Abstract

Efficient optical energy transfer is key to many technologies, ranging from biosensing to photovoltaics. Here, for the first time we show that by introducing a random medium with appropriate filling factor, absorption in a specific volume can be maximized. Using both numerical simulations and an analytical diffusion model, we identify design rules to maximize absorption in the system with different geometrical and scattering properties. By combining a random medium with an open photonic cavity, we numerically demonstrate a 23-fold enhancement of the absorbed energy. We also show how absorption as high as 99% can be reached in a device as thin as 500 μm for normal incidence illumination. Finally, our data indicate that introducing a non-absorbing random medium into a light trapping system for thin solar cells can enhance absorption of energy by a factor of 2.2. This absorption enhancement, caused by the random medium, is broadband and wide-angle and can help design efficient solar cells, light trapping devices, biosensors and random lasers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Roughness-induced enhancement of optical absorption in random media

Fabrizio Sgrignuoli and Paolo Bettotti
J. Opt. Soc. Am. B 33(5) 915-921 (2016)

Modification of light transmission channels by inhomogeneous absorption in random media

Seng Fatt Liew and Hui Cao
Opt. Express 23(9) 11043-11053 (2015)

Path length enhancement in disordered media for increased absorption

Rajeshkumar Mupparapu, Kevin Vynck, Tomas Svensson, Matteo Burresi, and Diederik S. Wiersma
Opt. Express 23(24) A1472-A1484 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
    [Crossref]
  2. M. Störzer, P. Gross, C. M. Aegerter, and G. Maret, “Observation of the critical regime near Anderson localization of light,” Phys. Rev. Lett. 96(6), 063904 (2006).
    [Crossref] [PubMed]
  3. D. S. Wiersma, “Disordered photonics,” Nat. Photonics 7(3), 188–196 (2013).
    [Crossref]
  4. D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), 4256–4265 (1996).
    [Crossref] [PubMed]
  5. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
    [Crossref]
  6. H. Cao, “Lasing in random media,” Waves Random Media 13(3), R1–R39 (2003).
    [Crossref]
  7. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
    [Crossref]
  8. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).
  9. Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, and Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
    [Crossref] [PubMed]
  10. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
    [Crossref] [PubMed]
  11. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
    [Crossref] [PubMed]
  12. Y. D. Chong and A. D. Stone, “Hidden black: coherent enhancement of absorption in strongly scattering media,” Phys. Rev. Lett. 107(16), 163901 (2011).
    [Crossref] [PubMed]
  13. T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett. 107(14), 143901 (2011).
    [Crossref] [PubMed]
  14. V. B. Koman, C. Santschi, and O. J. F. Martin, “Multiscattering-enhanced absorption spectroscopy,” Anal. Chem. 87(3), 1536–1543 (2015).
    [Crossref] [PubMed]
  15. G. Suárez, C. Santschi, V. I. Slaveykova, and O. J. F. Martin, “Sensing the dynamics of oxidative stress using enhanced absorption in protein-loaded random media,” Sci. Rep. 3, 3447 (2013).
    [Crossref] [PubMed]
  16. V. Koman, G. Suárez, C. Santschi, V. J. Cadarso, J. Brugger, N. von Moos, V. I. Slaveykova, and O. J. F. Martin, “A portable microfluidic-based biophotonic sensor for extracellular H2O2 measurements,” Proc. SPIE 8572, 857218 (2013).
    [Crossref]
  17. V. B. Koman, C. Santschi, N. R. von Moos, V. I. Slaveykova, and O. J. F. Martin, “Portable oxidative stress sensor: dynamic and non-invasive measurements of extracellular H2O2 released by algae,” Biosens. Bioelectron. 68, 245–252 (2015).
    [Crossref] [PubMed]
  18. O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications,” Nano Lett. 8(9), 2638–2642 (2008).
    [Crossref] [PubMed]
  19. K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
    [PubMed]
  20. F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21(S3Suppl 3), A460–A468 (2013).
    [Crossref] [PubMed]
  21. Y. Hamakawa, Thin-Film Solar Cells: Next Generation Photovoltaics and its Applications, Vol. 13 (Springer Science & Business Media, 2004).
  22. A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
    [Crossref] [PubMed]
  23. S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
    [Crossref]
  24. K. Tvingstedt, S. Dal Zilio, O. Inganäs, and M. Tormen, “Trapping light with micro lenses in thin film organic photovoltaic cells,” Opt. Express 16(26), 21608–21615 (2008).
    [Crossref] [PubMed]
  25. Y. Zhou, F. Zhang, K. Tvingstedt, W. Tian, and O. Inganäs, “Multifolded polymer solar cells on flexible substrates,” Appl. Phys. Lett. 93(3), 033302 (2008).
    [Crossref]
  26. S. D. Zilio, K. Tvingstedt, O. Inganäs, and M. Tormen, “Fabrication of a light trapping system for organic solar cells,” Microelec. Eng. 86(4-6), 1150–1154 (2009).
    [Crossref]
  27. L. Song and A. Uddin, “Design of high efficiency organic solar cell with light trapping,” Opt. Express 20(S5Suppl 5), A606–A621 (2012).
    [Crossref] [PubMed]
  28. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [Crossref] [PubMed]
  29. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  30. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
    [Crossref] [PubMed]
  31. C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances,” Appl. Phys. Lett. 88(13), 133108 (2006).
    [Crossref]
  32. J. B. Kim, P. Kim, N. C. Pegard, S. J. Oh, C. R. Kagan, J. W. Fleischer, H. A. Stone, and Y.-L. Loo, “Wrinkles and deep folds as photonic structures in photovoltaics,” Nat. Photonics 6(5), 327–332 (2012).
    [Crossref]
  33. Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3, 664 (2012).
    [Crossref] [PubMed]
  34. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
    [Crossref] [PubMed]
  35. C. Battaglia, J. Escarre, K. Soderstrom, M. Charriere, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5(9), 535–538 (2011).
    [Crossref]
  36. S. Basu Mallick, M. Agrawal, A. Wangperawong, E. S. Barnard, K. K. Singh, R. J. Visser, M. L. Brongersma, and P. Peumans, “Ultrathin crystalline-silicon solar cells with embedded photonic crystals,” Appl. Phys. Lett. 100(5), 053113 (2012).
    [Crossref]
  37. Z. Tang, W. Tress, and O. Inganäs, “Light trapping in thin film organic solar cells,” Mater. Today 17(8), 389–396 (2014).
    [Crossref]
  38. C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F. J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18(S3), A335–A341 (2010).
    [Crossref] [PubMed]
  39. D. Madzharov, R. Dewan, and D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express 19(S2), A95–A107 (2011).
    [Crossref] [PubMed]
  40. V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
    [Crossref] [PubMed]
  41. N. A. Bruce and J. T. Chalker, “Multiple scattering in the presence of absorption: a theoretical treatment for quasi one-dimensional systems,” J. Phys. A 29(14), 3761–3768 (1996).
    [Crossref]
  42. S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, and H. Cao, “Transmission channels for light in absorbing random media: From diffusive to ballistic-like transport,” Phys. Rev. B 89(22), 224202 (2014).
    [Crossref]
  43. O. S. Ojambati, H. Yılmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, “Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium,” New J. Phys. 18(4), 043032 (2016).
    [Crossref]
  44. R. Sarma, A. G. Yamilov, S. Petrenko, Y. Bromberg, and H. Cao, “Control of energy density inside a disordered medium by coupling to open or closed channels,” Phys. Rev. Lett. 117(8), 086803 (2016).
    [Crossref]
  45. R. Rammal and B. Doucot, “Invariant imbedding approach to localization. I. General framework and basic equations,” J. Phys. France 48(4), 509–526 (1987).
    [Crossref]
  46. V. Freilikher, M. Pustilnik, and I. Yurkevich, “Effect of absorption on the wave transport in the strong localization regime,” Phys. Rev. Lett. 73(6), 810–813 (1994).
    [Crossref] [PubMed]
  47. P. Pradhan and N. Kumar, “Localization of light in coherently amplifying random media,” Phys. Rev. B Condens. Matter 50(13), 9644–9647 (1994).
    [Crossref] [PubMed]
  48. A. Y. Zyuzin, “Weak localization in backscattering from an amplifying medium,” Europhys. Lett. 26(7), 517–520 (1994).
    [Crossref]
  49. Z.-Q. Zhang, “Light amplification and localization in randomly layered media with gain,” Phys. Rev. B Condens. Matter 52(11), 7960–7964 (1995).
    [Crossref] [PubMed]
  50. A. K. Gupta and A. M. Jayannavar, “Electron wave transport in coherently absorptive random media,” Phys. Rev. B Condens. Matter 52(6), 4156–4161 (1995).
    [Crossref] [PubMed]
  51. A. Y. Zyuzin, “Transmission fluctuations and spectral rigidity of lasing states in a random amplifying medium,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(6), 5274–5278 (1995).
    [Crossref] [PubMed]
  52. C. W. J. Beenakker, J. C. J. Paasschens, and P. W. Brouwer, “Probability of reflection by a random laser,” Phys. Rev. Lett. 76(8), 1368–1371 (1996).
    [Crossref] [PubMed]
  53. J. C. J. Paasschens, T. S. Misirpashaev, and C. W. J. Beenakker, “Localization of light: dual symmetry between absorption and amplification,” Phys. Rev. B Condens. Matter 54(17), 11887–11890 (1996).
    [Crossref] [PubMed]
  54. J. Heinrichs, “Light amplification and absorption in a random medium,” Phys. Rev. B 56(14), 8674–8682 (1997).
    [Crossref]
  55. S. K. Joshi and A. M. Jayannavar, “Transmission and reflection from a disordered lasing medium,” Phys. Rev. B 56(19), 12038–12041 (1997).
    [Crossref]
  56. P. K. Datta, “Transmission and reflection in a perfectly amplifying and absorbing medium,” Phys. Rev. B 59(16), 10980–10984 (1999).
    [Crossref]
  57. X. Jiang and C. M. Soukoulis, “Transmission and reflection studies of periodic and random systems with gain,” Phys. Rev. B 59(9), 6159–6166 (1999).
    [Crossref]
  58. S. Mujumdar, R. Torre, H. Ramachandran, and D. Wiersma, “Monte Carlo calculations of spectral features in random lasing,” J. Nanophotonics 4(1), 041550 (2010).
    [Crossref]
  59. R. Uppu and S. Mujumdar, “Persistent coherent random lasing using resonant scatterers,” Opt. Express 19(23), 23523–23531 (2011).
    [Crossref] [PubMed]
  60. E. Hecht and A. Zajac, “Optics Addison-Wesley,” Reading, Mass, 301–305 (1974).
  61. O. Mengual, G. Meunier, I. Cayré, K. Puech, and P. Snabre, “TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis,” Talanta 50(2), 445–456 (1999).
    [Crossref] [PubMed]
  62. D. Toublanc, “Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35(18), 3270–3274 (1996).
    [Crossref] [PubMed]
  63. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt. 36(19), 4587–4599 (1997).
    [Crossref] [PubMed]
  64. R. Sarma, A. Yamilov, S. F. Liew, M. Guy, and H. Cao, “Control of mesoscopic transport by modifying transmission channels in opaque media,” Phys. Rev. B 92(21), 214206 (2015).
    [Crossref]
  65. S. F. Liew, J. Forster, H. Noh, C. F. Schreck, V. Saranathan, X. Lu, L. Yang, R. O. Prum, C. S. O’Hern, E. R. Dufresne, and H. Cao, “Short-range order and near-field effects on optical scattering and structural coloration,” Opt. Express 19(9), 8208–8217 (2011).
    [Crossref] [PubMed]
  66. A. Kienle, “Light diffusion through a turbid parallelepiped,” J. Opt. Soc. Am. A 22(9), 1883–1888 (2005).
    [Crossref] [PubMed]
  67. J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18(2), 1122–1133 (2010).
    [Crossref] [PubMed]

2016 (2)

O. S. Ojambati, H. Yılmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, “Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium,” New J. Phys. 18(4), 043032 (2016).
[Crossref]

R. Sarma, A. G. Yamilov, S. Petrenko, Y. Bromberg, and H. Cao, “Control of energy density inside a disordered medium by coupling to open or closed channels,” Phys. Rev. Lett. 117(8), 086803 (2016).
[Crossref]

2015 (3)

R. Sarma, A. Yamilov, S. F. Liew, M. Guy, and H. Cao, “Control of mesoscopic transport by modifying transmission channels in opaque media,” Phys. Rev. B 92(21), 214206 (2015).
[Crossref]

V. B. Koman, C. Santschi, and O. J. F. Martin, “Multiscattering-enhanced absorption spectroscopy,” Anal. Chem. 87(3), 1536–1543 (2015).
[Crossref] [PubMed]

V. B. Koman, C. Santschi, N. R. von Moos, V. I. Slaveykova, and O. J. F. Martin, “Portable oxidative stress sensor: dynamic and non-invasive measurements of extracellular H2O2 released by algae,” Biosens. Bioelectron. 68, 245–252 (2015).
[Crossref] [PubMed]

2014 (2)

S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, and H. Cao, “Transmission channels for light in absorbing random media: From diffusive to ballistic-like transport,” Phys. Rev. B 89(22), 224202 (2014).
[Crossref]

Z. Tang, W. Tress, and O. Inganäs, “Light trapping in thin film organic solar cells,” Mater. Today 17(8), 389–396 (2014).
[Crossref]

2013 (5)

G. Suárez, C. Santschi, V. I. Slaveykova, and O. J. F. Martin, “Sensing the dynamics of oxidative stress using enhanced absorption in protein-loaded random media,” Sci. Rep. 3, 3447 (2013).
[Crossref] [PubMed]

V. Koman, G. Suárez, C. Santschi, V. J. Cadarso, J. Brugger, N. von Moos, V. I. Slaveykova, and O. J. F. Martin, “A portable microfluidic-based biophotonic sensor for extracellular H2O2 measurements,” Proc. SPIE 8572, 857218 (2013).
[Crossref]

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, and Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[Crossref] [PubMed]

D. S. Wiersma, “Disordered photonics,” Nat. Photonics 7(3), 188–196 (2013).
[Crossref]

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21(S3Suppl 3), A460–A468 (2013).
[Crossref] [PubMed]

2012 (7)

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

L. Song and A. Uddin, “Design of high efficiency organic solar cell with light trapping,” Opt. Express 20(S5Suppl 5), A606–A621 (2012).
[Crossref] [PubMed]

J. B. Kim, P. Kim, N. C. Pegard, S. J. Oh, C. R. Kagan, J. W. Fleischer, H. A. Stone, and Y.-L. Loo, “Wrinkles and deep folds as photonic structures in photovoltaics,” Nat. Photonics 6(5), 327–332 (2012).
[Crossref]

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3, 664 (2012).
[Crossref] [PubMed]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

S. Basu Mallick, M. Agrawal, A. Wangperawong, E. S. Barnard, K. K. Singh, R. J. Visser, M. L. Brongersma, and P. Peumans, “Ultrathin crystalline-silicon solar cells with embedded photonic crystals,” Appl. Phys. Lett. 100(5), 053113 (2012).
[Crossref]

2011 (7)

C. Battaglia, J. Escarre, K. Soderstrom, M. Charriere, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5(9), 535–538 (2011).
[Crossref]

Y. D. Chong and A. D. Stone, “Hidden black: coherent enhancement of absorption in strongly scattering media,” Phys. Rev. Lett. 107(16), 163901 (2011).
[Crossref] [PubMed]

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett. 107(14), 143901 (2011).
[Crossref] [PubMed]

D. Madzharov, R. Dewan, and D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express 19(S2), A95–A107 (2011).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

R. Uppu and S. Mujumdar, “Persistent coherent random lasing using resonant scatterers,” Opt. Express 19(23), 23523–23531 (2011).
[Crossref] [PubMed]

S. F. Liew, J. Forster, H. Noh, C. F. Schreck, V. Saranathan, X. Lu, L. Yang, R. O. Prum, C. S. O’Hern, E. R. Dufresne, and H. Cao, “Short-range order and near-field effects on optical scattering and structural coloration,” Opt. Express 19(9), 8208–8217 (2011).
[Crossref] [PubMed]

2010 (7)

J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18(2), 1122–1133 (2010).
[Crossref] [PubMed]

S. Mujumdar, R. Torre, H. Ramachandran, and D. Wiersma, “Monte Carlo calculations of spectral features in random lasing,” J. Nanophotonics 4(1), 041550 (2010).
[Crossref]

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F. J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18(S3), A335–A341 (2010).
[Crossref] [PubMed]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

2009 (1)

S. D. Zilio, K. Tvingstedt, O. Inganäs, and M. Tormen, “Fabrication of a light trapping system for organic solar cells,” Microelec. Eng. 86(4-6), 1150–1154 (2009).
[Crossref]

2008 (6)

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref] [PubMed]

K. Tvingstedt, S. Dal Zilio, O. Inganäs, and M. Tormen, “Trapping light with micro lenses in thin film organic photovoltaic cells,” Opt. Express 16(26), 21608–21615 (2008).
[Crossref] [PubMed]

Y. Zhou, F. Zhang, K. Tvingstedt, W. Tian, and O. Inganäs, “Multifolded polymer solar cells on flexible substrates,” Appl. Phys. Lett. 93(3), 033302 (2008).
[Crossref]

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications,” Nano Lett. 8(9), 2638–2642 (2008).
[Crossref] [PubMed]

2007 (1)

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[Crossref]

2006 (2)

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances,” Appl. Phys. Lett. 88(13), 133108 (2006).
[Crossref]

M. Störzer, P. Gross, C. M. Aegerter, and G. Maret, “Observation of the critical regime near Anderson localization of light,” Phys. Rev. Lett. 96(6), 063904 (2006).
[Crossref] [PubMed]

2005 (1)

2003 (1)

H. Cao, “Lasing in random media,” Waves Random Media 13(3), R1–R39 (2003).
[Crossref]

1999 (4)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

O. Mengual, G. Meunier, I. Cayré, K. Puech, and P. Snabre, “TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis,” Talanta 50(2), 445–456 (1999).
[Crossref] [PubMed]

P. K. Datta, “Transmission and reflection in a perfectly amplifying and absorbing medium,” Phys. Rev. B 59(16), 10980–10984 (1999).
[Crossref]

X. Jiang and C. M. Soukoulis, “Transmission and reflection studies of periodic and random systems with gain,” Phys. Rev. B 59(9), 6159–6166 (1999).
[Crossref]

1997 (4)

J. Heinrichs, “Light amplification and absorption in a random medium,” Phys. Rev. B 56(14), 8674–8682 (1997).
[Crossref]

S. K. Joshi and A. M. Jayannavar, “Transmission and reflection from a disordered lasing medium,” Phys. Rev. B 56(19), 12038–12041 (1997).
[Crossref]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt. 36(19), 4587–4599 (1997).
[Crossref] [PubMed]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[Crossref]

1996 (5)

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), 4256–4265 (1996).
[Crossref] [PubMed]

D. Toublanc, “Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35(18), 3270–3274 (1996).
[Crossref] [PubMed]

C. W. J. Beenakker, J. C. J. Paasschens, and P. W. Brouwer, “Probability of reflection by a random laser,” Phys. Rev. Lett. 76(8), 1368–1371 (1996).
[Crossref] [PubMed]

J. C. J. Paasschens, T. S. Misirpashaev, and C. W. J. Beenakker, “Localization of light: dual symmetry between absorption and amplification,” Phys. Rev. B Condens. Matter 54(17), 11887–11890 (1996).
[Crossref] [PubMed]

N. A. Bruce and J. T. Chalker, “Multiple scattering in the presence of absorption: a theoretical treatment for quasi one-dimensional systems,” J. Phys. A 29(14), 3761–3768 (1996).
[Crossref]

1995 (3)

Z.-Q. Zhang, “Light amplification and localization in randomly layered media with gain,” Phys. Rev. B Condens. Matter 52(11), 7960–7964 (1995).
[Crossref] [PubMed]

A. K. Gupta and A. M. Jayannavar, “Electron wave transport in coherently absorptive random media,” Phys. Rev. B Condens. Matter 52(6), 4156–4161 (1995).
[Crossref] [PubMed]

A. Y. Zyuzin, “Transmission fluctuations and spectral rigidity of lasing states in a random amplifying medium,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(6), 5274–5278 (1995).
[Crossref] [PubMed]

1994 (3)

V. Freilikher, M. Pustilnik, and I. Yurkevich, “Effect of absorption on the wave transport in the strong localization regime,” Phys. Rev. Lett. 73(6), 810–813 (1994).
[Crossref] [PubMed]

P. Pradhan and N. Kumar, “Localization of light in coherently amplifying random media,” Phys. Rev. B Condens. Matter 50(13), 9644–9647 (1994).
[Crossref] [PubMed]

A. Y. Zyuzin, “Weak localization in backscattering from an amplifying medium,” Europhys. Lett. 26(7), 517–520 (1994).
[Crossref]

1987 (1)

R. Rammal and B. Doucot, “Invariant imbedding approach to localization. I. General framework and basic equations,” J. Phys. France 48(4), 509–526 (1987).
[Crossref]

Adolfsson, E.

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett. 107(14), 143901 (2011).
[Crossref] [PubMed]

Aegerter, C. M.

M. Störzer, P. Gross, C. M. Aegerter, and G. Maret, “Observation of the critical regime near Anderson localization of light,” Phys. Rev. Lett. 96(6), 063904 (2006).
[Crossref] [PubMed]

Agrawal, M.

S. Basu Mallick, M. Agrawal, A. Wangperawong, E. S. Barnard, K. K. Singh, R. J. Visser, M. L. Brongersma, and P. Peumans, “Ultrathin crystalline-silicon solar cells with embedded photonic crystals,” Appl. Phys. Lett. 100(5), 053113 (2012).
[Crossref]

Algra, R. E.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications,” Nano Lett. 8(9), 2638–2642 (2008).
[Crossref] [PubMed]

Atwater, H. A.

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[Crossref] [PubMed]

Bakkers, E. P. A. M.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications,” Nano Lett. 8(9), 2638–2642 (2008).
[Crossref] [PubMed]

Ballif, C.

C. Battaglia, J. Escarre, K. Soderstrom, M. Charriere, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5(9), 535–538 (2011).
[Crossref]

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F. J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18(S3), A335–A341 (2010).
[Crossref] [PubMed]

Barnard, E. S.

S. Basu Mallick, M. Agrawal, A. Wangperawong, E. S. Barnard, K. K. Singh, R. J. Visser, M. L. Brongersma, and P. Peumans, “Ultrathin crystalline-silicon solar cells with embedded photonic crystals,” Appl. Phys. Lett. 100(5), 053113 (2012).
[Crossref]

Bartolini, P.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[Crossref]

Basu Mallick, S.

S. Basu Mallick, M. Agrawal, A. Wangperawong, E. S. Barnard, K. K. Singh, R. J. Visser, M. L. Brongersma, and P. Peumans, “Ultrathin crystalline-silicon solar cells with embedded photonic crystals,” Appl. Phys. Lett. 100(5), 053113 (2012).
[Crossref]

Battaglia, C.

C. Battaglia, J. Escarre, K. Soderstrom, M. Charriere, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5(9), 535–538 (2011).
[Crossref]

Beckers, T.

Beenakker, C. W. J.

J. C. J. Paasschens, T. S. Misirpashaev, and C. W. J. Beenakker, “Localization of light: dual symmetry between absorption and amplification,” Phys. Rev. B Condens. Matter 54(17), 11887–11890 (1996).
[Crossref] [PubMed]

C. W. J. Beenakker, J. C. J. Paasschens, and P. W. Brouwer, “Probability of reflection by a random laser,” Phys. Rev. Lett. 76(8), 1368–1371 (1996).
[Crossref] [PubMed]

Bittkau, K.

Boccara, A. C.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Bromberg, Y.

R. Sarma, A. G. Yamilov, S. Petrenko, Y. Bromberg, and H. Cao, “Control of energy density inside a disordered medium by coupling to open or closed channels,” Phys. Rev. Lett. 117(8), 086803 (2016).
[Crossref]

Brongersma, M. L.

S. Basu Mallick, M. Agrawal, A. Wangperawong, E. S. Barnard, K. K. Singh, R. J. Visser, M. L. Brongersma, and P. Peumans, “Ultrathin crystalline-silicon solar cells with embedded photonic crystals,” Appl. Phys. Lett. 100(5), 053113 (2012).
[Crossref]

Brouwer, P. W.

C. W. J. Beenakker, J. C. J. Paasschens, and P. W. Brouwer, “Probability of reflection by a random laser,” Phys. Rev. Lett. 76(8), 1368–1371 (1996).
[Crossref] [PubMed]

Bruce, N. A.

N. A. Bruce and J. T. Chalker, “Multiple scattering in the presence of absorption: a theoretical treatment for quasi one-dimensional systems,” J. Phys. A 29(14), 3761–3768 (1996).
[Crossref]

Brugger, J.

V. Koman, G. Suárez, C. Santschi, V. J. Cadarso, J. Brugger, N. von Moos, V. I. Slaveykova, and O. J. F. Martin, “A portable microfluidic-based biophotonic sensor for extracellular H2O2 measurements,” Proc. SPIE 8572, 857218 (2013).
[Crossref]

Burresi, M.

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21(S3Suppl 3), A460–A468 (2013).
[Crossref] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

Cadarso, V. J.

V. Koman, G. Suárez, C. Santschi, V. J. Cadarso, J. Brugger, N. von Moos, V. I. Slaveykova, and O. J. F. Martin, “A portable microfluidic-based biophotonic sensor for extracellular H2O2 measurements,” Proc. SPIE 8572, 857218 (2013).
[Crossref]

Cao, H.

R. Sarma, A. G. Yamilov, S. Petrenko, Y. Bromberg, and H. Cao, “Control of energy density inside a disordered medium by coupling to open or closed channels,” Phys. Rev. Lett. 117(8), 086803 (2016).
[Crossref]

R. Sarma, A. Yamilov, S. F. Liew, M. Guy, and H. Cao, “Control of mesoscopic transport by modifying transmission channels in opaque media,” Phys. Rev. B 92(21), 214206 (2015).
[Crossref]

S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, and H. Cao, “Transmission channels for light in absorbing random media: From diffusive to ballistic-like transport,” Phys. Rev. B 89(22), 224202 (2014).
[Crossref]

S. F. Liew, J. Forster, H. Noh, C. F. Schreck, V. Saranathan, X. Lu, L. Yang, R. O. Prum, C. S. O’Hern, E. R. Dufresne, and H. Cao, “Short-range order and near-field effects on optical scattering and structural coloration,” Opt. Express 19(9), 8208–8217 (2011).
[Crossref] [PubMed]

H. Cao, “Lasing in random media,” Waves Random Media 13(3), R1–R39 (2003).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Carius, R.

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Catchpole, K. R.

Cayré, I.

O. Mengual, G. Meunier, I. Cayré, K. Puech, and P. Snabre, “TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis,” Talanta 50(2), 445–456 (1999).
[Crossref] [PubMed]

Chalker, J. T.

N. A. Bruce and J. T. Chalker, “Multiple scattering in the presence of absorption: a theoretical treatment for quasi one-dimensional systems,” J. Phys. A 29(14), 3761–3768 (1996).
[Crossref]

Chang, R. P. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Charriere, M.

C. Battaglia, J. Escarre, K. Soderstrom, M. Charriere, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5(9), 535–538 (2011).
[Crossref]

Choi, W.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, and Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[Crossref] [PubMed]

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, and Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[Crossref] [PubMed]

Choi, Y.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, and Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[Crossref] [PubMed]

Chong, Y. D.

Y. D. Chong and A. D. Stone, “Hidden black: coherent enhancement of absorption in strongly scattering media,” Phys. Rev. Lett. 107(16), 163901 (2011).
[Crossref] [PubMed]

Cocoyer, C.

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances,” Appl. Phys. Lett. 88(13), 133108 (2006).
[Crossref]

Contini, D.

Cui, Y.

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3, 664 (2012).
[Crossref] [PubMed]

Dal Zilio, S.

Dasari, R. R.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, and Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[Crossref] [PubMed]

Datta, P. K.

P. K. Datta, “Transmission and reflection in a perfectly amplifying and absorbing medium,” Phys. Rev. B 59(16), 10980–10984 (1999).
[Crossref]

de Bettignies, R.

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances,” Appl. Phys. Lett. 88(13), 133108 (2006).
[Crossref]

Despeisse, M.

C. Battaglia, J. Escarre, K. Soderstrom, M. Charriere, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5(9), 535–538 (2011).
[Crossref]

Dewan, R.

Doucot, B.

R. Rammal and B. Doucot, “Invariant imbedding approach to localization. I. General framework and basic equations,” J. Phys. France 48(4), 509–526 (1987).
[Crossref]

Dufresne, E. R.

Escarre, J.

C. Battaglia, J. Escarre, K. Soderstrom, M. Charriere, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5(9), 535–538 (2011).
[Crossref]

Fahr, S.

Fan, S.

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3, 664 (2012).
[Crossref] [PubMed]

Feld, M. S.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Ferry, V. E.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[Crossref] [PubMed]

Fink, M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Fiorini-Debuisschert, C.

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances,” Appl. Phys. Lett. 88(13), 133108 (2006).
[Crossref]

Fleischer, J. W.

J. B. Kim, P. Kim, N. C. Pegard, S. J. Oh, C. R. Kagan, J. W. Fleischer, H. A. Stone, and Y.-L. Loo, “Wrinkles and deep folds as photonic structures in photovoltaics,” Nat. Photonics 6(5), 327–332 (2012).
[Crossref]

Ford, J. E.

Forster, J.

Freilikher, V.

V. Freilikher, M. Pustilnik, and I. Yurkevich, “Effect of absorption on the wave transport in the strong localization regime,” Phys. Rev. Lett. 73(6), 810–813 (1994).
[Crossref] [PubMed]

Geffroy, B.

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances,” Appl. Phys. Lett. 88(13), 133108 (2006).
[Crossref]

Gigan, S.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Gross, P.

M. Störzer, P. Gross, C. M. Aegerter, and G. Maret, “Observation of the critical regime near Anderson localization of light,” Phys. Rev. Lett. 96(6), 063904 (2006).
[Crossref] [PubMed]

Gupta, A. K.

A. K. Gupta and A. M. Jayannavar, “Electron wave transport in coherently absorptive random media,” Phys. Rev. B Condens. Matter 52(6), 4156–4161 (1995).
[Crossref] [PubMed]

Guy, M.

R. Sarma, A. Yamilov, S. F. Liew, M. Guy, and H. Cao, “Control of mesoscopic transport by modifying transmission channels in opaque media,” Phys. Rev. B 92(21), 214206 (2015).
[Crossref]

Haug, F. J.

Haug, F.-J.

C. Battaglia, J. Escarre, K. Soderstrom, M. Charriere, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5(9), 535–538 (2011).
[Crossref]

Heinrichs, J.

J. Heinrichs, “Light amplification and absorption in a random medium,” Phys. Rev. B 56(14), 8674–8682 (1997).
[Crossref]

Hillman, T. R.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, and Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[Crossref] [PubMed]

Ho, S. T.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Inganäs, O.

Z. Tang, W. Tress, and O. Inganäs, “Light trapping in thin film organic solar cells,” Mater. Today 17(8), 389–396 (2014).
[Crossref]

S. D. Zilio, K. Tvingstedt, O. Inganäs, and M. Tormen, “Fabrication of a light trapping system for organic solar cells,” Microelec. Eng. 86(4-6), 1150–1154 (2009).
[Crossref]

Y. Zhou, F. Zhang, K. Tvingstedt, W. Tian, and O. Inganäs, “Multifolded polymer solar cells on flexible substrates,” Appl. Phys. Lett. 93(3), 033302 (2008).
[Crossref]

K. Tvingstedt, S. Dal Zilio, O. Inganäs, and M. Tormen, “Trapping light with micro lenses in thin film organic photovoltaic cells,” Opt. Express 16(26), 21608–21615 (2008).
[Crossref] [PubMed]

Jayannavar, A. M.

S. K. Joshi and A. M. Jayannavar, “Transmission and reflection from a disordered lasing medium,” Phys. Rev. B 56(19), 12038–12041 (1997).
[Crossref]

A. K. Gupta and A. M. Jayannavar, “Electron wave transport in coherently absorptive random media,” Phys. Rev. B Condens. Matter 52(6), 4156–4161 (1995).
[Crossref] [PubMed]

Jiang, X.

X. Jiang and C. M. Soukoulis, “Transmission and reflection studies of periodic and random systems with gain,” Phys. Rev. B 59(9), 6159–6166 (1999).
[Crossref]

Joshi, S. K.

S. K. Joshi and A. M. Jayannavar, “Transmission and reflection from a disordered lasing medium,” Phys. Rev. B 56(19), 12038–12041 (1997).
[Crossref]

Kagan, C. R.

J. B. Kim, P. Kim, N. C. Pegard, S. J. Oh, C. R. Kagan, J. W. Fleischer, H. A. Stone, and Y.-L. Loo, “Wrinkles and deep folds as photonic structures in photovoltaics,” Nat. Photonics 6(5), 327–332 (2012).
[Crossref]

Karp, J. H.

Kienle, A.

Kim, J. B.

J. B. Kim, P. Kim, N. C. Pegard, S. J. Oh, C. R. Kagan, J. W. Fleischer, H. A. Stone, and Y.-L. Loo, “Wrinkles and deep folds as photonic structures in photovoltaics,” Nat. Photonics 6(5), 327–332 (2012).
[Crossref]

Kim, P.

J. B. Kim, P. Kim, N. C. Pegard, S. J. Oh, C. R. Kagan, J. W. Fleischer, H. A. Stone, and Y.-L. Loo, “Wrinkles and deep folds as photonic structures in photovoltaics,” Nat. Photonics 6(5), 327–332 (2012).
[Crossref]

Knipp, D.

Koman, V.

V. Koman, G. Suárez, C. Santschi, V. J. Cadarso, J. Brugger, N. von Moos, V. I. Slaveykova, and O. J. F. Martin, “A portable microfluidic-based biophotonic sensor for extracellular H2O2 measurements,” Proc. SPIE 8572, 857218 (2013).
[Crossref]

Koman, V. B.

V. B. Koman, C. Santschi, N. R. von Moos, V. I. Slaveykova, and O. J. F. Martin, “Portable oxidative stress sensor: dynamic and non-invasive measurements of extracellular H2O2 released by algae,” Biosens. Bioelectron. 68, 245–252 (2015).
[Crossref] [PubMed]

V. B. Koman, C. Santschi, and O. J. F. Martin, “Multiscattering-enhanced absorption spectroscopy,” Anal. Chem. 87(3), 1536–1543 (2015).
[Crossref] [PubMed]

Kumar, N.

P. Pradhan and N. Kumar, “Localization of light in coherently amplifying random media,” Phys. Rev. B Condens. Matter 50(13), 9644–9647 (1994).
[Crossref] [PubMed]

Lagendijk, A.

O. S. Ojambati, H. Yılmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, “Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium,” New J. Phys. 18(4), 043032 (2016).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications,” Nano Lett. 8(9), 2638–2642 (2008).
[Crossref] [PubMed]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[Crossref]

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), 4256–4265 (1996).
[Crossref] [PubMed]

Lare, M. C.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Lederer, F.

Lerosey, G.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Lewander, M.

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett. 107(14), 143901 (2011).
[Crossref] [PubMed]

Liew, S. F.

R. Sarma, A. Yamilov, S. F. Liew, M. Guy, and H. Cao, “Control of mesoscopic transport by modifying transmission channels in opaque media,” Phys. Rev. B 92(21), 214206 (2015).
[Crossref]

S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, and H. Cao, “Transmission channels for light in absorbing random media: From diffusive to ballistic-like transport,” Phys. Rev. B 89(22), 224202 (2014).
[Crossref]

S. F. Liew, J. Forster, H. Noh, C. F. Schreck, V. Saranathan, X. Lu, L. Yang, R. O. Prum, C. S. O’Hern, E. R. Dufresne, and H. Cao, “Short-range order and near-field effects on optical scattering and structural coloration,” Opt. Express 19(9), 8208–8217 (2011).
[Crossref] [PubMed]

Loo, Y.-L.

J. B. Kim, P. Kim, N. C. Pegard, S. J. Oh, C. R. Kagan, J. W. Fleischer, H. A. Stone, and Y.-L. Loo, “Wrinkles and deep folds as photonic structures in photovoltaics,” Nat. Photonics 6(5), 327–332 (2012).
[Crossref]

Lu, X.

Lue, N.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, and Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[Crossref] [PubMed]

Madzharov, D.

Maret, G.

M. Störzer, P. Gross, C. M. Aegerter, and G. Maret, “Observation of the critical regime near Anderson localization of light,” Phys. Rev. Lett. 96(6), 063904 (2006).
[Crossref] [PubMed]

Martelli, F.

Martin, O. J. F.

V. B. Koman, C. Santschi, and O. J. F. Martin, “Multiscattering-enhanced absorption spectroscopy,” Anal. Chem. 87(3), 1536–1543 (2015).
[Crossref] [PubMed]

V. B. Koman, C. Santschi, N. R. von Moos, V. I. Slaveykova, and O. J. F. Martin, “Portable oxidative stress sensor: dynamic and non-invasive measurements of extracellular H2O2 released by algae,” Biosens. Bioelectron. 68, 245–252 (2015).
[Crossref] [PubMed]

V. Koman, G. Suárez, C. Santschi, V. J. Cadarso, J. Brugger, N. von Moos, V. I. Slaveykova, and O. J. F. Martin, “A portable microfluidic-based biophotonic sensor for extracellular H2O2 measurements,” Proc. SPIE 8572, 857218 (2013).
[Crossref]

G. Suárez, C. Santschi, V. I. Slaveykova, and O. J. F. Martin, “Sensing the dynamics of oxidative stress using enhanced absorption in protein-loaded random media,” Sci. Rep. 3, 3447 (2013).
[Crossref] [PubMed]

McGehee, M. D.

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[Crossref]

Mengual, O.

O. Mengual, G. Meunier, I. Cayré, K. Puech, and P. Snabre, “TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis,” Talanta 50(2), 445–456 (1999).
[Crossref] [PubMed]

Meunier, G.

O. Mengual, G. Meunier, I. Cayré, K. Puech, and P. Snabre, “TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis,” Talanta 50(2), 445–456 (1999).
[Crossref] [PubMed]

Misirpashaev, T. S.

J. C. J. Paasschens, T. S. Misirpashaev, and C. W. J. Beenakker, “Localization of light: dual symmetry between absorption and amplification,” Phys. Rev. B Condens. Matter 54(17), 11887–11890 (1996).
[Crossref] [PubMed]

Mosk, A. P.

O. S. Ojambati, H. Yılmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, “Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium,” New J. Phys. 18(4), 043032 (2016).
[Crossref]

S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, and H. Cao, “Transmission channels for light in absorbing random media: From diffusive to ballistic-like transport,” Phys. Rev. B 89(22), 224202 (2014).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

Mujumdar, S.

R. Uppu and S. Mujumdar, “Persistent coherent random lasing using resonant scatterers,” Opt. Express 19(23), 23523–23531 (2011).
[Crossref] [PubMed]

S. Mujumdar, R. Torre, H. Ramachandran, and D. Wiersma, “Monte Carlo calculations of spectral features in random lasing,” J. Nanophotonics 4(1), 041550 (2010).
[Crossref]

Munday, J. N.

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[Crossref] [PubMed]

Muskens, O. L.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications,” Nano Lett. 8(9), 2638–2642 (2008).
[Crossref] [PubMed]

Narasimhan, V. K.

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3, 664 (2012).
[Crossref] [PubMed]

Noh, H.

O’Hern, C. S.

Oh, S. J.

J. B. Kim, P. Kim, N. C. Pegard, S. J. Oh, C. R. Kagan, J. W. Fleischer, H. A. Stone, and Y.-L. Loo, “Wrinkles and deep folds as photonic structures in photovoltaics,” Nat. Photonics 6(5), 327–332 (2012).
[Crossref]

Ojambati, O. S.

O. S. Ojambati, H. Yılmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, “Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium,” New J. Phys. 18(4), 043032 (2016).
[Crossref]

Paasschens, J. C. J.

J. C. J. Paasschens, T. S. Misirpashaev, and C. W. J. Beenakker, “Localization of light: dual symmetry between absorption and amplification,” Phys. Rev. B Condens. Matter 54(17), 11887–11890 (1996).
[Crossref] [PubMed]

C. W. J. Beenakker, J. C. J. Paasschens, and P. W. Brouwer, “Probability of reflection by a random laser,” Phys. Rev. Lett. 76(8), 1368–1371 (1996).
[Crossref] [PubMed]

Pegard, N. C.

J. B. Kim, P. Kim, N. C. Pegard, S. J. Oh, C. R. Kagan, J. W. Fleischer, H. A. Stone, and Y.-L. Loo, “Wrinkles and deep folds as photonic structures in photovoltaics,” Nat. Photonics 6(5), 327–332 (2012).
[Crossref]

Petrenko, S.

R. Sarma, A. G. Yamilov, S. Petrenko, Y. Bromberg, and H. Cao, “Control of energy density inside a disordered medium by coupling to open or closed channels,” Phys. Rev. Lett. 117(8), 086803 (2016).
[Crossref]

Peumans, P.

S. Basu Mallick, M. Agrawal, A. Wangperawong, E. S. Barnard, K. K. Singh, R. J. Visser, M. L. Brongersma, and P. Peumans, “Ultrathin crystalline-silicon solar cells with embedded photonic crystals,” Appl. Phys. Lett. 100(5), 053113 (2012).
[Crossref]

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[Crossref]

Polman, A.

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref] [PubMed]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref] [PubMed]

Popoff, S. M.

S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, and H. Cao, “Transmission channels for light in absorbing random media: From diffusive to ballistic-like transport,” Phys. Rev. B 89(22), 224202 (2014).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Pradhan, P.

P. Pradhan and N. Kumar, “Localization of light in coherently amplifying random media,” Phys. Rev. B Condens. Matter 50(13), 9644–9647 (1994).
[Crossref] [PubMed]

Pratesi, F.

Prum, R. O.

Psaltis, D.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Puech, K.

O. Mengual, G. Meunier, I. Cayré, K. Puech, and P. Snabre, “TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis,” Talanta 50(2), 445–456 (1999).
[Crossref] [PubMed]

Pustilnik, M.

V. Freilikher, M. Pustilnik, and I. Yurkevich, “Effect of absorption on the wave transport in the strong localization regime,” Phys. Rev. Lett. 73(6), 810–813 (1994).
[Crossref] [PubMed]

Raimond, P.

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances,” Appl. Phys. Lett. 88(13), 133108 (2006).
[Crossref]

Ramachandran, H.

S. Mujumdar, R. Torre, H. Ramachandran, and D. Wiersma, “Monte Carlo calculations of spectral features in random lasing,” J. Nanophotonics 4(1), 041550 (2010).
[Crossref]

Rammal, R.

R. Rammal and B. Doucot, “Invariant imbedding approach to localization. I. General framework and basic equations,” J. Phys. France 48(4), 509–526 (1987).
[Crossref]

Riboli, F.

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21(S3Suppl 3), A460–A468 (2013).
[Crossref] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

Righini, R.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[Crossref]

Rim, S.-B.

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[Crossref]

Rivas, J. G.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications,” Nano Lett. 8(9), 2638–2642 (2008).
[Crossref] [PubMed]

Rocha, L.

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances,” Appl. Phys. Lett. 88(13), 133108 (2006).
[Crossref]

Rockstuhl, C.

Ruan, Z.

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3, 664 (2012).
[Crossref] [PubMed]

Santschi, C.

V. B. Koman, C. Santschi, and O. J. F. Martin, “Multiscattering-enhanced absorption spectroscopy,” Anal. Chem. 87(3), 1536–1543 (2015).
[Crossref] [PubMed]

V. B. Koman, C. Santschi, N. R. von Moos, V. I. Slaveykova, and O. J. F. Martin, “Portable oxidative stress sensor: dynamic and non-invasive measurements of extracellular H2O2 released by algae,” Biosens. Bioelectron. 68, 245–252 (2015).
[Crossref] [PubMed]

V. Koman, G. Suárez, C. Santschi, V. J. Cadarso, J. Brugger, N. von Moos, V. I. Slaveykova, and O. J. F. Martin, “A portable microfluidic-based biophotonic sensor for extracellular H2O2 measurements,” Proc. SPIE 8572, 857218 (2013).
[Crossref]

G. Suárez, C. Santschi, V. I. Slaveykova, and O. J. F. Martin, “Sensing the dynamics of oxidative stress using enhanced absorption in protein-loaded random media,” Sci. Rep. 3, 3447 (2013).
[Crossref] [PubMed]

Saranathan, V.

Sarma, R.

R. Sarma, A. G. Yamilov, S. Petrenko, Y. Bromberg, and H. Cao, “Control of energy density inside a disordered medium by coupling to open or closed channels,” Phys. Rev. Lett. 117(8), 086803 (2016).
[Crossref]

R. Sarma, A. Yamilov, S. F. Liew, M. Guy, and H. Cao, “Control of mesoscopic transport by modifying transmission channels in opaque media,” Phys. Rev. B 92(21), 214206 (2015).
[Crossref]

Schreck, C. F.

Schropp, R. E. I.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Scully, S. R.

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[Crossref]

Seelig, E. W.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Sentein, C.

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances,” Appl. Phys. Lett. 88(13), 133108 (2006).
[Crossref]

Sicot, L.

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances,” Appl. Phys. Lett. 88(13), 133108 (2006).
[Crossref]

Singh, K. K.

S. Basu Mallick, M. Agrawal, A. Wangperawong, E. S. Barnard, K. K. Singh, R. J. Visser, M. L. Brongersma, and P. Peumans, “Ultrathin crystalline-silicon solar cells with embedded photonic crystals,” Appl. Phys. Lett. 100(5), 053113 (2012).
[Crossref]

Slaveykova, V. I.

V. B. Koman, C. Santschi, N. R. von Moos, V. I. Slaveykova, and O. J. F. Martin, “Portable oxidative stress sensor: dynamic and non-invasive measurements of extracellular H2O2 released by algae,” Biosens. Bioelectron. 68, 245–252 (2015).
[Crossref] [PubMed]

G. Suárez, C. Santschi, V. I. Slaveykova, and O. J. F. Martin, “Sensing the dynamics of oxidative stress using enhanced absorption in protein-loaded random media,” Sci. Rep. 3, 3447 (2013).
[Crossref] [PubMed]

V. Koman, G. Suárez, C. Santschi, V. J. Cadarso, J. Brugger, N. von Moos, V. I. Slaveykova, and O. J. F. Martin, “A portable microfluidic-based biophotonic sensor for extracellular H2O2 measurements,” Proc. SPIE 8572, 857218 (2013).
[Crossref]

Snabre, P.

O. Mengual, G. Meunier, I. Cayré, K. Puech, and P. Snabre, “TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis,” Talanta 50(2), 445–456 (1999).
[Crossref] [PubMed]

So, P. T. C.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, and Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[Crossref] [PubMed]

Soderstrom, K.

C. Battaglia, J. Escarre, K. Soderstrom, M. Charriere, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5(9), 535–538 (2011).
[Crossref]

Söderström, T.

Song, L.

Soukoulis, C. M.

X. Jiang and C. M. Soukoulis, “Transmission and reflection studies of periodic and random systems with gain,” Phys. Rev. B 59(9), 6159–6166 (1999).
[Crossref]

Spinelli, P.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Stone, A. D.

Y. D. Chong and A. D. Stone, “Hidden black: coherent enhancement of absorption in strongly scattering media,” Phys. Rev. Lett. 107(16), 163901 (2011).
[Crossref] [PubMed]

Stone, H. A.

J. B. Kim, P. Kim, N. C. Pegard, S. J. Oh, C. R. Kagan, J. W. Fleischer, H. A. Stone, and Y.-L. Loo, “Wrinkles and deep folds as photonic structures in photovoltaics,” Nat. Photonics 6(5), 327–332 (2012).
[Crossref]

Störzer, M.

M. Störzer, P. Gross, C. M. Aegerter, and G. Maret, “Observation of the critical regime near Anderson localization of light,” Phys. Rev. Lett. 96(6), 063904 (2006).
[Crossref] [PubMed]

Suárez, G.

G. Suárez, C. Santschi, V. I. Slaveykova, and O. J. F. Martin, “Sensing the dynamics of oxidative stress using enhanced absorption in protein-loaded random media,” Sci. Rep. 3, 3447 (2013).
[Crossref] [PubMed]

V. Koman, G. Suárez, C. Santschi, V. J. Cadarso, J. Brugger, N. von Moos, V. I. Slaveykova, and O. J. F. Martin, “A portable microfluidic-based biophotonic sensor for extracellular H2O2 measurements,” Proc. SPIE 8572, 857218 (2013).
[Crossref]

Svanberg, S.

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett. 107(14), 143901 (2011).
[Crossref] [PubMed]

Svensson, T.

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett. 107(14), 143901 (2011).
[Crossref] [PubMed]

Tang, Z.

Z. Tang, W. Tress, and O. Inganäs, “Light trapping in thin film organic solar cells,” Mater. Today 17(8), 389–396 (2014).
[Crossref]

Tian, W.

Y. Zhou, F. Zhang, K. Tvingstedt, W. Tian, and O. Inganäs, “Multifolded polymer solar cells on flexible substrates,” Appl. Phys. Lett. 93(3), 033302 (2008).
[Crossref]

Tormen, M.

S. D. Zilio, K. Tvingstedt, O. Inganäs, and M. Tormen, “Fabrication of a light trapping system for organic solar cells,” Microelec. Eng. 86(4-6), 1150–1154 (2009).
[Crossref]

K. Tvingstedt, S. Dal Zilio, O. Inganäs, and M. Tormen, “Trapping light with micro lenses in thin film organic photovoltaic cells,” Opt. Express 16(26), 21608–21615 (2008).
[Crossref] [PubMed]

Torre, R.

S. Mujumdar, R. Torre, H. Ramachandran, and D. Wiersma, “Monte Carlo calculations of spectral features in random lasing,” J. Nanophotonics 4(1), 041550 (2010).
[Crossref]

Toublanc, D.

Tremblay, E. J.

Tress, W.

Z. Tang, W. Tress, and O. Inganäs, “Light trapping in thin film organic solar cells,” Mater. Today 17(8), 389–396 (2014).
[Crossref]

Tvingstedt, K.

S. D. Zilio, K. Tvingstedt, O. Inganäs, and M. Tormen, “Fabrication of a light trapping system for organic solar cells,” Microelec. Eng. 86(4-6), 1150–1154 (2009).
[Crossref]

Y. Zhou, F. Zhang, K. Tvingstedt, W. Tian, and O. Inganäs, “Multifolded polymer solar cells on flexible substrates,” Appl. Phys. Lett. 93(3), 033302 (2008).
[Crossref]

K. Tvingstedt, S. Dal Zilio, O. Inganäs, and M. Tormen, “Trapping light with micro lenses in thin film organic photovoltaic cells,” Opt. Express 16(26), 21608–21615 (2008).
[Crossref] [PubMed]

Uddin, A.

Uppu, R.

Vellekoop, I. M.

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

Verschuuren, M. A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Visser, R. J.

S. Basu Mallick, M. Agrawal, A. Wangperawong, E. S. Barnard, K. K. Singh, R. J. Visser, M. L. Brongersma, and P. Peumans, “Ultrathin crystalline-silicon solar cells with embedded photonic crystals,” Appl. Phys. Lett. 100(5), 053113 (2012).
[Crossref]

von Moos, N.

V. Koman, G. Suárez, C. Santschi, V. J. Cadarso, J. Brugger, N. von Moos, V. I. Slaveykova, and O. J. F. Martin, “A portable microfluidic-based biophotonic sensor for extracellular H2O2 measurements,” Proc. SPIE 8572, 857218 (2013).
[Crossref]

von Moos, N. R.

V. B. Koman, C. Santschi, N. R. von Moos, V. I. Slaveykova, and O. J. F. Martin, “Portable oxidative stress sensor: dynamic and non-invasive measurements of extracellular H2O2 released by algae,” Biosens. Bioelectron. 68, 245–252 (2015).
[Crossref] [PubMed]

Vos, W. L.

O. S. Ojambati, H. Yılmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, “Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium,” New J. Phys. 18(4), 043032 (2016).
[Crossref]

S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, and H. Cao, “Transmission channels for light in absorbing random media: From diffusive to ballistic-like transport,” Phys. Rev. B 89(22), 224202 (2014).
[Crossref]

Vynck, K.

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21(S3Suppl 3), A460–A468 (2013).
[Crossref] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Wangperawong, A.

S. Basu Mallick, M. Agrawal, A. Wangperawong, E. S. Barnard, K. K. Singh, R. J. Visser, M. L. Brongersma, and P. Peumans, “Ultrathin crystalline-silicon solar cells with embedded photonic crystals,” Appl. Phys. Lett. 100(5), 053113 (2012).
[Crossref]

Wiersma, D.

S. Mujumdar, R. Torre, H. Ramachandran, and D. Wiersma, “Monte Carlo calculations of spectral features in random lasing,” J. Nanophotonics 4(1), 041550 (2010).
[Crossref]

Wiersma, D. S.

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21(S3Suppl 3), A460–A468 (2013).
[Crossref] [PubMed]

D. S. Wiersma, “Disordered photonics,” Nat. Photonics 7(3), 188–196 (2013).
[Crossref]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[Crossref]

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), 4256–4265 (1996).
[Crossref] [PubMed]

Xie, C.

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3, 664 (2012).
[Crossref] [PubMed]

Xu, C. T.

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett. 107(14), 143901 (2011).
[Crossref] [PubMed]

Yamilov, A.

R. Sarma, A. Yamilov, S. F. Liew, M. Guy, and H. Cao, “Control of mesoscopic transport by modifying transmission channels in opaque media,” Phys. Rev. B 92(21), 214206 (2015).
[Crossref]

Yamilov, A. G.

R. Sarma, A. G. Yamilov, S. Petrenko, Y. Bromberg, and H. Cao, “Control of energy density inside a disordered medium by coupling to open or closed channels,” Phys. Rev. Lett. 117(8), 086803 (2016).
[Crossref]

Yang, C.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Yang, L.

Yao, J.

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3, 664 (2012).
[Crossref] [PubMed]

Yao, Y.

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3, 664 (2012).
[Crossref] [PubMed]

Yaqoob, Z.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, and Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[Crossref] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Yilmaz, H.

O. S. Ojambati, H. Yılmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, “Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium,” New J. Phys. 18(4), 043032 (2016).
[Crossref]

Yurkevich, I.

V. Freilikher, M. Pustilnik, and I. Yurkevich, “Effect of absorption on the wave transport in the strong localization regime,” Phys. Rev. Lett. 73(6), 810–813 (1994).
[Crossref] [PubMed]

Zaccanti, G.

Zhang, F.

Y. Zhou, F. Zhang, K. Tvingstedt, W. Tian, and O. Inganäs, “Multifolded polymer solar cells on flexible substrates,” Appl. Phys. Lett. 93(3), 033302 (2008).
[Crossref]

Zhang, Z.-Q.

Z.-Q. Zhang, “Light amplification and localization in randomly layered media with gain,” Phys. Rev. B Condens. Matter 52(11), 7960–7964 (1995).
[Crossref] [PubMed]

Zhao, S.

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[Crossref]

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Zhou, Y.

Y. Zhou, F. Zhang, K. Tvingstedt, W. Tian, and O. Inganäs, “Multifolded polymer solar cells on flexible substrates,” Appl. Phys. Lett. 93(3), 033302 (2008).
[Crossref]

Zilio, S. D.

S. D. Zilio, K. Tvingstedt, O. Inganäs, and M. Tormen, “Fabrication of a light trapping system for organic solar cells,” Microelec. Eng. 86(4-6), 1150–1154 (2009).
[Crossref]

Zyuzin, A. Y.

A. Y. Zyuzin, “Transmission fluctuations and spectral rigidity of lasing states in a random amplifying medium,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(6), 5274–5278 (1995).
[Crossref] [PubMed]

A. Y. Zyuzin, “Weak localization in backscattering from an amplifying medium,” Europhys. Lett. 26(7), 517–520 (1994).
[Crossref]

Adv. Mater. (1)

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[Crossref] [PubMed]

Anal. Chem. (1)

V. B. Koman, C. Santschi, and O. J. F. Martin, “Multiscattering-enhanced absorption spectroscopy,” Anal. Chem. 87(3), 1536–1543 (2015).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

S. Basu Mallick, M. Agrawal, A. Wangperawong, E. S. Barnard, K. K. Singh, R. J. Visser, M. L. Brongersma, and P. Peumans, “Ultrathin crystalline-silicon solar cells with embedded photonic crystals,” Appl. Phys. Lett. 100(5), 053113 (2012).
[Crossref]

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances,” Appl. Phys. Lett. 88(13), 133108 (2006).
[Crossref]

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007).
[Crossref]

Y. Zhou, F. Zhang, K. Tvingstedt, W. Tian, and O. Inganäs, “Multifolded polymer solar cells on flexible substrates,” Appl. Phys. Lett. 93(3), 033302 (2008).
[Crossref]

Biosens. Bioelectron. (1)

V. B. Koman, C. Santschi, N. R. von Moos, V. I. Slaveykova, and O. J. F. Martin, “Portable oxidative stress sensor: dynamic and non-invasive measurements of extracellular H2O2 released by algae,” Biosens. Bioelectron. 68, 245–252 (2015).
[Crossref] [PubMed]

Europhys. Lett. (1)

A. Y. Zyuzin, “Weak localization in backscattering from an amplifying medium,” Europhys. Lett. 26(7), 517–520 (1994).
[Crossref]

J. Nanophotonics (1)

S. Mujumdar, R. Torre, H. Ramachandran, and D. Wiersma, “Monte Carlo calculations of spectral features in random lasing,” J. Nanophotonics 4(1), 041550 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. A (1)

N. A. Bruce and J. T. Chalker, “Multiple scattering in the presence of absorption: a theoretical treatment for quasi one-dimensional systems,” J. Phys. A 29(14), 3761–3768 (1996).
[Crossref]

J. Phys. France (1)

R. Rammal and B. Doucot, “Invariant imbedding approach to localization. I. General framework and basic equations,” J. Phys. France 48(4), 509–526 (1987).
[Crossref]

Mater. Today (1)

Z. Tang, W. Tress, and O. Inganäs, “Light trapping in thin film organic solar cells,” Mater. Today 17(8), 389–396 (2014).
[Crossref]

Microelec. Eng. (1)

S. D. Zilio, K. Tvingstedt, O. Inganäs, and M. Tormen, “Fabrication of a light trapping system for organic solar cells,” Microelec. Eng. 86(4-6), 1150–1154 (2009).
[Crossref]

Nano Lett. (2)

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications,” Nano Lett. 8(9), 2638–2642 (2008).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Nat. Commun. (2)

Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3, 664 (2012).
[Crossref] [PubMed]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Nat. Mater. (3)

A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater. 11(3), 174–177 (2012).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

Nat. Photonics (5)

C. Battaglia, J. Escarre, K. Soderstrom, M. Charriere, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5(9), 535–538 (2011).
[Crossref]

J. B. Kim, P. Kim, N. C. Pegard, S. J. Oh, C. R. Kagan, J. W. Fleischer, H. A. Stone, and Y.-L. Loo, “Wrinkles and deep folds as photonic structures in photovoltaics,” Nat. Photonics 6(5), 327–332 (2012).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

D. S. Wiersma, “Disordered photonics,” Nat. Photonics 7(3), 188–196 (2013).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

Nat. Phys. (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

Nature (1)

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[Crossref]

New J. Phys. (1)

O. S. Ojambati, H. Yılmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, “Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium,” New J. Phys. 18(4), 043032 (2016).
[Crossref]

Opt. Express (9)

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F. J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18(S3), A335–A341 (2010).
[Crossref] [PubMed]

D. Madzharov, R. Dewan, and D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express 19(S2), A95–A107 (2011).
[Crossref] [PubMed]

J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18(2), 1122–1133 (2010).
[Crossref] [PubMed]

S. F. Liew, J. Forster, H. Noh, C. F. Schreck, V. Saranathan, X. Lu, L. Yang, R. O. Prum, C. S. O’Hern, E. R. Dufresne, and H. Cao, “Short-range order and near-field effects on optical scattering and structural coloration,” Opt. Express 19(9), 8208–8217 (2011).
[Crossref] [PubMed]

R. Uppu and S. Mujumdar, “Persistent coherent random lasing using resonant scatterers,” Opt. Express 19(23), 23523–23531 (2011).
[Crossref] [PubMed]

K. Tvingstedt, S. Dal Zilio, O. Inganäs, and M. Tormen, “Trapping light with micro lenses in thin film organic photovoltaic cells,” Opt. Express 16(26), 21608–21615 (2008).
[Crossref] [PubMed]

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21(S3Suppl 3), A460–A468 (2013).
[Crossref] [PubMed]

L. Song and A. Uddin, “Design of high efficiency organic solar cell with light trapping,” Opt. Express 20(S5Suppl 5), A606–A621 (2012).
[Crossref] [PubMed]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref] [PubMed]

Phys. Rev. B (6)

J. Heinrichs, “Light amplification and absorption in a random medium,” Phys. Rev. B 56(14), 8674–8682 (1997).
[Crossref]

S. K. Joshi and A. M. Jayannavar, “Transmission and reflection from a disordered lasing medium,” Phys. Rev. B 56(19), 12038–12041 (1997).
[Crossref]

P. K. Datta, “Transmission and reflection in a perfectly amplifying and absorbing medium,” Phys. Rev. B 59(16), 10980–10984 (1999).
[Crossref]

X. Jiang and C. M. Soukoulis, “Transmission and reflection studies of periodic and random systems with gain,” Phys. Rev. B 59(9), 6159–6166 (1999).
[Crossref]

R. Sarma, A. Yamilov, S. F. Liew, M. Guy, and H. Cao, “Control of mesoscopic transport by modifying transmission channels in opaque media,” Phys. Rev. B 92(21), 214206 (2015).
[Crossref]

S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, and H. Cao, “Transmission channels for light in absorbing random media: From diffusive to ballistic-like transport,” Phys. Rev. B 89(22), 224202 (2014).
[Crossref]

Phys. Rev. B Condens. Matter (4)

P. Pradhan and N. Kumar, “Localization of light in coherently amplifying random media,” Phys. Rev. B Condens. Matter 50(13), 9644–9647 (1994).
[Crossref] [PubMed]

Z.-Q. Zhang, “Light amplification and localization in randomly layered media with gain,” Phys. Rev. B Condens. Matter 52(11), 7960–7964 (1995).
[Crossref] [PubMed]

A. K. Gupta and A. M. Jayannavar, “Electron wave transport in coherently absorptive random media,” Phys. Rev. B Condens. Matter 52(6), 4156–4161 (1995).
[Crossref] [PubMed]

J. C. J. Paasschens, T. S. Misirpashaev, and C. W. J. Beenakker, “Localization of light: dual symmetry between absorption and amplification,” Phys. Rev. B Condens. Matter 54(17), 11887–11890 (1996).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (2)

A. Y. Zyuzin, “Transmission fluctuations and spectral rigidity of lasing states in a random amplifying medium,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(6), 5274–5278 (1995).
[Crossref] [PubMed]

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), 4256–4265 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (9)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

M. Störzer, P. Gross, C. M. Aegerter, and G. Maret, “Observation of the critical regime near Anderson localization of light,” Phys. Rev. Lett. 96(6), 063904 (2006).
[Crossref] [PubMed]

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, and Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Y. D. Chong and A. D. Stone, “Hidden black: coherent enhancement of absorption in strongly scattering media,” Phys. Rev. Lett. 107(16), 163901 (2011).
[Crossref] [PubMed]

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett. 107(14), 143901 (2011).
[Crossref] [PubMed]

C. W. J. Beenakker, J. C. J. Paasschens, and P. W. Brouwer, “Probability of reflection by a random laser,” Phys. Rev. Lett. 76(8), 1368–1371 (1996).
[Crossref] [PubMed]

V. Freilikher, M. Pustilnik, and I. Yurkevich, “Effect of absorption on the wave transport in the strong localization regime,” Phys. Rev. Lett. 73(6), 810–813 (1994).
[Crossref] [PubMed]

R. Sarma, A. G. Yamilov, S. Petrenko, Y. Bromberg, and H. Cao, “Control of energy density inside a disordered medium by coupling to open or closed channels,” Phys. Rev. Lett. 117(8), 086803 (2016).
[Crossref]

Proc. SPIE (1)

V. Koman, G. Suárez, C. Santschi, V. J. Cadarso, J. Brugger, N. von Moos, V. I. Slaveykova, and O. J. F. Martin, “A portable microfluidic-based biophotonic sensor for extracellular H2O2 measurements,” Proc. SPIE 8572, 857218 (2013).
[Crossref]

Sci. Rep. (1)

G. Suárez, C. Santschi, V. I. Slaveykova, and O. J. F. Martin, “Sensing the dynamics of oxidative stress using enhanced absorption in protein-loaded random media,” Sci. Rep. 3, 3447 (2013).
[Crossref] [PubMed]

Talanta (1)

O. Mengual, G. Meunier, I. Cayré, K. Puech, and P. Snabre, “TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis,” Talanta 50(2), 445–456 (1999).
[Crossref] [PubMed]

Waves Random Media (1)

H. Cao, “Lasing in random media,” Waves Random Media 13(3), R1–R39 (2003).
[Crossref]

Other (2)

Y. Hamakawa, Thin-Film Solar Cells: Next Generation Photovoltaics and its Applications, Vol. 13 (Springer Science & Business Media, 2004).

E. Hecht and A. Zajac, “Optics Addison-Wesley,” Reading, Mass, 301–305 (1974).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Absorption in a random medium. (a) Optical transmitted and reflected path lengths OPLT and OPLR in a cubic random medium (L × w × w) with L = 500 μm and w = 500 μm composed of spherical scatterers (d = 0.5 μm, n = 2.6) in an absorbing background, as a function of the filling factor F. The dashed horizontal line corresponds to L. The inset shows the geometry under study. (b) Absorbed energy Eabs in the random medium as a function of the filling factor F. The inset shows the normalized transmitted T (dark blue) and reflected R (red) intensity of light. The dashed line corresponds to Fcri = 1.3%. (c) Logarithmic energy distribution of the light propagating in the central plane of the random medium described in (a) corresponding to (I) F = 10-4%, (II) F = 1%, and (III) F = 10%. The color scale is common to all three colormaps. All dimensions are given in micrometers.

Fig. 2
Fig. 2

Absorbed energy Eabs for a square prism with dimensions L × w × w filled with a random medium when varying: (a) the width w (L = 500 μm, d = 0.5 μm, n = 2.6); (b) the length L (w = 500 μm, d = 0.5 μm, n = 2.6). (c) The maximum absorbed energy enhancement Emax/E0 dependence on w for parameters as in (a). (d) The enhancement Emax/E0 as a function of L for parameters as in (b).

Fig. 3
Fig. 3

Absorbed energy Eabs for a square prism with dimensions L × w × w (L = 500 μm) filled with a random medium when varying: (a) the refractive index n (w = 5000 μm, d = 0.5 μm); (b,c,d) the scatterers diameter d (n = 2.6; w = 5000 μm in (b) and w = 500 μm in (c) and (d)). Points refer to Monte Carlo simulations, and lines to the analytical diffusion model based on Eq. (3). The same data are plotted against the filling factor (c) and the transport mean free path (d).

Fig. 4
Fig. 4

Absorption in a random medium (d = 0.5 μm, n = 2.6) surrounded by a fully reflective cavity (L = w = 500 μm) containing two square openings with size s = 100 μm. (a) OPLT and OPLR. The inset shows a schematic of the geometry. (b) OPL enhancements compared to the free random medium kT and kR. (c) Eabs in the medium. (d) Enhancement of the absorbed energy compared to the free random medium kE. (e) Logarithmic intensity distribution of light propagating in the central plane corresponding to (I) F = 10-4%, (II) F = 0.05%, (III) F = 10%. The color scale is common for all three colormaps. The dimensions are given in micrometers.

Fig. 5
Fig. 5

Absorbed energy Eabs for a random medium (d = 0.5 μm) surrounded by a fully reflective cavity (L = 500 μm) containing two square openings with size s– see Fig. 4(a) inset – as a function of: (a) the cavity width w (s = 100 μm, n = 1.6), (b) the openings size s (w = 500 μm, n = 1.6) and (c) the refractive index n of the scatterers (s = 100 μm, w = 500 μm).

Fig. 6
Fig. 6

Dependence of Emax/E0 on the absorption coefficient α for: (a) a free random medium (L = 500 μm, w = 500 μm, d = 0.5 μm, n = 2.6); (b) an open cavity with the same parameters as in (a) and s = 100 μm. The insets show Eabs for the respective geometries at α = 30 m−1 (black), 150 m−1 (red), 750 m−1 (green), 1500 m−1 (orange) and 6000 m−1 (dark blue).

Fig. 7
Fig. 7

(a) Schematic of light trapping device with two reflective surfaces, active photovoltaic layer (in red) and an array of concentrators on top. (b) Schematic of the truncated unit cell used in the numerical simulations. (c) Eabs as a function of F for light entering the opening at different angles in the presence of a random medium (d = 0.5 μm, n = 2.6, L = 100 μm, w = 500 μm, s = 50 μm). The blue dashed line corresponds to F = 0.025% and the red one to F = 0.5%. (d) Eabs as a function of β; the yellow area corresponds to β = 0 – 14°, the angular range of light after it has passed through a concentrator with f = 1 mm.

Tables (1)

Tables Icon

Table 1 Properties of scatterers with different refractive index n and diameter d, and their effect on absorbed energy for a square prism with dimensions L × w × w (L = 500 μm).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

l f r e e = 2 d 3 F Q s c a ,
q ( θ ) = 1 g 2 4 π ( 1 + g 2 2 g cos θ ) 3 / 2 .
E a b s = 1 1 2 m = { s g n ( z 1 , m ) e x p ( 3 α l * | z 1 , m | ) s g n ( z 2 , m ) e x p ( 3 α l * | z 2 , m | ) s g n ( z 3 , m ) e x p ( 3 α l * | z 3 , m | ) + s g n ( z 4 , m ) e x p ( 3 α l * | z 4 , m | ) } ,
{ z 1 , m = L ( 1 2 m ) 4 m z e z 0 z 2 , m = L ( 1 2 m ) ( 4 m 2 ) z e + z 0 z 3 , m = 2 m L 4 m z e z 0 z 4 , m = 2 m L ( 4 m 2 ) z e + z 0 ,
A = 1 + 3 0 π / 2 R ( θ i ) cos 2 ( θ i ) sin ( θ i ) d θ 1 2 0 π / 2 R ( θ i ) cos ( θ i ) sin ( θ i ) d θ ,
E a b s 1 1 2 e x p ( 3 α l * ) 1 2 e x p [ 3 α l * ( l * + 4 3 A l * ) ] .
R ~ C Q s c a π d 2 b 4 = 6 F b Q s c a π d 2 4 π d 3 = 3 2 b F Q s c a d = b l * ( 1 g ) .
l a b s = 1 3 l i l * = l * 3 α .

Metrics