Abstract

We propose a self-reverse-biased solar panel optical receiver for energy harvesting and visible light communication. Since the solar panel converts an optical component into an electrical component, it provides both energy harvesting and communication. The signal component can be separated from the direct current component, and these components are used for communication and energy harvesting. We employed a self-reverse-biased receiver circuit to improve the communication and energy harvesting performance. The reverse bias on the solar panel improves the responsivity and response time. The proposed system achieved 17.05 mbps discrete multitone transmission with a bit error rate of 1.1 x 10-3 and enhanced solar energy conversion efficiency.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Toward self-powered and reliable visible light communication using amorphous silicon thin-film solar cells

Meiwei Kong, Jiaming Lin, Chun Hong Kang, Chao Shen, Yujian Guo, Xiaobin Sun, Mohammed Sait, Yang Weng, Huafan Zhang, Tien Khee Ng, and Boon S. Ooi
Opt. Express 27(24) 34542-34551 (2019)

Diversity-reception UWOC system using solar panel array and maximum ratio combining

Xiao Chen, Weichao Lyu, Chuying Yu, Yang Qiu, Yingjie Shao, Chao Zhang, Miaomiao Zhao, Jing Xu, and Lian-Kuan Chen
Opt. Express 27(23) 34284-34297 (2019)

Organic solar cells as high-speed data detectors for visible light communication

Shuyu Zhang, Dobroslav Tsonev, Stefan Videv, Sanjay Ghosh, Graham A. Turnbull, Ifor D. W. Samuel, and Harald Haas
Optica 2(7) 607-610 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Cisco white paper, “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015-2020” (Cisco, 2016). http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf
  2. D. Tsonev, S. Videv, and H. Hass, “Light-fidelity (Li-Fi): towards all-optical networking,” Proc. SPIE 9007, 900702 (2014).
  3. H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: Potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
    [Crossref]
  4. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
    [Crossref]
  5. D.-H. Kwon, S.-J. Kim, S.-H. Yang, and S.-K. Han, “Optimized pre-equalization for gigabit polarization division multiplexed visible light communication,” Opt. Eng. 54(7), 076101 (2015).
    [Crossref]
  6. H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
    [Crossref]
  7. H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
    [Crossref]
  8. G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
    [Crossref] [PubMed]
  9. A. H. Azhar, T.-A. Tran, and D. O’Brien, “A gigabit/s indoor wireless transmission using MIMO-OFDM visible light communications,” IEEE Photonics Technol. Lett. 25(2), 171–174 (2013).
    [Crossref]
  10. G. Keiser, Optical Fiber Communications, 4th ed. (McGraw-Hill, 2010), Chap. 6.
  11. Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in International Conference on Communications (IEEE, 2014), pp. 3348–3353.
    [Crossref]
  12. S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. W. Samuel, and H. Haas, “Organic solar cells as high-speed data detectors for visible light communication,” Optica 2(7), 607–610 (2015).
    [Crossref]
  13. Z. Wang, D. Tsonev, S. Videv, and H. Hass, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Comm. 33(8), 1612–1623 (2015).
  14. Bohan Jr, and E. John, “Low voltage driven oscillator circuit,” U. S. Patent No. 4,734,658 (1998).

2015 (3)

D.-H. Kwon, S.-J. Kim, S.-H. Yang, and S.-K. Han, “Optimized pre-equalization for gigabit polarization division multiplexed visible light communication,” Opt. Eng. 54(7), 076101 (2015).
[Crossref]

Z. Wang, D. Tsonev, S. Videv, and H. Hass, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Comm. 33(8), 1612–1623 (2015).

S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. W. Samuel, and H. Haas, “Organic solar cells as high-speed data detectors for visible light communication,” Optica 2(7), 607–610 (2015).
[Crossref]

2014 (2)

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

D. Tsonev, S. Videv, and H. Hass, “Light-fidelity (Li-Fi): towards all-optical networking,” Proc. SPIE 9007, 900702 (2014).

2013 (1)

A. H. Azhar, T.-A. Tran, and D. O’Brien, “A gigabit/s indoor wireless transmission using MIMO-OFDM visible light communications,” IEEE Photonics Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

2012 (1)

2011 (1)

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: Potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

2008 (1)

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

2004 (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Azhar, A. H.

A. H. Azhar, T.-A. Tran, and D. O’Brien, “A gigabit/s indoor wireless transmission using MIMO-OFDM visible light communications,” IEEE Photonics Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

Chen, H.

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Chen, X.

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Choudhury, P.

Ciaramella, E.

Corsini, R.

Cossu, G.

Elgala, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: Potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Faulkner, G.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Ghosh, S.

Haas, H.

S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. W. Samuel, and H. Haas, “Organic solar cells as high-speed data detectors for visible light communication,” Optica 2(7), 607–610 (2015).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: Potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in International Conference on Communications (IEEE, 2014), pp. 3348–3353.
[Crossref]

Han, S.-K.

D.-H. Kwon, S.-J. Kim, S.-H. Yang, and S.-K. Han, “Optimized pre-equalization for gigabit polarization division multiplexed visible light communication,” Opt. Eng. 54(7), 076101 (2015).
[Crossref]

Hass, H.

Z. Wang, D. Tsonev, S. Videv, and H. Hass, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Comm. 33(8), 1612–1623 (2015).

D. Tsonev, S. Videv, and H. Hass, “Light-fidelity (Li-Fi): towards all-optical networking,” Proc. SPIE 9007, 900702 (2014).

Huang, B.

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Jung, D.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Khalid, A. M.

Kim, S.-J.

D.-H. Kwon, S.-J. Kim, S.-H. Yang, and S.-K. Han, “Optimized pre-equalization for gigabit polarization division multiplexed visible light communication,” Opt. Eng. 54(7), 076101 (2015).
[Crossref]

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Kwon, D.-H.

D.-H. Kwon, S.-J. Kim, S.-H. Yang, and S.-K. Han, “Optimized pre-equalization for gigabit polarization division multiplexed visible light communication,” Opt. Eng. 54(7), 076101 (2015).
[Crossref]

Lee, K.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Li, H.

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Mesleh, R.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: Potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Minh, H. L.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

O’Brien, D.

A. H. Azhar, T.-A. Tran, and D. O’Brien, “A gigabit/s indoor wireless transmission using MIMO-OFDM visible light communications,” IEEE Photonics Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Oh, Y.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Samuel, I. D. W.

Tang, D.

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Tran, T.-A.

A. H. Azhar, T.-A. Tran, and D. O’Brien, “A gigabit/s indoor wireless transmission using MIMO-OFDM visible light communications,” IEEE Photonics Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

Tsonev, D.

Z. Wang, D. Tsonev, S. Videv, and H. Hass, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Comm. 33(8), 1612–1623 (2015).

S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. W. Samuel, and H. Haas, “Organic solar cells as high-speed data detectors for visible light communication,” Optica 2(7), 607–610 (2015).
[Crossref]

D. Tsonev, S. Videv, and H. Hass, “Light-fidelity (Li-Fi): towards all-optical networking,” Proc. SPIE 9007, 900702 (2014).

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in International Conference on Communications (IEEE, 2014), pp. 3348–3353.
[Crossref]

Turnbull, G. A.

Videv, S.

S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. W. Samuel, and H. Haas, “Organic solar cells as high-speed data detectors for visible light communication,” Optica 2(7), 607–610 (2015).
[Crossref]

Z. Wang, D. Tsonev, S. Videv, and H. Hass, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Comm. 33(8), 1612–1623 (2015).

D. Tsonev, S. Videv, and H. Hass, “Light-fidelity (Li-Fi): towards all-optical networking,” Proc. SPIE 9007, 900702 (2014).

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in International Conference on Communications (IEEE, 2014), pp. 3348–3353.
[Crossref]

Wang, Z.

Z. Wang, D. Tsonev, S. Videv, and H. Hass, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Comm. 33(8), 1612–1623 (2015).

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in International Conference on Communications (IEEE, 2014), pp. 3348–3353.
[Crossref]

Yang, S.-H.

D.-H. Kwon, S.-J. Kim, S.-H. Yang, and S.-K. Han, “Optimized pre-equalization for gigabit polarization division multiplexed visible light communication,” Opt. Eng. 54(7), 076101 (2015).
[Crossref]

Zeng, L.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Zhang, S.

IEEE Commun. Mag. (1)

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: Potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

IEEE J. Sel. Areas Comm. (1)

Z. Wang, D. Tsonev, S. Videv, and H. Hass, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Comm. 33(8), 1612–1623 (2015).

IEEE Photonics Technol. Lett. (3)

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

A. H. Azhar, T.-A. Tran, and D. O’Brien, “A gigabit/s indoor wireless transmission using MIMO-OFDM visible light communications,” IEEE Photonics Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

IEEE Trans. Consum. Electron. (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Opt. Eng. (1)

D.-H. Kwon, S.-J. Kim, S.-H. Yang, and S.-K. Han, “Optimized pre-equalization for gigabit polarization division multiplexed visible light communication,” Opt. Eng. 54(7), 076101 (2015).
[Crossref]

Opt. Express (1)

Optica (1)

Proc. SPIE (1)

D. Tsonev, S. Videv, and H. Hass, “Light-fidelity (Li-Fi): towards all-optical networking,” Proc. SPIE 9007, 900702 (2014).

Other (4)

Cisco white paper, “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015-2020” (Cisco, 2016). http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf

G. Keiser, Optical Fiber Communications, 4th ed. (McGraw-Hill, 2010), Chap. 6.

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in International Conference on Communications (IEEE, 2014), pp. 3348–3353.
[Crossref]

Bohan Jr, and E. John, “Low voltage driven oscillator circuit,” U. S. Patent No. 4,734,658 (1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Output voltage of solar panel versus (a) incident light power and (b) frequency response of solar panel for a reverse bias of 0, 15, and 30 V.
Fig. 2
Fig. 2 Solar panel receiver circuit for simultaneous energy harvesting and communication.
Fig. 3
Fig. 3 Solar panel based on self-reverse-biased receiver circuit for simultaneous energy harvesting and communication.
Fig. 4
Fig. 4 Joule thief DC–DC up-converter.
Fig. 5
Fig. 5 Experimental setup.
Fig. 6
Fig. 6 Eye diagrams with (a) no bias and 1 Mbps OOK, (b) no bias and 2 Mbps OOK, (c) no bias and 3 Mbps OOK (d) 30 V reverse bias and 1 Mbps OOK, (e) 30 V reverse bias and 2 Mbps OOK and (f) 30 V reverse bias and 3 Mbps OOK.
Fig. 7
Fig. 7 Transmission performance of DMT modulation: (a) bit loading profile, (b) BER.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

t d = w v d .
V R 1 = R 1 R 1 +1/ jwC ZI.
Z=( 1 jwC + R 1 )//(jwL+ R 2 ).
| H(jw) | receiver.circuit = ( R 1 R 2 ) 2 + (w R 1 L) 2 ( R 1 + R 2 ) 2 + (wL 1 wC ) 2 .
| H(jw) | overall.system = | H(jw) | solar.panel | H(jw) | receiver.circuit .

Metrics