Abstract

We herein report a homogeneous [6,6]-phenyl C61 butyric acid methyl ester (PCBM) layer, produced by a solution process of horizontal-dipping (H-dipping) to improve the photovoltaic (PV) effects of bilayer heterojunction organic photovoltaic cells (OPVs) based on a bi-stacked poly(3-hexylthiophene) (P3HT) electron donor layer and a PCBM electron acceptor layer (P3HT/PCBM). It was shown that a homogeneous and uniform coating of PCBM layers in the P3HT/PCBM bilayer OPVs resulted in reliable and reproducible device performance. We recorded a power conversion efficiency (PCE) of 2.89%, which is higher than that (2.00%) of bilayer OPVs with a spin-coated PCBM layer. Moreover, introducing surfactant additives of poly(oxyethylene tridecyl ether) (PTE) into the homogeneous P3HT/PCBM PV layers resulted in the bilayer OPVs showing a PCE value of 3.95%, which is comparable to those of conventional bulk-heterojunction (BHJ) OPVs (3.57-4.13%) fabricated by conventional spin-coating. This improved device performance may be attributed to the selective collection of charge carriers at the interfaces among the active layers and electrodes due to the PTE additives as well as the homogeneous formation of the functional PCBM layer on the P3HT layer. Furthermore, H-dip-coated PCBM layers were deposited onto aligned P3HT layers by a rubbing technique, and the rubbed bilayer OPV exhibited improved in-plane anisotropic PV effects with PCE anisotropy as high as 1.81, which is also higher than that (1.54) of conventional rubbed BHJ OPVs. Our results suggest that the use of the H-dip-coating process in the fabrication of PCBM layers with the PTE interface-engineering additive could be of considerable interest to those seeking to improve PCBM-based opto-electrical organic thin-film devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Significant enhancement of the power conversion efficiency for organic photovoltaic cells due to a P3HT pillar layer containing ZnSe quantum dots

Dae Hun Kim, Young Hun Lee, Dea Uk Lee, Tae Whan Kim, Sungwoo Kim, and Sang Wook Kim
Opt. Express 20(10) 10476-10483 (2012)

Photovoltaic characteristics of polymer solar cells fabricated by pre-metered coating process

Byoungchoo Park and Mi-young Han
Opt. Express 17(16) 13830-13840 (2009)

References

  • View by:
  • |
  • |
  • |

  1. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: buckminsterfullerene,” Nature 318(6042), 162–163 (1985).
    [Crossref]
  2. H. Kroto, “Space, stars, c60, and soot,” Science 242(4882), 1139–1145 (1988).
    [Crossref] [PubMed]
  3. S. S. Babu, H. Möhwald, and T. Nakanishi, “Recent progress in morphology control of supramolecular fullerene assemblies and its applications,” Chem. Soc. Rev. 39(11), 4021–4035 (2010).
    [Crossref] [PubMed]
  4. H. Li, B. C. K. Tee, J. J. Cha, Y. Cui, J. W. Chung, S. Y. Lee, and Z. Bao, “High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals,” J. Am. Chem. Soc. 134(5), 2760–2765 (2012).
    [Crossref] [PubMed]
  5. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science 258(5087), 1474–1476 (1992).
    [Crossref] [PubMed]
  6. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270(5243), 1789–1791 (1995).
    [Crossref]
  7. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater. 11(1), 15–26 (2001).
    [Crossref]
  8. G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys. 98(4), 043704 (2005).
    [Crossref]
  9. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
    [Crossref]
  10. N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletête, G. Durocher, Y. Tao, and M. Leclerc, “Toward a rational design of poly(2,7-carbazole) derivatives for solar cells,” J. Am. Chem. Soc. 130(2), 732–742 (2008).
    [Crossref] [PubMed]
  11. H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics 3(192), 649–653 (2009).
    [Crossref]
  12. Y. He and Y. Li, “Fullerene derivative acceptors for high performance polymer solar cells,” Phys. Chem. Chem. Phys. 13(6), 1970–1983 (2011).
    [Crossref] [PubMed]
  13. M. Lenes, S. W. Shelton, A. B. Sieval, D. F. Kronholm, J. C. Hummelen, and P. W. M. Blom, “Electron trapping in higher adduct fullerene-based solar cells,” Adv. Funct. Mater. 19(18), 3002–3007 (2009).
    [Crossref]
  14. M. Lenes, G. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen, and P. W. M. Blom, “Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells,” Adv. Mater. 20(11), 2116–2119 (2008).
    [Crossref]
  15. V. S. Gevaerts, L. J. A. Koster, M. M. Wienk, and R. A. J. Janssen, “Discriminating between bilayer and bulk heterojunction polymer:fullerene solar cells using the external quantum efficiency,” ACS Appl. Mater. Interfaces 3(9), 3252–3255 (2011).
    [Crossref] [PubMed]
  16. A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10(11), 28–33 (2007).
    [Crossref]
  17. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, “2.5% efficient organic plastic solar cells,” Appl. Phys. Lett. 78(6), 841–843 (2001).
    [Crossref]
  18. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
    [Crossref]
  19. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater. 6(7), 497–500 (2007).
    [Crossref] [PubMed]
  20. F. C. Krebs, “Fabrication and processing of polymer solar cells: a review of printing and coating techniques,” Sol. Energ. Mat. Sol. 93(4), 394–412 (2009).
    [Crossref]
  21. A. Abdellah, K. S. Virdi, R. Meier, M. Döblinger, P. Müller-Buschbaum, C. Scheu, P. Lugli, and G. Scarpa, “Successive spray deposition of P3HT/PCBM organic photoactive layers: material composition and device characteristics,” Adv. Funct. Mater. 22(19), 4078–4086 (2012).
    [Crossref]
  22. C.-W. Liang, W.-F. Su, and L. Wang, “Enhancing the photocurrent in poly(3-hexylthiophene)/[6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction solar cells by using poly(3-hexylthiophene) as a buffer layer,” Appl. Phys. Lett. 95(13), 133303 (2009).
    [Crossref]
  23. A. Kumar, G. Li, Z. Hong, and Y. Yang, “High efficiency polymer solar cells with vertically modulated nanoscale morphology,” Nanotechnology 20(16), 165202 (2009).
    [Crossref] [PubMed]
  24. D. H. Wang, H. K. Lee, D.-G. Choi, J. H. Park, and O. O. Park, “Solution-processable polymer solar cells from a poly(3-hexylthiophene)/[6,6]-phenyl C61-butyric acidmethyl ester concentration graded bilayers,” Appl. Phys. Lett. 95(4), 043505 (2009).
    [Crossref]
  25. K. H. Lee, P. E. Schwenn, A. R. G. Smith, H. Cavaye, P. E. Shaw, M. James, K. B. Krueger, I. R. Gentle, P. Meredith, and P. L. Burn, “Morphology of all-solution-processed “bilayer” organic solar cells,” Adv. Mater. 23(6), 766–770 (2011).
    [Crossref] [PubMed]
  26. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 591–595 (2012).
    [Crossref]
  27. L.-M. Chen, Z. Hong, G. Li, and Y. Yang, “Recent progress in polymer solar cells: manipulation of polymer:fullerene morphology and the formation of efficient inverted polymer solar cells,” Adv. Mater. 21(14), 1434–1449 (2009).
    [Crossref]
  28. J.-H. Lee, T. Sagawa, M. Takafuji, and H. Ihara, “Modeling of optimum size and shape for high photovoltaic performance of poly(3-hexylthiophene) nanopore in interdigitated bilayer organic solar cells,” Org. Electron. 28, 59–66 (2016).
    [Crossref]
  29. B. Park, J. C. Shin, and Y. H. Huh, “Interface-engineering additives for inverted BHJ polymer solar cells,” Sol. Energ. Mat. Sol. 110, 15–23 (2013).
    [Crossref]
  30. C. W. Rochester, S. A. Mauger, and A. J. Moulé, “Investigating the morphology of polymer/fullerene layers coated using orthogonal solvents,” J. Phys. Chem. C 116(13), 7287–7292 (2012).
    [Crossref]
  31. A. L. Ayzner, C. J. Tassone, S. H. Tolbert, and B. J. Schwartz, “Reappraising the need for bulk heterojunctions in polymer-fullerene photovoltaics: the role of carrier transport in all-solution-processed P3HT/PCBM bilayer solar cells,” J. Phys. Chem. C 113(46), 20050–20060 (2009).
    [Crossref]
  32. L.-M. Chen, Z. Hong, W. L. Kwan, C.-H. Lu, Y.-F. Lai, B. Lei, C.-P. Liu, and Y. Yang, “Multi-source/component spray coating for polymer solar cells,” ACS Nano 4(8), 4744–4752 (2010).
    [Crossref] [PubMed]
  33. D. A. Pardo, G. E. Jabbour, and N. Peyghambarian, “Application of screen printing in the fabrication of organic light-emitting devices,” Adv. Mater. 12(17), 1249–1252 (2000).
    [Crossref]
  34. B.-J. D. Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: state of the art and future developments,” Adv. Mater. 16(3), 203–213 (2004).
    [Crossref]
  35. B. Park and M.-Y. Han, “Photovoltaic characteristics of polymer solar cells fabricated by pre-metered coating process,” Opt. Express 17(16), 13830–13840 (2009).
    [Crossref] [PubMed]
  36. H. G. Jeon, C. Y. Cho, J. C. Shin, and B. Park, “Inverted polymer solar cells fabricated by a pre-metered coating process,” J. Mater. Chem. 22(43), 23022–23029 (2012).
    [Crossref]
  37. H. G. Jeon and B. Park, “Multiple horizontal-dip-coating of small molecular emission layers for solution-processable organic light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(10), 2389–2398 (2015).
    [Crossref]
  38. B. Park, I.-G. Bae, and Y. H. Huh, “Aligned silver nanowire-based transparent electrodes for engineering polarisation-selective optoelectronics,” Sci. Rep. 6, 19485 (2016).
    [Crossref] [PubMed]
  39. B. Park, Y. H. Huh, and J. C. Shin, “In-plane anisotropy of photovoltaic effects in aligned polymer solar cells,” Sol. Energ. Mat. Sol. 95(12), 3543–3549 (2011).
    [Crossref]
  40. L. D. Landau and V. G. Levich, “Dragging of a liquid by a moving plate,” Acta Physicochimica 17, 42–54 (1942).
  41. Z. Xu, L.-M. Chen, M.-H. Chen, G. Li, and Y. Yang, “Energy level alignment of poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction,” Appl. Phys. Lett. 95(1), 013301 (2009).
    [Crossref]
  42. Y. H. Huh and B. Park, “Interface-engineering additives of poly(oxyethylene tridecyl ether) for low-band gap polymer solar cells consisting of PCDTBT:PCBM70 bulk-heterojunction layers,” Opt. Express 21(S1), A146–A156 (2013).
    [Crossref] [PubMed]
  43. B. Park, O. E. Kwon, S. H. Yun, H. G. Jeon, and Y. H. Huh, “Organic semiconducting layers fabricated by self-metered slot-die coating for solution-processable organic light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(40), 8614–8621 (2014).
    [Crossref]

2016 (2)

J.-H. Lee, T. Sagawa, M. Takafuji, and H. Ihara, “Modeling of optimum size and shape for high photovoltaic performance of poly(3-hexylthiophene) nanopore in interdigitated bilayer organic solar cells,” Org. Electron. 28, 59–66 (2016).
[Crossref]

B. Park, I.-G. Bae, and Y. H. Huh, “Aligned silver nanowire-based transparent electrodes for engineering polarisation-selective optoelectronics,” Sci. Rep. 6, 19485 (2016).
[Crossref] [PubMed]

2015 (1)

H. G. Jeon and B. Park, “Multiple horizontal-dip-coating of small molecular emission layers for solution-processable organic light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(10), 2389–2398 (2015).
[Crossref]

2014 (1)

B. Park, O. E. Kwon, S. H. Yun, H. G. Jeon, and Y. H. Huh, “Organic semiconducting layers fabricated by self-metered slot-die coating for solution-processable organic light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(40), 8614–8621 (2014).
[Crossref]

2013 (2)

2012 (5)

C. W. Rochester, S. A. Mauger, and A. J. Moulé, “Investigating the morphology of polymer/fullerene layers coated using orthogonal solvents,” J. Phys. Chem. C 116(13), 7287–7292 (2012).
[Crossref]

A. Abdellah, K. S. Virdi, R. Meier, M. Döblinger, P. Müller-Buschbaum, C. Scheu, P. Lugli, and G. Scarpa, “Successive spray deposition of P3HT/PCBM organic photoactive layers: material composition and device characteristics,” Adv. Funct. Mater. 22(19), 4078–4086 (2012).
[Crossref]

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 591–595 (2012).
[Crossref]

H. Li, B. C. K. Tee, J. J. Cha, Y. Cui, J. W. Chung, S. Y. Lee, and Z. Bao, “High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals,” J. Am. Chem. Soc. 134(5), 2760–2765 (2012).
[Crossref] [PubMed]

H. G. Jeon, C. Y. Cho, J. C. Shin, and B. Park, “Inverted polymer solar cells fabricated by a pre-metered coating process,” J. Mater. Chem. 22(43), 23022–23029 (2012).
[Crossref]

2011 (4)

B. Park, Y. H. Huh, and J. C. Shin, “In-plane anisotropy of photovoltaic effects in aligned polymer solar cells,” Sol. Energ. Mat. Sol. 95(12), 3543–3549 (2011).
[Crossref]

Y. He and Y. Li, “Fullerene derivative acceptors for high performance polymer solar cells,” Phys. Chem. Chem. Phys. 13(6), 1970–1983 (2011).
[Crossref] [PubMed]

V. S. Gevaerts, L. J. A. Koster, M. M. Wienk, and R. A. J. Janssen, “Discriminating between bilayer and bulk heterojunction polymer:fullerene solar cells using the external quantum efficiency,” ACS Appl. Mater. Interfaces 3(9), 3252–3255 (2011).
[Crossref] [PubMed]

K. H. Lee, P. E. Schwenn, A. R. G. Smith, H. Cavaye, P. E. Shaw, M. James, K. B. Krueger, I. R. Gentle, P. Meredith, and P. L. Burn, “Morphology of all-solution-processed “bilayer” organic solar cells,” Adv. Mater. 23(6), 766–770 (2011).
[Crossref] [PubMed]

2010 (2)

L.-M. Chen, Z. Hong, W. L. Kwan, C.-H. Lu, Y.-F. Lai, B. Lei, C.-P. Liu, and Y. Yang, “Multi-source/component spray coating for polymer solar cells,” ACS Nano 4(8), 4744–4752 (2010).
[Crossref] [PubMed]

S. S. Babu, H. Möhwald, and T. Nakanishi, “Recent progress in morphology control of supramolecular fullerene assemblies and its applications,” Chem. Soc. Rev. 39(11), 4021–4035 (2010).
[Crossref] [PubMed]

2009 (10)

H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics 3(192), 649–653 (2009).
[Crossref]

M. Lenes, S. W. Shelton, A. B. Sieval, D. F. Kronholm, J. C. Hummelen, and P. W. M. Blom, “Electron trapping in higher adduct fullerene-based solar cells,” Adv. Funct. Mater. 19(18), 3002–3007 (2009).
[Crossref]

A. L. Ayzner, C. J. Tassone, S. H. Tolbert, and B. J. Schwartz, “Reappraising the need for bulk heterojunctions in polymer-fullerene photovoltaics: the role of carrier transport in all-solution-processed P3HT/PCBM bilayer solar cells,” J. Phys. Chem. C 113(46), 20050–20060 (2009).
[Crossref]

L.-M. Chen, Z. Hong, G. Li, and Y. Yang, “Recent progress in polymer solar cells: manipulation of polymer:fullerene morphology and the formation of efficient inverted polymer solar cells,” Adv. Mater. 21(14), 1434–1449 (2009).
[Crossref]

F. C. Krebs, “Fabrication and processing of polymer solar cells: a review of printing and coating techniques,” Sol. Energ. Mat. Sol. 93(4), 394–412 (2009).
[Crossref]

C.-W. Liang, W.-F. Su, and L. Wang, “Enhancing the photocurrent in poly(3-hexylthiophene)/[6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction solar cells by using poly(3-hexylthiophene) as a buffer layer,” Appl. Phys. Lett. 95(13), 133303 (2009).
[Crossref]

A. Kumar, G. Li, Z. Hong, and Y. Yang, “High efficiency polymer solar cells with vertically modulated nanoscale morphology,” Nanotechnology 20(16), 165202 (2009).
[Crossref] [PubMed]

D. H. Wang, H. K. Lee, D.-G. Choi, J. H. Park, and O. O. Park, “Solution-processable polymer solar cells from a poly(3-hexylthiophene)/[6,6]-phenyl C61-butyric acidmethyl ester concentration graded bilayers,” Appl. Phys. Lett. 95(4), 043505 (2009).
[Crossref]

B. Park and M.-Y. Han, “Photovoltaic characteristics of polymer solar cells fabricated by pre-metered coating process,” Opt. Express 17(16), 13830–13840 (2009).
[Crossref] [PubMed]

Z. Xu, L.-M. Chen, M.-H. Chen, G. Li, and Y. Yang, “Energy level alignment of poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction,” Appl. Phys. Lett. 95(1), 013301 (2009).
[Crossref]

2008 (2)

M. Lenes, G. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen, and P. W. M. Blom, “Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells,” Adv. Mater. 20(11), 2116–2119 (2008).
[Crossref]

N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletête, G. Durocher, Y. Tao, and M. Leclerc, “Toward a rational design of poly(2,7-carbazole) derivatives for solar cells,” J. Am. Chem. Soc. 130(2), 732–742 (2008).
[Crossref] [PubMed]

2007 (2)

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10(11), 28–33 (2007).
[Crossref]

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater. 6(7), 497–500 (2007).
[Crossref] [PubMed]

2005 (3)

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[Crossref]

G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys. 98(4), 043704 (2005).
[Crossref]

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[Crossref]

2004 (1)

B.-J. D. Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: state of the art and future developments,” Adv. Mater. 16(3), 203–213 (2004).
[Crossref]

2001 (2)

S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, “2.5% efficient organic plastic solar cells,” Appl. Phys. Lett. 78(6), 841–843 (2001).
[Crossref]

C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater. 11(1), 15–26 (2001).
[Crossref]

2000 (1)

D. A. Pardo, G. E. Jabbour, and N. Peyghambarian, “Application of screen printing in the fabrication of organic light-emitting devices,” Adv. Mater. 12(17), 1249–1252 (2000).
[Crossref]

1995 (1)

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270(5243), 1789–1791 (1995).
[Crossref]

1992 (1)

N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science 258(5087), 1474–1476 (1992).
[Crossref] [PubMed]

1988 (1)

H. Kroto, “Space, stars, c60, and soot,” Science 242(4882), 1139–1145 (1988).
[Crossref] [PubMed]

1985 (1)

H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: buckminsterfullerene,” Nature 318(6042), 162–163 (1985).
[Crossref]

1942 (1)

L. D. Landau and V. G. Levich, “Dragging of a liquid by a moving plate,” Acta Physicochimica 17, 42–54 (1942).

Abdellah, A.

A. Abdellah, K. S. Virdi, R. Meier, M. Döblinger, P. Müller-Buschbaum, C. Scheu, P. Lugli, and G. Scarpa, “Successive spray deposition of P3HT/PCBM organic photoactive layers: material composition and device characteristics,” Adv. Funct. Mater. 22(19), 4078–4086 (2012).
[Crossref]

Ayzner, A. L.

A. L. Ayzner, C. J. Tassone, S. H. Tolbert, and B. J. Schwartz, “Reappraising the need for bulk heterojunctions in polymer-fullerene photovoltaics: the role of carrier transport in all-solution-processed P3HT/PCBM bilayer solar cells,” J. Phys. Chem. C 113(46), 20050–20060 (2009).
[Crossref]

Babu, S. S.

S. S. Babu, H. Möhwald, and T. Nakanishi, “Recent progress in morphology control of supramolecular fullerene assemblies and its applications,” Chem. Soc. Rev. 39(11), 4021–4035 (2010).
[Crossref] [PubMed]

Bae, I.-G.

B. Park, I.-G. Bae, and Y. H. Huh, “Aligned silver nanowire-based transparent electrodes for engineering polarisation-selective optoelectronics,” Sci. Rep. 6, 19485 (2016).
[Crossref] [PubMed]

Bao, Z.

H. Li, B. C. K. Tee, J. J. Cha, Y. Cui, J. W. Chung, S. Y. Lee, and Z. Bao, “High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals,” J. Am. Chem. Soc. 134(5), 2760–2765 (2012).
[Crossref] [PubMed]

Bazan, G. C.

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater. 6(7), 497–500 (2007).
[Crossref] [PubMed]

Belletête, M.

N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletête, G. Durocher, Y. Tao, and M. Leclerc, “Toward a rational design of poly(2,7-carbazole) derivatives for solar cells,” J. Am. Chem. Soc. 130(2), 732–742 (2008).
[Crossref] [PubMed]

Blair, E.

N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletête, G. Durocher, Y. Tao, and M. Leclerc, “Toward a rational design of poly(2,7-carbazole) derivatives for solar cells,” J. Am. Chem. Soc. 130(2), 732–742 (2008).
[Crossref] [PubMed]

Blom, P. W. M.

M. Lenes, S. W. Shelton, A. B. Sieval, D. F. Kronholm, J. C. Hummelen, and P. W. M. Blom, “Electron trapping in higher adduct fullerene-based solar cells,” Adv. Funct. Mater. 19(18), 3002–3007 (2009).
[Crossref]

M. Lenes, G. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen, and P. W. M. Blom, “Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells,” Adv. Mater. 20(11), 2116–2119 (2008).
[Crossref]

Blouin, N.

N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletête, G. Durocher, Y. Tao, and M. Leclerc, “Toward a rational design of poly(2,7-carbazole) derivatives for solar cells,” J. Am. Chem. Soc. 130(2), 732–742 (2008).
[Crossref] [PubMed]

Brabec, C. J.

C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater. 11(1), 15–26 (2001).
[Crossref]

S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, “2.5% efficient organic plastic solar cells,” Appl. Phys. Lett. 78(6), 841–843 (2001).
[Crossref]

Burn, P. L.

K. H. Lee, P. E. Schwenn, A. R. G. Smith, H. Cavaye, P. E. Shaw, M. James, K. B. Krueger, I. R. Gentle, P. Meredith, and P. L. Burn, “Morphology of all-solution-processed “bilayer” organic solar cells,” Adv. Mater. 23(6), 766–770 (2011).
[Crossref] [PubMed]

Cao, Y.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 591–595 (2012).
[Crossref]

Cavaye, H.

K. H. Lee, P. E. Schwenn, A. R. G. Smith, H. Cavaye, P. E. Shaw, M. James, K. B. Krueger, I. R. Gentle, P. Meredith, and P. L. Burn, “Morphology of all-solution-processed “bilayer” organic solar cells,” Adv. Mater. 23(6), 766–770 (2011).
[Crossref] [PubMed]

Cha, J. J.

H. Li, B. C. K. Tee, J. J. Cha, Y. Cui, J. W. Chung, S. Y. Lee, and Z. Bao, “High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals,” J. Am. Chem. Soc. 134(5), 2760–2765 (2012).
[Crossref] [PubMed]

Chen, H.-Y.

H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics 3(192), 649–653 (2009).
[Crossref]

Chen, L.-M.

L.-M. Chen, Z. Hong, W. L. Kwan, C.-H. Lu, Y.-F. Lai, B. Lei, C.-P. Liu, and Y. Yang, “Multi-source/component spray coating for polymer solar cells,” ACS Nano 4(8), 4744–4752 (2010).
[Crossref] [PubMed]

Z. Xu, L.-M. Chen, M.-H. Chen, G. Li, and Y. Yang, “Energy level alignment of poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction,” Appl. Phys. Lett. 95(1), 013301 (2009).
[Crossref]

L.-M. Chen, Z. Hong, G. Li, and Y. Yang, “Recent progress in polymer solar cells: manipulation of polymer:fullerene morphology and the formation of efficient inverted polymer solar cells,” Adv. Mater. 21(14), 1434–1449 (2009).
[Crossref]

Chen, M.-H.

Z. Xu, L.-M. Chen, M.-H. Chen, G. Li, and Y. Yang, “Energy level alignment of poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction,” Appl. Phys. Lett. 95(1), 013301 (2009).
[Crossref]

Cho, C. Y.

H. G. Jeon, C. Y. Cho, J. C. Shin, and B. Park, “Inverted polymer solar cells fabricated by a pre-metered coating process,” J. Mater. Chem. 22(43), 23022–23029 (2012).
[Crossref]

Choi, D.-G.

D. H. Wang, H. K. Lee, D.-G. Choi, J. H. Park, and O. O. Park, “Solution-processable polymer solar cells from a poly(3-hexylthiophene)/[6,6]-phenyl C61-butyric acidmethyl ester concentration graded bilayers,” Appl. Phys. Lett. 95(4), 043505 (2009).
[Crossref]

Chung, J. W.

H. Li, B. C. K. Tee, J. J. Cha, Y. Cui, J. W. Chung, S. Y. Lee, and Z. Bao, “High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals,” J. Am. Chem. Soc. 134(5), 2760–2765 (2012).
[Crossref] [PubMed]

Coates, N. E.

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater. 6(7), 497–500 (2007).
[Crossref] [PubMed]

Cui, Y.

H. Li, B. C. K. Tee, J. J. Cha, Y. Cui, J. W. Chung, S. Y. Lee, and Z. Bao, “High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals,” J. Am. Chem. Soc. 134(5), 2760–2765 (2012).
[Crossref] [PubMed]

Curl, R. F.

H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: buckminsterfullerene,” Nature 318(6042), 162–163 (1985).
[Crossref]

Döblinger, M.

A. Abdellah, K. S. Virdi, R. Meier, M. Döblinger, P. Müller-Buschbaum, C. Scheu, P. Lugli, and G. Scarpa, “Successive spray deposition of P3HT/PCBM organic photoactive layers: material composition and device characteristics,” Adv. Funct. Mater. 22(19), 4078–4086 (2012).
[Crossref]

Duineveld, P. C.

B.-J. D. Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: state of the art and future developments,” Adv. Mater. 16(3), 203–213 (2004).
[Crossref]

Durocher, G.

N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletête, G. Durocher, Y. Tao, and M. Leclerc, “Toward a rational design of poly(2,7-carbazole) derivatives for solar cells,” J. Am. Chem. Soc. 130(2), 732–742 (2008).
[Crossref] [PubMed]

Emery, K.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[Crossref]

Fromherz, T.

S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, “2.5% efficient organic plastic solar cells,” Appl. Phys. Lett. 78(6), 841–843 (2001).
[Crossref]

Gans, B.-J. D.

B.-J. D. Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: state of the art and future developments,” Adv. Mater. 16(3), 203–213 (2004).
[Crossref]

Gao, J.

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270(5243), 1789–1791 (1995).
[Crossref]

Gendron, D.

N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletête, G. Durocher, Y. Tao, and M. Leclerc, “Toward a rational design of poly(2,7-carbazole) derivatives for solar cells,” J. Am. Chem. Soc. 130(2), 732–742 (2008).
[Crossref] [PubMed]

Gentle, I. R.

K. H. Lee, P. E. Schwenn, A. R. G. Smith, H. Cavaye, P. E. Shaw, M. James, K. B. Krueger, I. R. Gentle, P. Meredith, and P. L. Burn, “Morphology of all-solution-processed “bilayer” organic solar cells,” Adv. Mater. 23(6), 766–770 (2011).
[Crossref] [PubMed]

Gevaerts, V. S.

V. S. Gevaerts, L. J. A. Koster, M. M. Wienk, and R. A. J. Janssen, “Discriminating between bilayer and bulk heterojunction polymer:fullerene solar cells using the external quantum efficiency,” ACS Appl. Mater. Interfaces 3(9), 3252–3255 (2011).
[Crossref] [PubMed]

Gong, X.

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[Crossref]

Han, M.-Y.

Hardin, B. E.

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10(11), 28–33 (2007).
[Crossref]

He, Y.

Y. He and Y. Li, “Fullerene derivative acceptors for high performance polymer solar cells,” Phys. Chem. Chem. Phys. 13(6), 1970–1983 (2011).
[Crossref] [PubMed]

He, Z.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 591–595 (2012).
[Crossref]

Heath, J. R.

H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: buckminsterfullerene,” Nature 318(6042), 162–163 (1985).
[Crossref]

Heeger, A. J.

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater. 6(7), 497–500 (2007).
[Crossref] [PubMed]

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[Crossref]

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270(5243), 1789–1791 (1995).
[Crossref]

N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science 258(5087), 1474–1476 (1992).
[Crossref] [PubMed]

Hong, Z.

L.-M. Chen, Z. Hong, W. L. Kwan, C.-H. Lu, Y.-F. Lai, B. Lei, C.-P. Liu, and Y. Yang, “Multi-source/component spray coating for polymer solar cells,” ACS Nano 4(8), 4744–4752 (2010).
[Crossref] [PubMed]

L.-M. Chen, Z. Hong, G. Li, and Y. Yang, “Recent progress in polymer solar cells: manipulation of polymer:fullerene morphology and the formation of efficient inverted polymer solar cells,” Adv. Mater. 21(14), 1434–1449 (2009).
[Crossref]

A. Kumar, G. Li, Z. Hong, and Y. Yang, “High efficiency polymer solar cells with vertically modulated nanoscale morphology,” Nanotechnology 20(16), 165202 (2009).
[Crossref] [PubMed]

Hou, J.

H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics 3(192), 649–653 (2009).
[Crossref]

Huang, J.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[Crossref]

Huh, Y. H.

B. Park, I.-G. Bae, and Y. H. Huh, “Aligned silver nanowire-based transparent electrodes for engineering polarisation-selective optoelectronics,” Sci. Rep. 6, 19485 (2016).
[Crossref] [PubMed]

B. Park, O. E. Kwon, S. H. Yun, H. G. Jeon, and Y. H. Huh, “Organic semiconducting layers fabricated by self-metered slot-die coating for solution-processable organic light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(40), 8614–8621 (2014).
[Crossref]

Y. H. Huh and B. Park, “Interface-engineering additives of poly(oxyethylene tridecyl ether) for low-band gap polymer solar cells consisting of PCDTBT:PCBM70 bulk-heterojunction layers,” Opt. Express 21(S1), A146–A156 (2013).
[Crossref] [PubMed]

B. Park, J. C. Shin, and Y. H. Huh, “Interface-engineering additives for inverted BHJ polymer solar cells,” Sol. Energ. Mat. Sol. 110, 15–23 (2013).
[Crossref]

B. Park, Y. H. Huh, and J. C. Shin, “In-plane anisotropy of photovoltaic effects in aligned polymer solar cells,” Sol. Energ. Mat. Sol. 95(12), 3543–3549 (2011).
[Crossref]

Hummelen, J. C.

M. Lenes, S. W. Shelton, A. B. Sieval, D. F. Kronholm, J. C. Hummelen, and P. W. M. Blom, “Electron trapping in higher adduct fullerene-based solar cells,” Adv. Funct. Mater. 19(18), 3002–3007 (2009).
[Crossref]

M. Lenes, G. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen, and P. W. M. Blom, “Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells,” Adv. Mater. 20(11), 2116–2119 (2008).
[Crossref]

S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, “2.5% efficient organic plastic solar cells,” Appl. Phys. Lett. 78(6), 841–843 (2001).
[Crossref]

C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater. 11(1), 15–26 (2001).
[Crossref]

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270(5243), 1789–1791 (1995).
[Crossref]

Ihara, H.

J.-H. Lee, T. Sagawa, M. Takafuji, and H. Ihara, “Modeling of optimum size and shape for high photovoltaic performance of poly(3-hexylthiophene) nanopore in interdigitated bilayer organic solar cells,” Org. Electron. 28, 59–66 (2016).
[Crossref]

Jabbour, G. E.

D. A. Pardo, G. E. Jabbour, and N. Peyghambarian, “Application of screen printing in the fabrication of organic light-emitting devices,” Adv. Mater. 12(17), 1249–1252 (2000).
[Crossref]

James, M.

K. H. Lee, P. E. Schwenn, A. R. G. Smith, H. Cavaye, P. E. Shaw, M. James, K. B. Krueger, I. R. Gentle, P. Meredith, and P. L. Burn, “Morphology of all-solution-processed “bilayer” organic solar cells,” Adv. Mater. 23(6), 766–770 (2011).
[Crossref] [PubMed]

Janssen, R. A. J.

V. S. Gevaerts, L. J. A. Koster, M. M. Wienk, and R. A. J. Janssen, “Discriminating between bilayer and bulk heterojunction polymer:fullerene solar cells using the external quantum efficiency,” ACS Appl. Mater. Interfaces 3(9), 3252–3255 (2011).
[Crossref] [PubMed]

Jeon, H. G.

H. G. Jeon and B. Park, “Multiple horizontal-dip-coating of small molecular emission layers for solution-processable organic light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(10), 2389–2398 (2015).
[Crossref]

B. Park, O. E. Kwon, S. H. Yun, H. G. Jeon, and Y. H. Huh, “Organic semiconducting layers fabricated by self-metered slot-die coating for solution-processable organic light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(40), 8614–8621 (2014).
[Crossref]

H. G. Jeon, C. Y. Cho, J. C. Shin, and B. Park, “Inverted polymer solar cells fabricated by a pre-metered coating process,” J. Mater. Chem. 22(43), 23022–23029 (2012).
[Crossref]

Kim, J. Y.

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater. 6(7), 497–500 (2007).
[Crossref] [PubMed]

Kooistra, F. B.

M. Lenes, G. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen, and P. W. M. Blom, “Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells,” Adv. Mater. 20(11), 2116–2119 (2008).
[Crossref]

Koster, L. J. A.

V. S. Gevaerts, L. J. A. Koster, M. M. Wienk, and R. A. J. Janssen, “Discriminating between bilayer and bulk heterojunction polymer:fullerene solar cells using the external quantum efficiency,” ACS Appl. Mater. Interfaces 3(9), 3252–3255 (2011).
[Crossref] [PubMed]

Krebs, F. C.

F. C. Krebs, “Fabrication and processing of polymer solar cells: a review of printing and coating techniques,” Sol. Energ. Mat. Sol. 93(4), 394–412 (2009).
[Crossref]

Kronholm, D. F.

M. Lenes, S. W. Shelton, A. B. Sieval, D. F. Kronholm, J. C. Hummelen, and P. W. M. Blom, “Electron trapping in higher adduct fullerene-based solar cells,” Adv. Funct. Mater. 19(18), 3002–3007 (2009).
[Crossref]

Kroto, H.

H. Kroto, “Space, stars, c60, and soot,” Science 242(4882), 1139–1145 (1988).
[Crossref] [PubMed]

Kroto, H. W.

H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: buckminsterfullerene,” Nature 318(6042), 162–163 (1985).
[Crossref]

Krueger, K. B.

K. H. Lee, P. E. Schwenn, A. R. G. Smith, H. Cavaye, P. E. Shaw, M. James, K. B. Krueger, I. R. Gentle, P. Meredith, and P. L. Burn, “Morphology of all-solution-processed “bilayer” organic solar cells,” Adv. Mater. 23(6), 766–770 (2011).
[Crossref] [PubMed]

Kumar, A.

A. Kumar, G. Li, Z. Hong, and Y. Yang, “High efficiency polymer solar cells with vertically modulated nanoscale morphology,” Nanotechnology 20(16), 165202 (2009).
[Crossref] [PubMed]

Kwan, W. L.

L.-M. Chen, Z. Hong, W. L. Kwan, C.-H. Lu, Y.-F. Lai, B. Lei, C.-P. Liu, and Y. Yang, “Multi-source/component spray coating for polymer solar cells,” ACS Nano 4(8), 4744–4752 (2010).
[Crossref] [PubMed]

Kwon, O. E.

B. Park, O. E. Kwon, S. H. Yun, H. G. Jeon, and Y. H. Huh, “Organic semiconducting layers fabricated by self-metered slot-die coating for solution-processable organic light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(40), 8614–8621 (2014).
[Crossref]

Lai, Y.-F.

L.-M. Chen, Z. Hong, W. L. Kwan, C.-H. Lu, Y.-F. Lai, B. Lei, C.-P. Liu, and Y. Yang, “Multi-source/component spray coating for polymer solar cells,” ACS Nano 4(8), 4744–4752 (2010).
[Crossref] [PubMed]

Landau, L. D.

L. D. Landau and V. G. Levich, “Dragging of a liquid by a moving plate,” Acta Physicochimica 17, 42–54 (1942).

Leclerc, M.

N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletête, G. Durocher, Y. Tao, and M. Leclerc, “Toward a rational design of poly(2,7-carbazole) derivatives for solar cells,” J. Am. Chem. Soc. 130(2), 732–742 (2008).
[Crossref] [PubMed]

Lee, H. K.

D. H. Wang, H. K. Lee, D.-G. Choi, J. H. Park, and O. O. Park, “Solution-processable polymer solar cells from a poly(3-hexylthiophene)/[6,6]-phenyl C61-butyric acidmethyl ester concentration graded bilayers,” Appl. Phys. Lett. 95(4), 043505 (2009).
[Crossref]

Lee, J.-H.

J.-H. Lee, T. Sagawa, M. Takafuji, and H. Ihara, “Modeling of optimum size and shape for high photovoltaic performance of poly(3-hexylthiophene) nanopore in interdigitated bilayer organic solar cells,” Org. Electron. 28, 59–66 (2016).
[Crossref]

Lee, K.

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[Crossref]

Lee, K. H.

K. H. Lee, P. E. Schwenn, A. R. G. Smith, H. Cavaye, P. E. Shaw, M. James, K. B. Krueger, I. R. Gentle, P. Meredith, and P. L. Burn, “Morphology of all-solution-processed “bilayer” organic solar cells,” Adv. Mater. 23(6), 766–770 (2011).
[Crossref] [PubMed]

Lee, S. Y.

H. Li, B. C. K. Tee, J. J. Cha, Y. Cui, J. W. Chung, S. Y. Lee, and Z. Bao, “High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals,” J. Am. Chem. Soc. 134(5), 2760–2765 (2012).
[Crossref] [PubMed]

Lei, B.

L.-M. Chen, Z. Hong, W. L. Kwan, C.-H. Lu, Y.-F. Lai, B. Lei, C.-P. Liu, and Y. Yang, “Multi-source/component spray coating for polymer solar cells,” ACS Nano 4(8), 4744–4752 (2010).
[Crossref] [PubMed]

Lenes, M.

M. Lenes, S. W. Shelton, A. B. Sieval, D. F. Kronholm, J. C. Hummelen, and P. W. M. Blom, “Electron trapping in higher adduct fullerene-based solar cells,” Adv. Funct. Mater. 19(18), 3002–3007 (2009).
[Crossref]

M. Lenes, G. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen, and P. W. M. Blom, “Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells,” Adv. Mater. 20(11), 2116–2119 (2008).
[Crossref]

Levich, V. G.

L. D. Landau and V. G. Levich, “Dragging of a liquid by a moving plate,” Acta Physicochimica 17, 42–54 (1942).

Li, G.

Z. Xu, L.-M. Chen, M.-H. Chen, G. Li, and Y. Yang, “Energy level alignment of poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction,” Appl. Phys. Lett. 95(1), 013301 (2009).
[Crossref]

H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics 3(192), 649–653 (2009).
[Crossref]

A. Kumar, G. Li, Z. Hong, and Y. Yang, “High efficiency polymer solar cells with vertically modulated nanoscale morphology,” Nanotechnology 20(16), 165202 (2009).
[Crossref] [PubMed]

L.-M. Chen, Z. Hong, G. Li, and Y. Yang, “Recent progress in polymer solar cells: manipulation of polymer:fullerene morphology and the formation of efficient inverted polymer solar cells,” Adv. Mater. 21(14), 1434–1449 (2009).
[Crossref]

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[Crossref]

G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys. 98(4), 043704 (2005).
[Crossref]

Li, H.

H. Li, B. C. K. Tee, J. J. Cha, Y. Cui, J. W. Chung, S. Y. Lee, and Z. Bao, “High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals,” J. Am. Chem. Soc. 134(5), 2760–2765 (2012).
[Crossref] [PubMed]

Li, Y.

Y. He and Y. Li, “Fullerene derivative acceptors for high performance polymer solar cells,” Phys. Chem. Chem. Phys. 13(6), 1970–1983 (2011).
[Crossref] [PubMed]

Liang, C.-W.

C.-W. Liang, W.-F. Su, and L. Wang, “Enhancing the photocurrent in poly(3-hexylthiophene)/[6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction solar cells by using poly(3-hexylthiophene) as a buffer layer,” Appl. Phys. Lett. 95(13), 133303 (2009).
[Crossref]

Liang, Y.

H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics 3(192), 649–653 (2009).
[Crossref]

Liu, C.-P.

L.-M. Chen, Z. Hong, W. L. Kwan, C.-H. Lu, Y.-F. Lai, B. Lei, C.-P. Liu, and Y. Yang, “Multi-source/component spray coating for polymer solar cells,” ACS Nano 4(8), 4744–4752 (2010).
[Crossref] [PubMed]

Lu, C.-H.

L.-M. Chen, Z. Hong, W. L. Kwan, C.-H. Lu, Y.-F. Lai, B. Lei, C.-P. Liu, and Y. Yang, “Multi-source/component spray coating for polymer solar cells,” ACS Nano 4(8), 4744–4752 (2010).
[Crossref] [PubMed]

Lugli, P.

A. Abdellah, K. S. Virdi, R. Meier, M. Döblinger, P. Müller-Buschbaum, C. Scheu, P. Lugli, and G. Scarpa, “Successive spray deposition of P3HT/PCBM organic photoactive layers: material composition and device characteristics,” Adv. Funct. Mater. 22(19), 4078–4086 (2012).
[Crossref]

Ma, W.

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[Crossref]

Ma, W. L.

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater. 6(7), 497–500 (2007).
[Crossref] [PubMed]

Mauger, S. A.

C. W. Rochester, S. A. Mauger, and A. J. Moulé, “Investigating the morphology of polymer/fullerene layers coated using orthogonal solvents,” J. Phys. Chem. C 116(13), 7287–7292 (2012).
[Crossref]

Mayer, A. C.

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10(11), 28–33 (2007).
[Crossref]

McGehee, M. D.

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10(11), 28–33 (2007).
[Crossref]

Meier, R.

A. Abdellah, K. S. Virdi, R. Meier, M. Döblinger, P. Müller-Buschbaum, C. Scheu, P. Lugli, and G. Scarpa, “Successive spray deposition of P3HT/PCBM organic photoactive layers: material composition and device characteristics,” Adv. Funct. Mater. 22(19), 4078–4086 (2012).
[Crossref]

Meredith, P.

K. H. Lee, P. E. Schwenn, A. R. G. Smith, H. Cavaye, P. E. Shaw, M. James, K. B. Krueger, I. R. Gentle, P. Meredith, and P. L. Burn, “Morphology of all-solution-processed “bilayer” organic solar cells,” Adv. Mater. 23(6), 766–770 (2011).
[Crossref] [PubMed]

Michaud, A.

N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletête, G. Durocher, Y. Tao, and M. Leclerc, “Toward a rational design of poly(2,7-carbazole) derivatives for solar cells,” J. Am. Chem. Soc. 130(2), 732–742 (2008).
[Crossref] [PubMed]

Möhwald, H.

S. S. Babu, H. Möhwald, and T. Nakanishi, “Recent progress in morphology control of supramolecular fullerene assemblies and its applications,” Chem. Soc. Rev. 39(11), 4021–4035 (2010).
[Crossref] [PubMed]

Moriarty, T.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[Crossref]

Moses, D.

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater. 6(7), 497–500 (2007).
[Crossref] [PubMed]

Moulé, A. J.

C. W. Rochester, S. A. Mauger, and A. J. Moulé, “Investigating the morphology of polymer/fullerene layers coated using orthogonal solvents,” J. Phys. Chem. C 116(13), 7287–7292 (2012).
[Crossref]

Müller-Buschbaum, P.

A. Abdellah, K. S. Virdi, R. Meier, M. Döblinger, P. Müller-Buschbaum, C. Scheu, P. Lugli, and G. Scarpa, “Successive spray deposition of P3HT/PCBM organic photoactive layers: material composition and device characteristics,” Adv. Funct. Mater. 22(19), 4078–4086 (2012).
[Crossref]

Nakanishi, T.

S. S. Babu, H. Möhwald, and T. Nakanishi, “Recent progress in morphology control of supramolecular fullerene assemblies and its applications,” Chem. Soc. Rev. 39(11), 4021–4035 (2010).
[Crossref] [PubMed]

Neagu-Plesu, R.

N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletête, G. Durocher, Y. Tao, and M. Leclerc, “Toward a rational design of poly(2,7-carbazole) derivatives for solar cells,” J. Am. Chem. Soc. 130(2), 732–742 (2008).
[Crossref] [PubMed]

O’Brien, S. C.

H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: buckminsterfullerene,” Nature 318(6042), 162–163 (1985).
[Crossref]

Padinger, F.

S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, “2.5% efficient organic plastic solar cells,” Appl. Phys. Lett. 78(6), 841–843 (2001).
[Crossref]

Pardo, D. A.

D. A. Pardo, G. E. Jabbour, and N. Peyghambarian, “Application of screen printing in the fabrication of organic light-emitting devices,” Adv. Mater. 12(17), 1249–1252 (2000).
[Crossref]

Park, B.

B. Park, I.-G. Bae, and Y. H. Huh, “Aligned silver nanowire-based transparent electrodes for engineering polarisation-selective optoelectronics,” Sci. Rep. 6, 19485 (2016).
[Crossref] [PubMed]

H. G. Jeon and B. Park, “Multiple horizontal-dip-coating of small molecular emission layers for solution-processable organic light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(10), 2389–2398 (2015).
[Crossref]

B. Park, O. E. Kwon, S. H. Yun, H. G. Jeon, and Y. H. Huh, “Organic semiconducting layers fabricated by self-metered slot-die coating for solution-processable organic light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(40), 8614–8621 (2014).
[Crossref]

Y. H. Huh and B. Park, “Interface-engineering additives of poly(oxyethylene tridecyl ether) for low-band gap polymer solar cells consisting of PCDTBT:PCBM70 bulk-heterojunction layers,” Opt. Express 21(S1), A146–A156 (2013).
[Crossref] [PubMed]

B. Park, J. C. Shin, and Y. H. Huh, “Interface-engineering additives for inverted BHJ polymer solar cells,” Sol. Energ. Mat. Sol. 110, 15–23 (2013).
[Crossref]

H. G. Jeon, C. Y. Cho, J. C. Shin, and B. Park, “Inverted polymer solar cells fabricated by a pre-metered coating process,” J. Mater. Chem. 22(43), 23022–23029 (2012).
[Crossref]

B. Park, Y. H. Huh, and J. C. Shin, “In-plane anisotropy of photovoltaic effects in aligned polymer solar cells,” Sol. Energ. Mat. Sol. 95(12), 3543–3549 (2011).
[Crossref]

B. Park and M.-Y. Han, “Photovoltaic characteristics of polymer solar cells fabricated by pre-metered coating process,” Opt. Express 17(16), 13830–13840 (2009).
[Crossref] [PubMed]

Park, J. H.

D. H. Wang, H. K. Lee, D.-G. Choi, J. H. Park, and O. O. Park, “Solution-processable polymer solar cells from a poly(3-hexylthiophene)/[6,6]-phenyl C61-butyric acidmethyl ester concentration graded bilayers,” Appl. Phys. Lett. 95(4), 043505 (2009).
[Crossref]

Park, O. O.

D. H. Wang, H. K. Lee, D.-G. Choi, J. H. Park, and O. O. Park, “Solution-processable polymer solar cells from a poly(3-hexylthiophene)/[6,6]-phenyl C61-butyric acidmethyl ester concentration graded bilayers,” Appl. Phys. Lett. 95(4), 043505 (2009).
[Crossref]

Peet, J.

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater. 6(7), 497–500 (2007).
[Crossref] [PubMed]

Peyghambarian, N.

D. A. Pardo, G. E. Jabbour, and N. Peyghambarian, “Application of screen printing in the fabrication of organic light-emitting devices,” Adv. Mater. 12(17), 1249–1252 (2000).
[Crossref]

Rochester, C. W.

C. W. Rochester, S. A. Mauger, and A. J. Moulé, “Investigating the morphology of polymer/fullerene layers coated using orthogonal solvents,” J. Phys. Chem. C 116(13), 7287–7292 (2012).
[Crossref]

Rowell, M. W.

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10(11), 28–33 (2007).
[Crossref]

Sagawa, T.

J.-H. Lee, T. Sagawa, M. Takafuji, and H. Ihara, “Modeling of optimum size and shape for high photovoltaic performance of poly(3-hexylthiophene) nanopore in interdigitated bilayer organic solar cells,” Org. Electron. 28, 59–66 (2016).
[Crossref]

Sariciftci, N. S.

S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, “2.5% efficient organic plastic solar cells,” Appl. Phys. Lett. 78(6), 841–843 (2001).
[Crossref]

C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater. 11(1), 15–26 (2001).
[Crossref]

N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science 258(5087), 1474–1476 (1992).
[Crossref] [PubMed]

Scarpa, G.

A. Abdellah, K. S. Virdi, R. Meier, M. Döblinger, P. Müller-Buschbaum, C. Scheu, P. Lugli, and G. Scarpa, “Successive spray deposition of P3HT/PCBM organic photoactive layers: material composition and device characteristics,” Adv. Funct. Mater. 22(19), 4078–4086 (2012).
[Crossref]

Scheu, C.

A. Abdellah, K. S. Virdi, R. Meier, M. Döblinger, P. Müller-Buschbaum, C. Scheu, P. Lugli, and G. Scarpa, “Successive spray deposition of P3HT/PCBM organic photoactive layers: material composition and device characteristics,” Adv. Funct. Mater. 22(19), 4078–4086 (2012).
[Crossref]

Schubert, U. S.

B.-J. D. Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: state of the art and future developments,” Adv. Mater. 16(3), 203–213 (2004).
[Crossref]

Schwartz, B. J.

A. L. Ayzner, C. J. Tassone, S. H. Tolbert, and B. J. Schwartz, “Reappraising the need for bulk heterojunctions in polymer-fullerene photovoltaics: the role of carrier transport in all-solution-processed P3HT/PCBM bilayer solar cells,” J. Phys. Chem. C 113(46), 20050–20060 (2009).
[Crossref]

Schwenn, P. E.

K. H. Lee, P. E. Schwenn, A. R. G. Smith, H. Cavaye, P. E. Shaw, M. James, K. B. Krueger, I. R. Gentle, P. Meredith, and P. L. Burn, “Morphology of all-solution-processed “bilayer” organic solar cells,” Adv. Mater. 23(6), 766–770 (2011).
[Crossref] [PubMed]

Scully, S. R.

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10(11), 28–33 (2007).
[Crossref]

Shaheen, S. E.

S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, “2.5% efficient organic plastic solar cells,” Appl. Phys. Lett. 78(6), 841–843 (2001).
[Crossref]

Shaw, P. E.

K. H. Lee, P. E. Schwenn, A. R. G. Smith, H. Cavaye, P. E. Shaw, M. James, K. B. Krueger, I. R. Gentle, P. Meredith, and P. L. Burn, “Morphology of all-solution-processed “bilayer” organic solar cells,” Adv. Mater. 23(6), 766–770 (2011).
[Crossref] [PubMed]

Shelton, S. W.

M. Lenes, S. W. Shelton, A. B. Sieval, D. F. Kronholm, J. C. Hummelen, and P. W. M. Blom, “Electron trapping in higher adduct fullerene-based solar cells,” Adv. Funct. Mater. 19(18), 3002–3007 (2009).
[Crossref]

Shin, J. C.

B. Park, J. C. Shin, and Y. H. Huh, “Interface-engineering additives for inverted BHJ polymer solar cells,” Sol. Energ. Mat. Sol. 110, 15–23 (2013).
[Crossref]

H. G. Jeon, C. Y. Cho, J. C. Shin, and B. Park, “Inverted polymer solar cells fabricated by a pre-metered coating process,” J. Mater. Chem. 22(43), 23022–23029 (2012).
[Crossref]

B. Park, Y. H. Huh, and J. C. Shin, “In-plane anisotropy of photovoltaic effects in aligned polymer solar cells,” Sol. Energ. Mat. Sol. 95(12), 3543–3549 (2011).
[Crossref]

Shrotriya, V.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[Crossref]

G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys. 98(4), 043704 (2005).
[Crossref]

Sieval, A. B.

M. Lenes, S. W. Shelton, A. B. Sieval, D. F. Kronholm, J. C. Hummelen, and P. W. M. Blom, “Electron trapping in higher adduct fullerene-based solar cells,” Adv. Funct. Mater. 19(18), 3002–3007 (2009).
[Crossref]

Smalley, R. E.

H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: buckminsterfullerene,” Nature 318(6042), 162–163 (1985).
[Crossref]

Smilowitz, L.

N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science 258(5087), 1474–1476 (1992).
[Crossref] [PubMed]

Smith, A. R. G.

K. H. Lee, P. E. Schwenn, A. R. G. Smith, H. Cavaye, P. E. Shaw, M. James, K. B. Krueger, I. R. Gentle, P. Meredith, and P. L. Burn, “Morphology of all-solution-processed “bilayer” organic solar cells,” Adv. Mater. 23(6), 766–770 (2011).
[Crossref] [PubMed]

Su, S.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 591–595 (2012).
[Crossref]

Su, W.-F.

C.-W. Liang, W.-F. Su, and L. Wang, “Enhancing the photocurrent in poly(3-hexylthiophene)/[6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction solar cells by using poly(3-hexylthiophene) as a buffer layer,” Appl. Phys. Lett. 95(13), 133303 (2009).
[Crossref]

Takafuji, M.

J.-H. Lee, T. Sagawa, M. Takafuji, and H. Ihara, “Modeling of optimum size and shape for high photovoltaic performance of poly(3-hexylthiophene) nanopore in interdigitated bilayer organic solar cells,” Org. Electron. 28, 59–66 (2016).
[Crossref]

Tao, Y.

N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletête, G. Durocher, Y. Tao, and M. Leclerc, “Toward a rational design of poly(2,7-carbazole) derivatives for solar cells,” J. Am. Chem. Soc. 130(2), 732–742 (2008).
[Crossref] [PubMed]

Tassone, C. J.

A. L. Ayzner, C. J. Tassone, S. H. Tolbert, and B. J. Schwartz, “Reappraising the need for bulk heterojunctions in polymer-fullerene photovoltaics: the role of carrier transport in all-solution-processed P3HT/PCBM bilayer solar cells,” J. Phys. Chem. C 113(46), 20050–20060 (2009).
[Crossref]

Tee, B. C. K.

H. Li, B. C. K. Tee, J. J. Cha, Y. Cui, J. W. Chung, S. Y. Lee, and Z. Bao, “High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals,” J. Am. Chem. Soc. 134(5), 2760–2765 (2012).
[Crossref] [PubMed]

Tolbert, S. H.

A. L. Ayzner, C. J. Tassone, S. H. Tolbert, and B. J. Schwartz, “Reappraising the need for bulk heterojunctions in polymer-fullerene photovoltaics: the role of carrier transport in all-solution-processed P3HT/PCBM bilayer solar cells,” J. Phys. Chem. C 113(46), 20050–20060 (2009).
[Crossref]

Veenstra, S. C.

M. Lenes, G. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen, and P. W. M. Blom, “Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells,” Adv. Mater. 20(11), 2116–2119 (2008).
[Crossref]

Virdi, K. S.

A. Abdellah, K. S. Virdi, R. Meier, M. Döblinger, P. Müller-Buschbaum, C. Scheu, P. Lugli, and G. Scarpa, “Successive spray deposition of P3HT/PCBM organic photoactive layers: material composition and device characteristics,” Adv. Funct. Mater. 22(19), 4078–4086 (2012).
[Crossref]

Wakim, S.

N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletête, G. Durocher, Y. Tao, and M. Leclerc, “Toward a rational design of poly(2,7-carbazole) derivatives for solar cells,” J. Am. Chem. Soc. 130(2), 732–742 (2008).
[Crossref] [PubMed]

Wang, D. H.

D. H. Wang, H. K. Lee, D.-G. Choi, J. H. Park, and O. O. Park, “Solution-processable polymer solar cells from a poly(3-hexylthiophene)/[6,6]-phenyl C61-butyric acidmethyl ester concentration graded bilayers,” Appl. Phys. Lett. 95(4), 043505 (2009).
[Crossref]

Wang, L.

C.-W. Liang, W.-F. Su, and L. Wang, “Enhancing the photocurrent in poly(3-hexylthiophene)/[6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction solar cells by using poly(3-hexylthiophene) as a buffer layer,” Appl. Phys. Lett. 95(13), 133303 (2009).
[Crossref]

Wetzelaer, G. A. H.

M. Lenes, G. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen, and P. W. M. Blom, “Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells,” Adv. Mater. 20(11), 2116–2119 (2008).
[Crossref]

Wienk, M. M.

V. S. Gevaerts, L. J. A. Koster, M. M. Wienk, and R. A. J. Janssen, “Discriminating between bilayer and bulk heterojunction polymer:fullerene solar cells using the external quantum efficiency,” ACS Appl. Mater. Interfaces 3(9), 3252–3255 (2011).
[Crossref] [PubMed]

Wu, H.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 591–595 (2012).
[Crossref]

Wu, Y.

H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics 3(192), 649–653 (2009).
[Crossref]

Wudl, F.

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270(5243), 1789–1791 (1995).
[Crossref]

N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science 258(5087), 1474–1476 (1992).
[Crossref] [PubMed]

Xu, M.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 591–595 (2012).
[Crossref]

Xu, Z.

Z. Xu, L.-M. Chen, M.-H. Chen, G. Li, and Y. Yang, “Energy level alignment of poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction,” Appl. Phys. Lett. 95(1), 013301 (2009).
[Crossref]

Yang, C.

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[Crossref]

Yang, G.

H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics 3(192), 649–653 (2009).
[Crossref]

Yang, Y.

L.-M. Chen, Z. Hong, W. L. Kwan, C.-H. Lu, Y.-F. Lai, B. Lei, C.-P. Liu, and Y. Yang, “Multi-source/component spray coating for polymer solar cells,” ACS Nano 4(8), 4744–4752 (2010).
[Crossref] [PubMed]

Z. Xu, L.-M. Chen, M.-H. Chen, G. Li, and Y. Yang, “Energy level alignment of poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction,” Appl. Phys. Lett. 95(1), 013301 (2009).
[Crossref]

H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics 3(192), 649–653 (2009).
[Crossref]

L.-M. Chen, Z. Hong, G. Li, and Y. Yang, “Recent progress in polymer solar cells: manipulation of polymer:fullerene morphology and the formation of efficient inverted polymer solar cells,” Adv. Mater. 21(14), 1434–1449 (2009).
[Crossref]

A. Kumar, G. Li, Z. Hong, and Y. Yang, “High efficiency polymer solar cells with vertically modulated nanoscale morphology,” Nanotechnology 20(16), 165202 (2009).
[Crossref] [PubMed]

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[Crossref]

G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys. 98(4), 043704 (2005).
[Crossref]

Yao, Y.

G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys. 98(4), 043704 (2005).
[Crossref]

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[Crossref]

Yu, G.

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270(5243), 1789–1791 (1995).
[Crossref]

Yu, L.

H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics 3(192), 649–653 (2009).
[Crossref]

Yun, S. H.

B. Park, O. E. Kwon, S. H. Yun, H. G. Jeon, and Y. H. Huh, “Organic semiconducting layers fabricated by self-metered slot-die coating for solution-processable organic light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(40), 8614–8621 (2014).
[Crossref]

Zhang, S.

H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics 3(192), 649–653 (2009).
[Crossref]

Zhong, C.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 591–595 (2012).
[Crossref]

ACS Appl. Mater. Interfaces (1)

V. S. Gevaerts, L. J. A. Koster, M. M. Wienk, and R. A. J. Janssen, “Discriminating between bilayer and bulk heterojunction polymer:fullerene solar cells using the external quantum efficiency,” ACS Appl. Mater. Interfaces 3(9), 3252–3255 (2011).
[Crossref] [PubMed]

ACS Nano (1)

L.-M. Chen, Z. Hong, W. L. Kwan, C.-H. Lu, Y.-F. Lai, B. Lei, C.-P. Liu, and Y. Yang, “Multi-source/component spray coating for polymer solar cells,” ACS Nano 4(8), 4744–4752 (2010).
[Crossref] [PubMed]

Acta Physicochimica (1)

L. D. Landau and V. G. Levich, “Dragging of a liquid by a moving plate,” Acta Physicochimica 17, 42–54 (1942).

Adv. Funct. Mater. (4)

A. Abdellah, K. S. Virdi, R. Meier, M. Döblinger, P. Müller-Buschbaum, C. Scheu, P. Lugli, and G. Scarpa, “Successive spray deposition of P3HT/PCBM organic photoactive layers: material composition and device characteristics,” Adv. Funct. Mater. 22(19), 4078–4086 (2012).
[Crossref]

M. Lenes, S. W. Shelton, A. B. Sieval, D. F. Kronholm, J. C. Hummelen, and P. W. M. Blom, “Electron trapping in higher adduct fullerene-based solar cells,” Adv. Funct. Mater. 19(18), 3002–3007 (2009).
[Crossref]

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005).
[Crossref]

C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater. 11(1), 15–26 (2001).
[Crossref]

Adv. Mater. (5)

M. Lenes, G. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen, and P. W. M. Blom, “Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells,” Adv. Mater. 20(11), 2116–2119 (2008).
[Crossref]

K. H. Lee, P. E. Schwenn, A. R. G. Smith, H. Cavaye, P. E. Shaw, M. James, K. B. Krueger, I. R. Gentle, P. Meredith, and P. L. Burn, “Morphology of all-solution-processed “bilayer” organic solar cells,” Adv. Mater. 23(6), 766–770 (2011).
[Crossref] [PubMed]

D. A. Pardo, G. E. Jabbour, and N. Peyghambarian, “Application of screen printing in the fabrication of organic light-emitting devices,” Adv. Mater. 12(17), 1249–1252 (2000).
[Crossref]

B.-J. D. Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: state of the art and future developments,” Adv. Mater. 16(3), 203–213 (2004).
[Crossref]

L.-M. Chen, Z. Hong, G. Li, and Y. Yang, “Recent progress in polymer solar cells: manipulation of polymer:fullerene morphology and the formation of efficient inverted polymer solar cells,” Adv. Mater. 21(14), 1434–1449 (2009).
[Crossref]

Appl. Phys. Lett. (4)

C.-W. Liang, W.-F. Su, and L. Wang, “Enhancing the photocurrent in poly(3-hexylthiophene)/[6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction solar cells by using poly(3-hexylthiophene) as a buffer layer,” Appl. Phys. Lett. 95(13), 133303 (2009).
[Crossref]

S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, “2.5% efficient organic plastic solar cells,” Appl. Phys. Lett. 78(6), 841–843 (2001).
[Crossref]

Z. Xu, L.-M. Chen, M.-H. Chen, G. Li, and Y. Yang, “Energy level alignment of poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction,” Appl. Phys. Lett. 95(1), 013301 (2009).
[Crossref]

D. H. Wang, H. K. Lee, D.-G. Choi, J. H. Park, and O. O. Park, “Solution-processable polymer solar cells from a poly(3-hexylthiophene)/[6,6]-phenyl C61-butyric acidmethyl ester concentration graded bilayers,” Appl. Phys. Lett. 95(4), 043505 (2009).
[Crossref]

Chem. Soc. Rev. (1)

S. S. Babu, H. Möhwald, and T. Nakanishi, “Recent progress in morphology control of supramolecular fullerene assemblies and its applications,” Chem. Soc. Rev. 39(11), 4021–4035 (2010).
[Crossref] [PubMed]

J. Am. Chem. Soc. (2)

H. Li, B. C. K. Tee, J. J. Cha, Y. Cui, J. W. Chung, S. Y. Lee, and Z. Bao, “High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals,” J. Am. Chem. Soc. 134(5), 2760–2765 (2012).
[Crossref] [PubMed]

N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletête, G. Durocher, Y. Tao, and M. Leclerc, “Toward a rational design of poly(2,7-carbazole) derivatives for solar cells,” J. Am. Chem. Soc. 130(2), 732–742 (2008).
[Crossref] [PubMed]

J. Appl. Phys. (1)

G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys. 98(4), 043704 (2005).
[Crossref]

J. Mater. Chem. (1)

H. G. Jeon, C. Y. Cho, J. C. Shin, and B. Park, “Inverted polymer solar cells fabricated by a pre-metered coating process,” J. Mater. Chem. 22(43), 23022–23029 (2012).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (2)

H. G. Jeon and B. Park, “Multiple horizontal-dip-coating of small molecular emission layers for solution-processable organic light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(10), 2389–2398 (2015).
[Crossref]

B. Park, O. E. Kwon, S. H. Yun, H. G. Jeon, and Y. H. Huh, “Organic semiconducting layers fabricated by self-metered slot-die coating for solution-processable organic light-emitting devices,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(40), 8614–8621 (2014).
[Crossref]

J. Phys. Chem. C (2)

C. W. Rochester, S. A. Mauger, and A. J. Moulé, “Investigating the morphology of polymer/fullerene layers coated using orthogonal solvents,” J. Phys. Chem. C 116(13), 7287–7292 (2012).
[Crossref]

A. L. Ayzner, C. J. Tassone, S. H. Tolbert, and B. J. Schwartz, “Reappraising the need for bulk heterojunctions in polymer-fullerene photovoltaics: the role of carrier transport in all-solution-processed P3HT/PCBM bilayer solar cells,” J. Phys. Chem. C 113(46), 20050–20060 (2009).
[Crossref]

Mater. Today (1)

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10(11), 28–33 (2007).
[Crossref]

Nanotechnology (1)

A. Kumar, G. Li, Z. Hong, and Y. Yang, “High efficiency polymer solar cells with vertically modulated nanoscale morphology,” Nanotechnology 20(16), 165202 (2009).
[Crossref] [PubMed]

Nat. Mater. (2)

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[Crossref]

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater. 6(7), 497–500 (2007).
[Crossref] [PubMed]

Nat. Photonics (2)

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 591–595 (2012).
[Crossref]

H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics 3(192), 649–653 (2009).
[Crossref]

Nature (1)

H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: buckminsterfullerene,” Nature 318(6042), 162–163 (1985).
[Crossref]

Opt. Express (2)

Org. Electron. (1)

J.-H. Lee, T. Sagawa, M. Takafuji, and H. Ihara, “Modeling of optimum size and shape for high photovoltaic performance of poly(3-hexylthiophene) nanopore in interdigitated bilayer organic solar cells,” Org. Electron. 28, 59–66 (2016).
[Crossref]

Phys. Chem. Chem. Phys. (1)

Y. He and Y. Li, “Fullerene derivative acceptors for high performance polymer solar cells,” Phys. Chem. Chem. Phys. 13(6), 1970–1983 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

B. Park, I.-G. Bae, and Y. H. Huh, “Aligned silver nanowire-based transparent electrodes for engineering polarisation-selective optoelectronics,” Sci. Rep. 6, 19485 (2016).
[Crossref] [PubMed]

Science (3)

H. Kroto, “Space, stars, c60, and soot,” Science 242(4882), 1139–1145 (1988).
[Crossref] [PubMed]

N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science 258(5087), 1474–1476 (1992).
[Crossref] [PubMed]

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270(5243), 1789–1791 (1995).
[Crossref]

Sol. Energ. Mat. Sol. (3)

B. Park, J. C. Shin, and Y. H. Huh, “Interface-engineering additives for inverted BHJ polymer solar cells,” Sol. Energ. Mat. Sol. 110, 15–23 (2013).
[Crossref]

F. C. Krebs, “Fabrication and processing of polymer solar cells: a review of printing and coating techniques,” Sol. Energ. Mat. Sol. 93(4), 394–412 (2009).
[Crossref]

B. Park, Y. H. Huh, and J. C. Shin, “In-plane anisotropy of photovoltaic effects in aligned polymer solar cells,” Sol. Energ. Mat. Sol. 95(12), 3543–3549 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic illustration of the horizontal-dip (H-dip) coating process described herein: a cylindrical coating barrier with radius R, gap height h0, and coating speed U. The inset shows the chemical structure of the PCBM used. (b) Film thickness h of the H-dip coated PCBM film as a function of the coating speed U for two different gap heights h0s. The solid curves show the theoretical predictions.
Fig. 2
Fig. 2 (a) Optical microscopy images of PCBM films fabricated on glass by spin- (upper) and H-dip-coating (lower) at two magnification levels ( × 500 and × 1000). (b) Topographical AFM images of the spin- (upper) and H-dip-coated (lower) PCBM films fabricated on P3HT film. (c) Optical transmission spectra of the PCBM films on glass substrates. (d) Photograph of the H-dip-coated PCBM film on glass substrates (as seen on the upper half of the glass).
Fig. 3
Fig. 3 (a) Upper: Schematic device structure used in the P3HT/PCBM bilayer OPVs studied here. Lower: Top-view and cross-sectional SEM images of the H-dip-coated P3HT/PCBM bilayer OPV. (b) UV-vis optical absorption spectra of PCBM layers prepared by H-dip- and spin-coating on the P3HT layer after thermal annealing at 150°C for 10 min. The inset shows the chemical structure of the P3HT donor polymer. (c) Current density-voltage (J-V) characteristics of bilayer OPVs with spin- and H-dip-coated PCBM layers under AM 1.5G illumination conditions and in the dark (inset).
Fig. 4
Fig. 4 Representative J-V characteristics of bilayer OPVs with spin-coated (a) and H-dip-coated (b) PCBM layers, showing the highest, lowest, and mean current densities for nine different illumination points on the active layers of the bilayer OPVs by using focused monochromatic laser beam (wavelength: 633 nm, beam size: ~0.6 μm).
Fig. 5
Fig. 5 Typical absorption spectra (a) and surface morphology images (b) of the PV layers studied. Typical current density-voltage (J-V) curves under illumination and in the dark (inset) (c) and EQE spectra (d) of the OPVs under investigation.
Fig. 6
Fig. 6 (a) Polarized absorption spectra of the rubbed bilayers and the rubbed BHJ PV layers for incident light polarized parallel and perpendicular to the rubbing direction of the PV layers. Polarizing current density-voltage curves (b) and EQE spectra (c) of the rubbed bilayer OPVs and the rubbed BHJ OPVs for incident linearly polarized light.

Tables (1)

Tables Icon

Table 1 PV performances of spin- and H-dip-coated bilayer and BHJ OPVs with and without PTE additivesa

Metrics