fuels 28, 1396 (2013).
  6. G. Levêque and S. Abanades, “Investigation of thermal and carbothermal reduction of volatile oxides (ZnO, SnO2, GeO2, and MgO) via solar-driven vacuum thermogravimetry for thermochemical production of solar fuels,” Thermochim. Acta 605, 86–94 (2015).
    [Crossref]
  7. A. Meier, E. Bonaldi, G. M. Cella, W. Lipiński, and D. Wuillemin, “Solar chemical reactor technology for industrial production of lime,” Sol. Energy 80(10), 1355–1362 (2006).
    [Crossref]
  8. V. Augugliaro, A. Lauricella, L. Rizzuti, M. Schiavello, and A. Sclafani, “Conversion of solar energy to chemical energy by photoassisted processes—I. Preliminary results on ammonia production over doped titanium dioxide catalysts in a fluidized bed reactor,” Int. J. Hydrogen Energy 7(11), 845–849 (1982).
    [Crossref]
  9. R. Bader, S. Haussener, and W. Lipiński, “Optical design of multisource high-flux solar simulators,” J. Sol. Energy Eng. 137(2), 21012 (2014).
    [Crossref]
  10. G. Olalde, “Final report - SOLFACE,” Project report CORDIS, (2007).
  11. R. Bader, L. Schmidt, S. Haussener, and W. Lipinski, “A 45 kWe multi-source high-flux solar simulator,” in Light, Energy and the Environment, OSA Technical Digest (online) (Optical Society of America, 2014), paper RW4B.4. R.
  12. K. Lovegrove, G. Burgess, and J. Pye, “A new 500m2 paraboloidal dish solar concentrator,” Sol. Energy 85(4), 620–626 (2011).
    [Crossref]
  13. K. R. Krueger, W. Lipiński, and J. H. Davidson, “Operational performance of the University of Minnesota 45 kWe high-flux solar simulator,” J. Sol. Energy Eng. 135(4), 044501 (2013).
    [Crossref]
  14. J. Sarwar, G. Georgakis, R. LaChance, and N. Ozalp, “Description and characterization of an adjustable flux solar simulator for solar thermal, thermochemical and photovoltaic applications,” Sol. Energy 100, 179–194 (2014).
    [Crossref]
  15. S. Ulmer, W. Reinalter, P. Heller, E. Lüpfert, and D. Martínez, “Beam characterization and improvement with a flux mapping system for dish concentrators,” J. Sol. Energy Eng. 124(2), 182 (2002).
    [Crossref]
  16. J. Petrasch, P. Coray, A. Meier, M. Brack, P. Häberling, D. Wuillemin, and A. Steinfeld, “A novel 50 kW 11,000 suns high-flux solar simulator based on an array of xenon arc lamps,” J. Sol. Energy Eng. 129(4), 405 (2007).
    [Crossref]
  17. X. Dong, Z. Sun, G. J. Nathan, P. J. Ashman, and D. Gu, “Time-resolved spectra of solar simulators employing metal halide and xenon arc lamps,” Sol. Energy 115, 613–620 (2015).
    [Crossref]
  18. A. Rabl, Active Solar Collectors and Their Applications (Oxford University Press, 1985).
  19. J. Ballestrín, M. Rodríguez-Alonso, J. Rodríguez, I. Cañadas, F. J. Barbero, L. W. Langley, and A. Barnes, “Calibration of high-heat-flux sensors in a solar furnace,” Metrologia 43(6), 495–500 (2006).
    [Crossref]
  20. K. R. Krueger, J. H. Davidson, and W. Lipiński, “Design of a new 45 kWe high-flux solar simulator for high-temperature solar thermal and thermochemical research,” J. Sol. Energy Eng. 133(1), 011013 (2011).
    [Crossref]
  21. R. Gill, E. Bush, P. Haueter, and P. Loutzenhiser, “Characterization of a 6 kW high-flux solar simulator with an array of xenon arc lamps capable of concentrations of nearly 5000 suns,” Rev. Sci. Instrum. 86(12), 125107 (2015).
    [Crossref] [PubMed]
  22. E. Guillot, I. Alxneit, J. Ballestrin, J. L. Sans, and C. Willsh, “Comparison of 3 heat flux gauges and a water calorimeter for concentrated solar irradiance measurement,” Energy Procedia 49, 2090–2099 (2014).
    [Crossref]
  23. D. Nakar, A. Malul, D. Feuermann, and J. M. Gordon, “Radiometric characterization of ultrahigh radiance xenon short-arc discharge lamps,” Appl. Opt. 47(2), 224–229 (2008).
    [Crossref] [PubMed]
  24. K. R. Krueger, “Design and characterization of a concentrating solar simulator,” University of Minnesota (2012).

2015 (3)

G. Levêque and S. Abanades, “Investigation of thermal and carbothermal reduction of volatile oxides (ZnO, SnO2, GeO2, and MgO) via solar-driven vacuum thermogravimetry for thermochemical production of solar fuels,” Thermochim. Acta 605, 86–94 (2015).
[Crossref]

X. Dong, Z. Sun, G. J. Nathan, P. J. Ashman, and D. Gu, “Time-resolved spectra of solar simulators employing metal halide and xenon arc lamps,” Sol. Energy 115, 613–620 (2015).
[Crossref]

R. Gill, E. Bush, P. Haueter, and P. Loutzenhiser, “Characterization of a 6 kW high-flux solar simulator with an array of xenon arc lamps capable of concentrations of nearly 5000 suns,” Rev. Sci. Instrum. 86(12), 125107 (2015).
[Crossref] [PubMed]

2014 (3)

E. Guillot, I. Alxneit, J. Ballestrin, J. L. Sans, and C. Willsh, “Comparison of 3 heat flux gauges and a water calorimeter for concentrated solar irradiance measurement,” Energy Procedia 49, 2090–2099 (2014).
[Crossref]

J. Sarwar, G. Georgakis, R. LaChance, and N. Ozalp, “Description and characterization of an adjustable flux solar simulator for solar thermal, thermochemical and photovoltaic applications,” Sol. Energy 100, 179–194 (2014).
[Crossref]

R. Bader, S. Haussener, and W. Lipiński, “Optical design of multisource high-flux solar simulators,” J. Sol. Energy Eng. 137(2), 21012 (2014).
[Crossref]

2013 (2)

G. Lêveque and S. Abanades, “Thermodynamic and kinetic study of the carbothermal reduction of SnO2 for solar thermochemical fuel generation,” Energy Fuels 28, 1396 (2013).

K. R. Krueger, W. Lipiński, and J. H. Davidson, “Operational performance of the University of Minnesota 45 kWe high-flux solar simulator,” J. Sol. Energy Eng. 135(4), 044501 (2013).
[Crossref]

2011 (4)

K. Lovegrove, G. Burgess, and J. Pye, “A new 500m2 paraboloidal dish solar concentrator,” Sol. Energy 85(4), 620–626 (2011).
[Crossref]

C. Graves, S. D. Ebbesen, M. Mogensen, and K. S. Lackner, “Sustainable hydrocarbon fuels by recycling CO2 and H2 O with renewable or nuclear energy,” Renew. Sustain. Energy Rev. 15(1), 1–23 (2011).
[Crossref]

S. Rodat, S. Abanades, and G. Flamant, “Co-production of hydrogen and carbon black from solar thermal methane splitting in a tubular reactor prototype,” Sol. Energy 85(4), 645–652 (2011).
[Crossref]

K. R. Krueger, J. H. Davidson, and W. Lipiński, “Design of a new 45 kWe high-flux solar simulator for high-temperature solar thermal and thermochemical research,” J. Sol. Energy Eng. 133(1), 011013 (2011).
[Crossref]

2008 (1)

2007 (1)

J. Petrasch, P. Coray, A. Meier, M. Brack, P. Häberling, D. Wuillemin, and A. Steinfeld, “A novel 50 kW 11,000 suns high-flux solar simulator based on an array of xenon arc lamps,” J. Sol. Energy Eng. 129(4), 405 (2007).
[Crossref]

2006 (2)

J. Ballestrín, M. Rodríguez-Alonso, J. Rodríguez, I. Cañadas, F. J. Barbero, L. W. Langley, and A. Barnes, “Calibration of high-heat-flux sensors in a solar furnace,” Metrologia 43(6), 495–500 (2006).
[Crossref]

A. Meier, E. Bonaldi, G. M. Cella, W. Lipiński, and D. Wuillemin, “Solar chemical reactor technology for industrial production of lime,” Sol. Energy 80(10), 1355–1362 (2006).
[Crossref]

2002 (1)

S. Ulmer, W. Reinalter, P. Heller, E. Lüpfert, and D. Martínez, “Beam characterization and improvement with a flux mapping system for dish concentrators,” J. Sol. Energy Eng. 124(2), 182 (2002).
[Crossref]

1982 (1)

V. Augugliaro, A. Lauricella, L. Rizzuti, M. Schiavello, and A. Sclafani, “Conversion of solar energy to chemical energy by photoassisted processes—I. Preliminary results on ammonia production over doped titanium dioxide catalysts in a fluidized bed reactor,” Int. J. Hydrogen Energy 7(11), 845–849 (1982).
[Crossref]

Abanades, S.

G. Levêque and S. Abanades, “Investigation of thermal and carbothermal reduction of volatile oxides (ZnO, SnO2, GeO2, and MgO) via solar-driven vacuum thermogravimetry for thermochemical production of solar fuels,” Thermochim. Acta 605, 86–94 (2015).
[Crossref]

G. Lêveque and S. Abanades, “Thermodynamic and kinetic study of the carbothermal reduction of SnO2 for solar thermochemical fuel generation,” Energy Fuels 28, 1396 (2013).

S. Rodat, S. Abanades, and G. Flamant, “Co-production of hydrogen and carbon black from solar thermal methane splitting in a tubular reactor prototype,” Sol. Energy 85(4), 645–652 (2011).
[Crossref]

Alxneit, I.

E. Guillot, I. Alxneit, J. Ballestrin, J. L. Sans, and C. Willsh, “Comparison of 3 heat flux gauges and a water calorimeter for concentrated solar irradiance measurement,” Energy Procedia 49, 2090–2099 (2014).
[Crossref]

Ashman, P. J.

X. Dong, Z. Sun, G. J. Nathan, P. J. Ashman, and D. Gu, “Time-resolved spectra of solar simulators employing metal halide and xenon arc lamps,” Sol. Energy 115, 613–620 (2015).
[Crossref]

Augugliaro, V.

V. Augugliaro, A. Lauricella, L. Rizzuti, M. Schiavello, and A. Sclafani, “Conversion of solar energy to chemical energy by photoassisted processes—I. Preliminary results on ammonia production over doped titanium dioxide catalysts in a fluidized bed reactor,” Int. J. Hydrogen Energy 7(11), 845–849 (1982).
[Crossref]

Bader, R.

R. Bader, S. Haussener, and W. Lipiński, “Optical design of multisource high-flux solar simulators,” J. Sol. Energy Eng. 137(2), 21012 (2014).
[Crossref]

Ballestrin, J.

E. Guillot, I. Alxneit, J. Ballestrin, J. L. Sans, and C. Willsh, “Comparison of 3 heat flux gauges and a water calorimeter for concentrated solar irradiance measurement,” Energy Procedia 49, 2090–2099 (2014).
[Crossref]

Ballestrín, J.

J. Ballestrín, M. Rodríguez-Alonso, J. Rodríguez, I. Cañadas, F. J. Barbero, L. W. Langley, and A. Barnes, “Calibration of high-heat-flux sensors in a solar furnace,” Metrologia 43(6), 495–500 (2006).
[Crossref]

Barbero, F. J.

J. Ballestrín, M. Rodríguez-Alonso, J. Rodríguez, I. Cañadas, F. J. Barbero, L. W. Langley, and A. Barnes, “Calibration of high-heat-flux sensors in a solar furnace,” Metrologia 43(6), 495–500 (2006).
[Crossref]

Barnes, A.

J. Ballestrín, M. Rodríguez-Alonso, J. Rodríguez, I. Cañadas, F. J. Barbero, L. W. Langley, and A. Barnes, “Calibration of high-heat-flux sensors in a solar furnace,” Metrologia 43(6), 495–500 (2006).
[Crossref]

Bonaldi, E.

A. Meier, E. Bonaldi, G. M. Cella, W. Lipiński, and D. Wuillemin, “Solar chemical reactor technology for industrial production of lime,” Sol. Energy 80(10), 1355–1362 (2006).
[Crossref]

Brack, M.

J. Petrasch, P. Coray, A. Meier, M. Brack, P. Häberling, D. Wuillemin, and A. Steinfeld, “A novel 50 kW 11,000 suns high-flux solar simulator based on an array of xenon arc lamps,” J. Sol. Energy Eng. 129(4), 405 (2007).
[Crossref]

Burgess, G.

K. Lovegrove, G. Burgess, and J. Pye, “A new 500m2 paraboloidal dish solar concentrator,” Sol. Energy 85(4), 620–626 (2011).
[Crossref]

Bush, E.

R. Gill, E. Bush, P. Haueter, and P. Loutzenhiser, “Characterization of a 6 kW high-flux solar simulator with an array of xenon arc lamps capable of concentrations of nearly 5000 suns,” Rev. Sci. Instrum. 86(12), 125107 (2015).
[Crossref] [PubMed]

Cañadas, I.

J. Ballestrín, M. Rodríguez-Alonso, J. Rodríguez, I. Cañadas, F. J. Barbero, L. W. Langley, and A. Barnes, “Calibration of high-heat-flux sensors in a solar furnace,” Metrologia 43(6), 495–500 (2006).
[Crossref]

Cella, G. M.

A. Meier, E. Bonaldi, G. M. Cella, W. Lipiński, and D. Wuillemin, “Solar chemical reactor technology for industrial production of lime,” Sol. Energy 80(10), 1355–1362 (2006).
[Crossref]

Coray, P.

J. Petrasch, P. Coray, A. Meier, M. Brack, P. Häberling, D. Wuillemin, and A. Steinfeld, “A novel 50 kW 11,000 suns high-flux solar simulator based on an array of xenon arc lamps,” J. Sol. Energy Eng. 129(4), 405 (2007).
[Crossref]

Davidson, J. H.

K. R. Krueger, W. Lipiński, and J. H. Davidson, “Operational performance of the University of Minnesota 45 kWe high-flux solar simulator,” J. Sol. Energy Eng. 135(4), 044501 (2013).
[Crossref]

K. R. Krueger, J. H. Davidson, and W. Lipiński, “Design of a new 45 kWe high-flux solar simulator for high-temperature solar thermal and thermochemical research,” J. Sol. Energy Eng. 133(1), 011013 (2011).
[Crossref]

Dong, X.

X. Dong, Z. Sun, G. J. Nathan, P. J. Ashman, and D. Gu, “Time-resolved spectra of solar simulators employing metal halide and xenon arc lamps,” Sol. Energy 115, 613–620 (2015).
[Crossref]

Ebbesen, S. D.

C. Graves, S. D. Ebbesen, M. Mogensen, and K. S. Lackner, “Sustainable hydrocarbon fuels by recycling CO2 and H2 O with renewable or nuclear energy,” Renew. Sustain. Energy Rev. 15(1), 1–23 (2011).
[Crossref]

Feuermann, D.

Flamant, G.

S. Rodat, S. Abanades, and G. Flamant, “Co-production of hydrogen and carbon black from solar thermal methane splitting in a tubular reactor prototype,” Sol. Energy 85(4), 645–652 (2011).
[Crossref]

Georgakis, G.

J. Sarwar, G. Georgakis, R. LaChance, and N. Ozalp, “Description and characterization of an adjustable flux solar simulator for solar thermal, thermochemical and photovoltaic applications,” Sol. Energy 100, 179–194 (2014).
[Crossref]

Gill, R.

R. Gill, E. Bush, P. Haueter, and P. Loutzenhiser, “Characterization of a 6 kW high-flux solar simulator with an array of xenon arc lamps capable of concentrations of nearly 5000 suns,” Rev. Sci. Instrum. 86(12), 125107 (2015).
[Crossref] [PubMed]

Gordon, J. M.

Graves, C.

C. Graves, S. D. Ebbesen, M. Mogensen, and K. S. Lackner, “Sustainable hydrocarbon fuels by recycling CO2 and H2 O with renewable or nuclear energy,” Renew. Sustain. Energy Rev. 15(1), 1–23 (2011).
[Crossref]

Gu, D.

X. Dong, Z. Sun, G. J. Nathan, P. J. Ashman, and D. Gu, “Time-resolved spectra of solar simulators employing metal halide and xenon arc lamps,” Sol. Energy 115, 613–620 (2015).
[Crossref]

Guillot, E.

E. Guillot, I. Alxneit, J. Ballestrin, J. L. Sans, and C. Willsh, “Comparison of 3 heat flux gauges and a water calorimeter for concentrated solar irradiance measurement,” Energy Procedia 49, 2090–2099 (2014).
[Crossref]

Häberling, P.

J. Petrasch, P. Coray, A. Meier, M. Brack, P. Häberling, D. Wuillemin, and A. Steinfeld, “A novel 50 kW 11,000 suns high-flux solar simulator based on an array of xenon arc lamps,” J. Sol. Energy Eng. 129(4), 405 (2007).
[Crossref]

Haueter, P.

R. Gill, E. Bush, P. Haueter, and P. Loutzenhiser, “Characterization of a 6 kW high-flux solar simulator with an array of xenon arc lamps capable of concentrations of nearly 5000 suns,” Rev. Sci. Instrum. 86(12), 125107 (2015).
[Crossref] [PubMed]

Haussener, S.

R. Bader, S. Haussener, and W. Lipiński, “Optical design of multisource high-flux solar simulators,” J. Sol. Energy Eng. 137(2), 21012 (2014).
[Crossref]

Heller, P.

S. Ulmer, W. Reinalter, P. Heller, E. Lüpfert, and D. Martínez, “Beam characterization and improvement with a flux mapping system for dish concentrators,” J. Sol. Energy Eng. 124(2), 182 (2002).
[Crossref]

Krueger, K. R.

K. R. Krueger, W. Lipiński, and J. H. Davidson, “Operational performance of the University of Minnesota 45 kWe high-flux solar simulator,” J. Sol. Energy Eng. 135(4), 044501 (2013).
[Crossref]

K. R. Krueger, J. H. Davidson, and W. Lipiński, “Design of a new 45 kWe high-flux solar simulator for high-temperature solar thermal and thermochemical research,” J. Sol. Energy Eng. 133(1), 011013 (2011).
[Crossref]

LaChance, R.

J. Sarwar, G. Georgakis, R. LaChance, and N. Ozalp, “Description and characterization of an adjustable flux solar simulator for solar thermal, thermochemical and photovoltaic applications,” Sol. Energy 100, 179–194 (2014).
[Crossref]

Lackner, K. S.

C. Graves, S. D. Ebbesen, M. Mogensen, and K. S. Lackner, “Sustainable hydrocarbon fuels by recycling CO2 and H2 O with renewable or nuclear energy,” Renew. Sustain. Energy Rev. 15(1), 1–23 (2011).
[Crossref]

Langley, L. W.

J. Ballestrín, M. Rodríguez-Alonso, J. Rodríguez, I. Cañadas, F. J. Barbero, L. W. Langley, and A. Barnes, “Calibration of high-heat-flux sensors in a solar furnace,” Metrologia 43(6), 495–500 (2006).
[Crossref]

Lauricella, A.

V. Augugliaro, A. Lauricella, L. Rizzuti, M. Schiavello, and A. Sclafani, “Conversion of solar energy to chemical energy by photoassisted processes—I. Preliminary results on ammonia production over doped titanium dioxide catalysts in a fluidized bed reactor,” Int. J. Hydrogen Energy 7(11), 845–849 (1982).
[Crossref]

Levêque, G.

G. Levêque and S. Abanades, “Investigation of thermal and carbothermal reduction of volatile oxides (ZnO, SnO2, GeO2, and MgO) via solar-driven vacuum thermogravimetry for thermochemical production of solar fuels,” Thermochim. Acta 605, 86–94 (2015).
[Crossref]

Lêveque, G.

G. Lêveque and S. Abanades, “Thermodynamic and kinetic study of the carbothermal reduction of SnO2 for solar thermochemical fuel generation,” Energy Fuels 28, 1396 (2013).

Lipinski, W.

R. Bader, S. Haussener, and W. Lipiński, “Optical design of multisource high-flux solar simulators,” J. Sol. Energy Eng. 137(2), 21012 (2014).
[Crossref]

K. R. Krueger, W. Lipiński, and J. H. Davidson, “Operational performance of the University of Minnesota 45 kWe high-flux solar simulator,” J. Sol. Energy Eng. 135(4), 044501 (2013).
[Crossref]

K. R. Krueger, J. H. Davidson, and W. Lipiński, “Design of a new 45 kWe high-flux solar simulator for high-temperature solar thermal and thermochemical research,” J. Sol. Energy Eng. 133(1), 011013 (2011).
[Crossref]

A. Meier, E. Bonaldi, G. M. Cella, W. Lipiński, and D. Wuillemin, “Solar chemical reactor technology for industrial production of lime,” Sol. Energy 80(10), 1355–1362 (2006).
[Crossref]

Loutzenhiser, P.

R. Gill, E. Bush, P. Haueter, and P. Loutzenhiser, “Characterization of a 6 kW high-flux solar simulator with an array of xenon arc lamps capable of concentrations of nearly 5000 suns,” Rev. Sci. Instrum. 86(12), 125107 (2015).
[Crossref] [PubMed]

Lovegrove, K.

K. Lovegrove, G. Burgess, and J. Pye, “A new 500m2 paraboloidal dish solar concentrator,” Sol. Energy 85(4), 620–626 (2011).
[Crossref]

Lüpfert, E.

S. Ulmer, W. Reinalter, P. Heller, E. Lüpfert, and D. Martínez, “Beam characterization and improvement with a flux mapping system for dish concentrators,” J. Sol. Energy Eng. 124(2), 182 (2002).
[Crossref]

Malul, A.

Martínez, D.

S. Ulmer, W. Reinalter, P. Heller, E. Lüpfert, and D. Martínez, “Beam characterization and improvement with a flux mapping system for dish concentrators,” J. Sol. Energy Eng. 124(2), 182 (2002).
[Crossref]

Meier, A.

J. Petrasch, P. Coray, A. Meier, M. Brack, P. Häberling, D. Wuillemin, and A. Steinfeld, “A novel 50 kW 11,000 suns high-flux solar simulator based on an array of xenon arc lamps,” J. Sol. Energy Eng. 129(4), 405 (2007).
[Crossref]

A. Meier, E. Bonaldi, G. M. Cella, W. Lipiński, and D. Wuillemin, “Solar chemical reactor technology for industrial production of lime,” Sol. Energy 80(10), 1355–1362 (2006).
[Crossref]

Mogensen, M.

C. Graves, S. D. Ebbesen, M. Mogensen, and K. S. Lackner, “Sustainable hydrocarbon fuels by recycling CO2 and H2 O with renewable or nuclear energy,” Renew. Sustain. Energy Rev. 15(1), 1–23 (2011).
[Crossref]

Nakar, D.

Nathan, G. J.

X. Dong, Z. Sun, G. J. Nathan, P. J. Ashman, and D. Gu, “Time-resolved spectra of solar simulators employing metal halide and xenon arc lamps,” Sol. Energy 115, 613–620 (2015).
[Crossref]

Ozalp, N.

J. Sarwar, G. Georgakis, R. LaChance, and N. Ozalp, “Description and characterization of an adjustable flux solar simulator for solar thermal, thermochemical and photovoltaic applications,” Sol. Energy 100, 179–194 (2014).
[Crossref]

Petrasch, J.

J. Petrasch, P. Coray, A. Meier, M. Brack, P. Häberling, D. Wuillemin, and A. Steinfeld, “A novel 50 kW 11,000 suns high-flux solar simulator based on an array of xenon arc lamps,” J. Sol. Energy Eng. 129(4), 405 (2007).
[Crossref]

Pye, J.

K. Lovegrove, G. Burgess, and J. Pye, “A new 500m2 paraboloidal dish solar concentrator,” Sol. Energy 85(4), 620–626 (2011).
[Crossref]

Reinalter, W.

S. Ulmer, W. Reinalter, P. Heller, E. Lüpfert, and D. Martínez, “Beam characterization and improvement with a flux mapping system for dish concentrators,” J. Sol. Energy Eng. 124(2), 182 (2002).
[Crossref]

Rizzuti, L.

V. Augugliaro, A. Lauricella, L. Rizzuti, M. Schiavello, and A. Sclafani, “Conversion of solar energy to chemical energy by photoassisted processes—I. Preliminary results on ammonia production over doped titanium dioxide catalysts in a fluidized bed reactor,” Int. J. Hydrogen Energy 7(11), 845–849 (1982).
[Crossref]

Rodat, S.

S. Rodat, S. Abanades, and G. Flamant, “Co-production of hydrogen and carbon black from solar thermal methane splitting in a tubular reactor prototype,” Sol. Energy 85(4), 645–652 (2011).
[Crossref]

Rodríguez, J.

J. Ballestrín, M. Rodríguez-Alonso, J. Rodríguez, I. Cañadas, F. J. Barbero, L. W. Langley, and A. Barnes, “Calibration of high-heat-flux sensors in a solar furnace,” Metrologia 43(6), 495–500 (2006).
[Crossref]

Rodríguez-Alonso, M.

J. Ballestrín, M. Rodríguez-Alonso, J. Rodríguez, I. Cañadas, F. J. Barbero, L. W. Langley, and A. Barnes, “Calibration of high-heat-flux sensors in a solar furnace,” Metrologia 43(6), 495–500 (2006).
[Crossref]

Sans, J. L.

E. Guillot, I. Alxneit, J. Ballestrin, J. L. Sans, and C. Willsh, “Comparison of 3 heat flux gauges and a water calorimeter for concentrated solar irradiance measurement,” Energy Procedia 49, 2090–2099 (2014).
[Crossref]

Sarwar, J.

J. Sarwar, G. Georgakis, R. LaChance, and N. Ozalp, “Description and characterization of an adjustable flux solar simulator for solar thermal, thermochemical and photovoltaic applications,” Sol. Energy 100, 179–194 (2014).
[Crossref]

Schiavello, M.

V. Augugliaro, A. Lauricella, L. Rizzuti, M. Schiavello, and A. Sclafani, “Conversion of solar energy to chemical energy by photoassisted processes—I. Preliminary results on ammonia production over doped titanium dioxide catalysts in a fluidized bed reactor,” Int. J. Hydrogen Energy 7(11), 845–849 (1982).
[Crossref]

Sclafani, A.

V. Augugliaro, A. Lauricella, L. Rizzuti, M. Schiavello, and A. Sclafani, “Conversion of solar energy to chemical energy by photoassisted processes—I. Preliminary results on ammonia production over doped titanium dioxide catalysts in a fluidized bed reactor,” Int. J. Hydrogen Energy 7(11), 845–849 (1982).
[Crossref]

Steinfeld, A.

J. Petrasch, P. Coray, A. Meier, M. Brack, P. Häberling, D. Wuillemin, and A. Steinfeld, “A novel 50 kW 11,000 suns high-flux solar simulator based on an array of xenon arc lamps,” J. Sol. Energy Eng. 129(4), 405 (2007).
[Crossref]

Sun, Z.

X. Dong, Z. Sun, G. J. Nathan, P. J. Ashman, and D. Gu, “Time-resolved spectra of solar simulators employing metal halide and xenon arc lamps,” Sol. Energy 115, 613–620 (2015).
[Crossref]

Ulmer, S.

S. Ulmer, W. Reinalter, P. Heller, E. Lüpfert, and D. Martínez, “Beam characterization and improvement with a flux mapping system for dish concentrators,” J. Sol. Energy Eng. 124(2), 182 (2002).
[Crossref]

Willsh, C.

E. Guillot, I. Alxneit, J. Ballestrin, J. L. Sans, and C. Willsh, “Comparison of 3 heat flux gauges and a water calorimeter for concentrated solar irradiance measurement,” Energy Procedia 49, 2090–2099 (2014).
[Crossref]

Wuillemin, D.

J. Petrasch, P. Coray, A. Meier, M. Brack, P. Häberling, D. Wuillemin, and A. Steinfeld, “A novel 50 kW 11,000 suns high-flux solar simulator based on an array of xenon arc lamps,” J. Sol. Energy Eng. 129(4), 405 (2007).
[Crossref]

A. Meier, E. Bonaldi, G. M. Cella, W. Lipiński, and D. Wuillemin, “Solar chemical reactor technology for industrial production of lime,” Sol. Energy 80(10), 1355–1362 (2006).
[Crossref]

Appl. Opt. (1)

Energy Fuels (1)

G. Lêveque and S. Abanades, “Thermodynamic and kinetic study of the carbothermal reduction of SnO2 for solar thermochemical fuel generation,” Energy Fuels 28, 1396 (2013).

Energy Procedia (1)

E. Guillot, I. Alxneit, J. Ballestrin, J. L. Sans, and C. Willsh, “Comparison of 3 heat flux gauges and a water calorimeter for concentrated solar irradiance measurement,” Energy Procedia 49, 2090–2099 (2014).
[Crossref]

Int. J. Hydrogen Energy (1)

V. Augugliaro, A. Lauricella, L. Rizzuti, M. Schiavello, and A. Sclafani, “Conversion of solar energy to chemical energy by photoassisted processes—I. Preliminary results on ammonia production over doped titanium dioxide catalysts in a fluidized bed reactor,” Int. J. Hydrogen Energy 7(11), 845–849 (1982).
[Crossref]

J. Sol. Energy Eng. (5)

R. Bader, S. Haussener, and W. Lipiński, “Optical design of multisource high-flux solar simulators,” J. Sol. Energy Eng. 137(2), 21012 (2014).
[Crossref]

K. R. Krueger, W. Lipiński, and J. H. Davidson, “Operational performance of the University of Minnesota 45 kWe high-flux solar simulator,” J. Sol. Energy Eng. 135(4), 044501 (2013).
[Crossref]

S. Ulmer, W. Reinalter, P. Heller, E. Lüpfert, and D. Martínez, “Beam characterization and improvement with a flux mapping system for dish concentrators,” J. Sol. Energy Eng. 124(2), 182 (2002).
[Crossref]

J. Petrasch, P. Coray, A. Meier, M. Brack, P. Häberling, D. Wuillemin, and A. Steinfeld, “A novel 50 kW 11,000 suns high-flux solar simulator based on an array of xenon arc lamps,” J. Sol. Energy Eng. 129(4), 405 (2007).
[Crossref]

K. R. Krueger, J. H. Davidson, and W. Lipiński, “Design of a new 45 kWe high-flux solar simulator for high-temperature solar thermal and thermochemical research,” J. Sol. Energy Eng. 133(1), 011013 (2011).
[Crossref]

Metrologia (1)

J. Ballestrín, M. Rodríguez-Alonso, J. Rodríguez, I. Cañadas, F. J. Barbero, L. W. Langley, and A. Barnes, “Calibration of high-heat-flux sensors in a solar furnace,” Metrologia 43(6), 495–500 (2006).
[Crossref]

Renew. Sustain. Energy Rev. (1)

C. Graves, S. D. Ebbesen, M. Mogensen, and K. S. Lackner, “Sustainable hydrocarbon fuels by recycling CO2 and H2 O with renewable or nuclear energy,” Renew. Sustain. Energy Rev. 15(1), 1–23 (2011).
[Crossref]

Rev. Sci. Instrum. (1)

R. Gill, E. Bush, P. Haueter, and P. Loutzenhiser, “Characterization of a 6 kW high-flux solar simulator with an array of xenon arc lamps capable of concentrations of nearly 5000 suns,” Rev. Sci. Instrum. 86(12), 125107 (2015).
[Crossref] [PubMed]

Sol. Energy (5)

K. Lovegrove, G. Burgess, and J. Pye, “A new 500m2 paraboloidal dish solar concentrator,” Sol. Energy 85(4), 620–626 (2011).
[Crossref]

S. Rodat, S. Abanades, and G. Flamant, “Co-production of hydrogen and carbon black from solar thermal methane splitting in a tubular reactor prototype,” Sol. Energy 85(4), 645–652 (2011).
[Crossref]

X. Dong, Z. Sun, G. J. Nathan, P. J. Ashman, and D. Gu, “Time-resolved spectra of solar simulators employing metal halide and xenon arc lamps,” Sol. Energy 115, 613–620 (2015).
[Crossref]

J. Sarwar, G. Georgakis, R. LaChance, and N. Ozalp, “Description and characterization of an adjustable flux solar simulator for solar thermal, thermochemical and photovoltaic applications,” Sol. Energy 100, 179–194 (2014).
[Crossref]

A. Meier, E. Bonaldi, G. M. Cella, W. Lipiński, and D. Wuillemin, “Solar chemical reactor technology for industrial production of lime,” Sol. Energy 80(10), 1355–1362 (2006).
[Crossref]

Thermochim. Acta (1)

G. Levêque and S. Abanades, “Investigation of thermal and carbothermal reduction of volatile oxides (ZnO, SnO2, GeO2, and MgO) via solar-driven vacuum thermogravimetry for thermochemical production of solar fuels,” Thermochim. Acta 605, 86–94 (2015).
[Crossref]

Other (6)

A. Meier and A. Steinfeld, “Solar Energy in Thermochemical Processing,” in Solar Energy, C. Richter, D. Lincot, and C. A. Gueymard, eds. (Springer New York, 2013), pp. 521–552.

G. Olalde, “Final report - SOLFACE,” Project report CORDIS, (2007).

R. Bader, L. Schmidt, S. Haussener, and W. Lipinski, “A 45 kWe multi-source high-flux solar simulator,” in Light, Energy and the Environment, OSA Technical Digest (online) (Optical Society of America, 2014), paper RW4B.4. R.

R. Bader and W. Lipiński, “Thermochemical processes,” in Solar Energy, G.M. Crawley (World Scientific Publishing, 2016).

A. Rabl, Active Solar Collectors and Their Applications (Oxford University Press, 1985).

K. R. Krueger, “Design and characterization of a concentrating solar simulator,” University of Minnesota (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 45 kWel high-flux solar simulator facility consisting of 18 radiation modules arranged in two concentric rings: photographs of the completed facilities at ANU (a) and École Polytechnique Fédérale de Lausanne (b), reference numbering of the radiation modules (c), and schematic cross-section of the HFSS, CCD camera, and water-cooled Lambertian target (d). CCD camera and target are positioned coaxially with the HFSS.
Fig. 2
Fig. 2 Peak flux location for each of the 18 radiation modules (after manual orientation and focusing) on the flat target plate at the focal plane relative to the mean center (red circle). Dashed gray circles represent locations within 1 and 2 mm radius, respectively, measured from the mean center.
Fig. 3
Fig. 3 Calibration curve comparing the flux measured by the flux gauge to the normalized GS value measured by the CCD camera at the same position as the flux gauge, for various flux gauge positions, lamps and lamp combinations, and camera exposure times. Each measurement point is an average over two consecutive measurements. The normalized GS values are corrected by the dark current value and the exposure time.
Fig. 4
Fig. 4 Recorded GS value as a function of camera exposure time for different pixels (curves). All slopes have R2>0.999.
Fig. 5
Fig. 5 Measured peak flux value and corresponding error bars ( ± 10%) for each radiation module. The plain gray line indicates the mean peak value for inner ring of lamps, and the dashed one for the outer ring (see Fig. 1).
Fig. 6
Fig. 6 Flux maps measured at the focal plane (a), and in planes at 2, 5, and 9 cm behind the focal plane (b-d). Peak fluxes measured are 21.67 MW m−2 in the focal plane, 8.89 MW m−2 in the plane 2 cm behin the focal plane, 2.74 MW m−2 in the plane 5 cm behin the focal plane, and 1.14 MW m−2 in the plane 9 cm behin the focal plane.
Fig. 7
Fig. 7 Comparison of measured (dashed lines) and simulated (solid lines) radial profiles of the local and mean radiative flux, and radiative power, as a function of the radial coordinate, r, from the center of the focal plane, for the best-fit simulation parameters listed in Table 2.
Fig. 8
Fig. 8 Optical efficiency of the setup (solid line: simulated, dashed line: measured) as a function of the radial coordinate, r, from the center of the focal plane, for the best-fit simulation parameters listed in Table 2.
Fig. 9
Fig. 9 Numerical results obtained at the focal plane (a), and in planes at 2, 5, and 9 cm behind the focal plane (b-d).
Fig. 10
Fig. 10 Measured (dashed line) and simulated (solid line) radial profiles of the integrated radiative power at 9 cm from the focal plane.

Tables (2)

Tables Icon

Table 1 Comparison of the radiative flux measured for sets of two radiation modules with the radiative flux obtained by superimposing the flux maps of the two individual lamps, for different lamp combinations and measurement locations.

Tables Icon

Table 2 Results of the simulation calibration.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P(i,j)= 1 t exp [ ( 1 N n=1 N p n (i,j) ) I dc ],
q ˙ (x,y)= K [ 1 M i j P( i,j ) ] for (i,j) S active ,
p( r )=exp( log0.01 r arc ( z ) C 1 r ),
ε peak = | q ˙ r,local meas ( r=0 ) q ˙ r,local sim ( r=0 ) | q ˙ r,local meas ( r=0 ) .
R local = i=1 n ( q ˙ r,local meas ( r i ) q ˙ ¯ r,local meas )( q ˙ r,local sim ( r i ) q ˙ ¯ r,local sim ) [ i=1 n ( q ˙ r,local meas ( r i ) q ˙ ¯ r,local meas ) 2 i=1 n ( q ˙ r,local sim ( r i ) q ˙ ¯ r,local sim ) 2 ] 1 2 .

Metrics