Abstract

We present a Doppler-free high-resolution dual-comb spectroscopy technique in which a dual-comb system is employed to perform optical-optical double-resonance (OODR) spectroscopy. In our experimental study, Doppler-free high-resolution and high-frequency-accuracy broadband measurements were realized using the proposed OODR dual-comb spectroscopic technique, which does not require high-power-per-mode frequency combs. We observed fully resolved hyperfine spectra of 5P3/2 - 4D5/2, 4D3/2 transitions of Rb at 1530 nm and precisely determined the absolute frequencies of the transitions, with an uncertainty of less than 1 MHz. The variations of the OODR spectral line shapes due to power broadening and alignment and the effects of polarization on the dual-comb OODR spectra were also analyzed. This study provides a widely applicable technique for Doppler-free dual-comb spectroscopy of various gaseous species.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Double-resonance optical pumping of Rb atoms

Han Seb Moon, Lim Lee, and Jung Bog Kim
J. Opt. Soc. Am. B 24(9) 2157-2164 (2007)

Precision spectroscopy of Rb atoms using single comb-line selected from fiber optical frequency comb

Han Seb Moon, Han Young Ryu, Sung Hun Lee, and Ho Suhng Suh
Opt. Express 19(17) 15855-15863 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16(4), 2387–2397 (2008).
    [Crossref] [PubMed]
  2. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
    [Crossref] [PubMed]
  3. P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).
  4. J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
    [Crossref]
  5. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [Crossref] [PubMed]
  6. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
    [Crossref] [PubMed]
  7. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
    [Crossref]
  8. W. Demtröder, Laser Spectroscopy, 4th ed. (Springer, 2008), Vol. 2.
  9. D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A 80(5), 053806 (2009).
    [Crossref]
  10. S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5, 15114 (2015).
    [Crossref] [PubMed]
  11. A. Hipke, S. A. Meek, G. Guelachvili, T. W. Hänsch, and N. Picque, “Doppler-free broad spectral bandwidth two-photon spectroscopy with two laser frequency combs,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTh5C.8.
    [Crossref]
  12. N. Kuse, A. Ozawa, I. Ito, and Y. Kobayashi, “Dual-comb saturated absorption spectroscopy,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTu2I.1.
  13. A. Nishiyama, D. Ishikawa, and M. Misono, “High resolution molecular spectroscopic system assisted by an optical frequency comb,” J. Opt. Soc. Am. B 30(8), 2107–2112 (2013).
    [Crossref]
  14. A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).
    [Crossref]
  15. B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533(7604), 517–520 (2016).
    [Crossref] [PubMed]
  16. S. Kasahara, C. Fujiwara, N. Okada, H. Katô, and M. Baba, “Doppler-free optical-optical double resonance polarization spectroscopy of the 39K85Rb 11Π and 21Π states,” J. Chem. Phys. 111(19), 8857–8866 (1999).
    [Crossref]
  17. H. Wang, X. T. Wang, P. L. Gould, and W. C. Stwalley, “Optical-optical double resonance photoassociative spectroscopy of ultracold 39K atoms near highly excited asymptotes,” Phys. Rev. Lett. 78(22), 4173–4176 (1997).
    [Crossref]
  18. H. Sasada, “Wavenumber measurements of sub-Doppler spectral lines of Rb at 1.3 μm and 1.5 μm,” IEEE Photonics Technol. Lett. 4(11), 1307–1309 (1992).
    [Crossref]
  19. M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Têtu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44(2), 162–165 (1995).
    [Crossref]
  20. M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).
    [Crossref]
  21. B. Yang, Q. Liang, J. He, T. Zhang, and J. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81(4), 043803 (2010).
    [Crossref]
  22. H. R. Gray and C. R. Stroud., “Autler-Townes effect in double optical resonance,” Opt. Commun. 25(3), 359–362 (1978).
    [Crossref]
  23. S. Krishnamurthy, Y. Wang, Y. Tu, S. Tseng, and M. S. Shahriar, “Optically controlled polarizer using a ladder transition for high speed Stokesmetric imaging and quantum zeno effect based optical logic,” Opt. Express 21(21), 24514–24531 (2013).
    [Crossref] [PubMed]
  24. S. Okubo, Y.-D. Hsieh, H. Inaba, A. Onae, M. Hashimoto, and T. Yasui, “Near-infrared broadband dual-frequency-comb spectroscopy with a resolution beyond the Fourier limit determined by the observation time window,” Opt. Express 23(26), 33184–33193 (2015).
    [Crossref] [PubMed]
  25. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley, 2007).
  26. Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).
    [Crossref] [PubMed]
  27. W.-K. Lee and H. S. Moon, “Measurement of absolute frequencies and hyperfine structure constants of 4D5/2 and 4D3/2 levels of 87Rb and 85Rb using an optical frequency comb,” Phys. Rev. A 92(1), 012501 (2015).
    [Crossref]
  28. H. S. Moon, L. Lee, and J. B. Kim, “Double-resonance optical pumping of Rb atoms,” J. Opt. Soc. Am. B 24(9), 2157–2164 (2007).
    [Crossref]
  29. Y. Yoshikawa, T. Umeki, T. Mukae, Y. Torii, and T. Kuga, “Frequency stabilization of a laser diode with use of light-induced birefringence in an atomic vapor,” Appl. Opt. 42(33), 6645–6649 (2003).
    [Crossref] [PubMed]

2016 (3)

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533(7604), 517–520 (2016).
[Crossref] [PubMed]

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

2015 (4)

S. Okubo, Y.-D. Hsieh, H. Inaba, A. Onae, M. Hashimoto, and T. Yasui, “Near-infrared broadband dual-frequency-comb spectroscopy with a resolution beyond the Fourier limit determined by the observation time window,” Opt. Express 23(26), 33184–33193 (2015).
[Crossref] [PubMed]

A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).
[Crossref]

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5, 15114 (2015).
[Crossref] [PubMed]

W.-K. Lee and H. S. Moon, “Measurement of absolute frequencies and hyperfine structure constants of 4D5/2 and 4D3/2 levels of 87Rb and 85Rb using an optical frequency comb,” Phys. Rev. A 92(1), 012501 (2015).
[Crossref]

2013 (2)

2010 (2)

Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).
[Crossref] [PubMed]

B. Yang, Q. Liang, J. He, T. Zhang, and J. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81(4), 043803 (2010).
[Crossref]

2009 (3)

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A 80(5), 053806 (2009).
[Crossref]

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
[Crossref] [PubMed]

2008 (2)

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16(4), 2387–2397 (2008).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

2007 (2)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

H. S. Moon, L. Lee, and J. B. Kim, “Double-resonance optical pumping of Rb atoms,” J. Opt. Soc. Am. B 24(9), 2157–2164 (2007).
[Crossref]

2003 (1)

1999 (1)

S. Kasahara, C. Fujiwara, N. Okada, H. Katô, and M. Baba, “Doppler-free optical-optical double resonance polarization spectroscopy of the 39K85Rb 11Π and 21Π states,” J. Chem. Phys. 111(19), 8857–8866 (1999).
[Crossref]

1997 (1)

H. Wang, X. T. Wang, P. L. Gould, and W. C. Stwalley, “Optical-optical double resonance photoassociative spectroscopy of ultracold 39K atoms near highly excited asymptotes,” Phys. Rev. Lett. 78(22), 4173–4176 (1997).
[Crossref]

1995 (1)

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Têtu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44(2), 162–165 (1995).
[Crossref]

1993 (1)

M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).
[Crossref]

1992 (1)

H. Sasada, “Wavenumber measurements of sub-Doppler spectral lines of Rb at 1.3 μm and 1.5 μm,” IEEE Photonics Technol. Lett. 4(11), 1307–1309 (1992).
[Crossref]

1978 (1)

H. R. Gray and C. R. Stroud., “Autler-Townes effect in double optical resonance,” Opt. Commun. 25(3), 359–362 (1978).
[Crossref]

Baba, M.

S. Kasahara, C. Fujiwara, N. Okada, H. Katô, and M. Baba, “Doppler-free optical-optical double resonance polarization spectroscopy of the 39K85Rb 11Π and 21Π states,” J. Chem. Phys. 111(19), 8857–8866 (1999).
[Crossref]

Balslev-Clausen, D.

Bartels, A.

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A 80(5), 053806 (2009).
[Crossref]

Bjork, B. J.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533(7604), 517–520 (2016).
[Crossref] [PubMed]

Boucher, R.

M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).
[Crossref]

Braje, D. A.

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A 80(5), 053806 (2009).
[Crossref]

Breton, M.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Têtu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44(2), 162–165 (1995).
[Crossref]

M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).
[Crossref]

Changala, P. B.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533(7604), 517–520 (2016).
[Crossref] [PubMed]

Coddington, I.

Cyr, N.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Têtu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44(2), 162–165 (1995).
[Crossref]

M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).
[Crossref]

Diddams, S. A.

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A 80(5), 053806 (2009).
[Crossref]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Doyle, J. M.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533(7604), 517–520 (2016).
[Crossref] [PubMed]

Fermann, M. E.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).

Foltynowicz, A.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).

Fortier, T. M.

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A 80(5), 053806 (2009).
[Crossref]

Fujiwara, C.

S. Kasahara, C. Fujiwara, N. Okada, H. Katô, and M. Baba, “Doppler-free optical-optical double resonance polarization spectroscopy of the 39K85Rb 11Π and 21Π states,” J. Chem. Phys. 111(19), 8857–8866 (1999).
[Crossref]

Gould, P. L.

H. Wang, X. T. Wang, P. L. Gould, and W. C. Stwalley, “Optical-optical double resonance photoassociative spectroscopy of ultracold 39K atoms near highly excited asymptotes,” Phys. Rev. Lett. 78(22), 4173–4176 (1997).
[Crossref]

Gray, H. R.

H. R. Gray and C. R. Stroud., “Autler-Townes effect in double optical resonance,” Opt. Commun. 25(3), 359–362 (1978).
[Crossref]

Guelachvili, G.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

A. Hipke, S. A. Meek, G. Guelachvili, T. W. Hänsch, and N. Picque, “Doppler-free broad spectral bandwidth two-photon spectroscopy with two laser frequency combs,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTh5C.8.
[Crossref]

Hänsch, T. W.

A. Hipke, S. A. Meek, G. Guelachvili, T. W. Hänsch, and N. Picque, “Doppler-free broad spectral bandwidth two-photon spectroscopy with two laser frequency combs,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTh5C.8.
[Crossref]

Hashimoto, M.

He, J.

B. Yang, Q. Liang, J. He, T. Zhang, and J. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81(4), 043803 (2010).
[Crossref]

Heckl, O. H.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533(7604), 517–520 (2016).
[Crossref] [PubMed]

Heinecke, D. C.

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A 80(5), 053806 (2009).
[Crossref]

Hipke, A.

A. Hipke, S. A. Meek, G. Guelachvili, T. W. Hänsch, and N. Picque, “Doppler-free broad spectral bandwidth two-photon spectroscopy with two laser frequency combs,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTh5C.8.
[Crossref]

Hollberg, L.

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A 80(5), 053806 (2009).
[Crossref]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Hong, F.-L.

Hosaka, K.

Hsieh, Y.-D.

Inaba, H.

Ishikawa, D.

Ito, I.

N. Kuse, A. Ozawa, I. Ito, and Y. Kobayashi, “Dual-comb saturated absorption spectroscopy,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTu2I.1.

Jiang, J.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).

Johansson, A. C.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).

Julien, C.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Têtu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44(2), 162–165 (1995).
[Crossref]

Kasahara, S.

S. Kasahara, C. Fujiwara, N. Okada, H. Katô, and M. Baba, “Doppler-free optical-optical double resonance polarization spectroscopy of the 39K85Rb 11Π and 21Π states,” J. Chem. Phys. 111(19), 8857–8866 (1999).
[Crossref]

Katô, H.

S. Kasahara, C. Fujiwara, N. Okada, H. Katô, and M. Baba, “Doppler-free optical-optical double resonance polarization spectroscopy of the 39K85Rb 11Π and 21Π states,” J. Chem. Phys. 111(19), 8857–8866 (1999).
[Crossref]

Katsuyama, T.

Kawato, S.

Khodabakhsh, A.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).

Kim, J. B.

Kirchner, M. S.

Kobayashi, T.

Kobayashi, Y.

N. Kuse, A. Ozawa, I. Ito, and Y. Kobayashi, “Dual-comb saturated absorption spectroscopy,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTu2I.1.

Kohno, T.

Kowzan, G.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).

Krishnamurthy, S.

Kuga, T.

Kuse, N.

N. Kuse, A. Ozawa, I. Ito, and Y. Kobayashi, “Dual-comb saturated absorption spectroscopy,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTu2I.1.

Latrasse, C.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Têtu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44(2), 162–165 (1995).
[Crossref]

Lee, K. F.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).

Lee, L.

Lee, W.-K.

W.-K. Lee and H. S. Moon, “Measurement of absolute frequencies and hyperfine structure constants of 4D5/2 and 4D3/2 levels of 87Rb and 85Rb using an optical frequency comb,” Phys. Rev. A 92(1), 012501 (2015).
[Crossref]

Leng, J. X.

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5, 15114 (2015).
[Crossref] [PubMed]

Liang, Q.

B. Yang, Q. Liang, J. He, T. Zhang, and J. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81(4), 043803 (2010).
[Crossref]

Mandon, J.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

Maslowski, P.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).

Matsuba, A.

A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).
[Crossref]

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Meek, S. A.

A. Hipke, S. A. Meek, G. Guelachvili, T. W. Hänsch, and N. Picque, “Doppler-free broad spectral bandwidth two-photon spectroscopy with two laser frequency combs,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTh5C.8.
[Crossref]

Mills, A. A.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).

Minoshima, K.

Misono, M.

A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).
[Crossref]

A. Nishiyama, D. Ishikawa, and M. Misono, “High resolution molecular spectroscopic system assisted by an optical frequency comb,” J. Opt. Soc. Am. B 30(8), 2107–2112 (2013).
[Crossref]

Mohr, C.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).

Moon, H. S.

W.-K. Lee and H. S. Moon, “Measurement of absolute frequencies and hyperfine structure constants of 4D5/2 and 4D3/2 levels of 87Rb and 85Rb using an optical frequency comb,” Phys. Rev. A 92(1), 012501 (2015).
[Crossref]

H. S. Moon, L. Lee, and J. B. Kim, “Double-resonance optical pumping of Rb atoms,” J. Opt. Soc. Am. B 24(9), 2157–2164 (2007).
[Crossref]

Mukae, T.

Nakajima, Y.

Nakashima, K.

A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).
[Crossref]

Newbury, N.

Newbury, N. R.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Nishiyama, A.

A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).
[Crossref]

A. Nishiyama, D. Ishikawa, and M. Misono, “High resolution molecular spectroscopic system assisted by an optical frequency comb,” J. Opt. Soc. Am. B 30(8), 2107–2112 (2013).
[Crossref]

Okada, N.

S. Kasahara, C. Fujiwara, N. Okada, H. Katô, and M. Baba, “Doppler-free optical-optical double resonance polarization spectroscopy of the 39K85Rb 11Π and 21Π states,” J. Chem. Phys. 111(19), 8857–8866 (1999).
[Crossref]

Okubo, S.

Onae, A.

Ozawa, A.

N. Kuse, A. Ozawa, I. Ito, and Y. Kobayashi, “Dual-comb saturated absorption spectroscopy,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTu2I.1.

Patterson, D.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533(7604), 517–520 (2016).
[Crossref] [PubMed]

Picque, N.

A. Hipke, S. A. Meek, G. Guelachvili, T. W. Hänsch, and N. Picque, “Doppler-free broad spectral bandwidth two-photon spectroscopy with two laser frequency combs,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTh5C.8.
[Crossref]

Picqué, N.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

Rutkowski, L.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).

Sasada, H.

H. Sasada, “Wavenumber measurements of sub-Doppler spectral lines of Rb at 1.3 μm and 1.5 μm,” IEEE Photonics Technol. Lett. 4(11), 1307–1309 (1992).
[Crossref]

Shahriar, M. S.

Spaun, B.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533(7604), 517–520 (2016).
[Crossref] [PubMed]

Stroud, C. R.

H. R. Gray and C. R. Stroud., “Autler-Townes effect in double optical resonance,” Opt. Commun. 25(3), 359–362 (1978).
[Crossref]

Stwalley, W. C.

H. Wang, X. T. Wang, P. L. Gould, and W. C. Stwalley, “Optical-optical double resonance photoassociative spectroscopy of ultracold 39K atoms near highly excited asymptotes,” Phys. Rev. Lett. 78(22), 4173–4176 (1997).
[Crossref]

Swann, W.

Swann, W. C.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Têtu, M.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Têtu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44(2), 162–165 (1995).
[Crossref]

M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).
[Crossref]

Thorpe, M. J.

Torii, Y.

Tremblay, P.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Têtu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44(2), 162–165 (1995).
[Crossref]

M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).
[Crossref]

Tseng, S.

Tu, Y.

Umeki, T.

Wang, H.

H. Wang, X. T. Wang, P. L. Gould, and W. C. Stwalley, “Optical-optical double resonance photoassociative spectroscopy of ultracold 39K atoms near highly excited asymptotes,” Phys. Rev. Lett. 78(22), 4173–4176 (1997).
[Crossref]

Wang, J.

B. Yang, Q. Liang, J. He, T. Zhang, and J. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81(4), 043803 (2010).
[Crossref]

Wang, X. T.

H. Wang, X. T. Wang, P. L. Gould, and W. C. Stwalley, “Optical-optical double resonance photoassociative spectroscopy of ultracold 39K atoms near highly excited asymptotes,” Phys. Rev. Lett. 78(22), 4173–4176 (1997).
[Crossref]

Wang, Y.

Wu, J. T.

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5, 15114 (2015).
[Crossref] [PubMed]

Yang, B.

B. Yang, Q. Liang, J. He, T. Zhang, and J. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81(4), 043803 (2010).
[Crossref]

Yang, W. P.

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5, 15114 (2015).
[Crossref] [PubMed]

Yasuda, M.

Yasui, T.

Ye, J.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533(7604), 517–520 (2016).
[Crossref] [PubMed]

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16(4), 2387–2397 (2008).
[Crossref] [PubMed]

Yoshikawa, Y.

Zhang, S. Y.

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5, 15114 (2015).
[Crossref] [PubMed]

Zhang, T.

B. Yang, Q. Liang, J. He, T. Zhang, and J. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81(4), 043803 (2010).
[Crossref]

Zhang, Y. L.

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5, 15114 (2015).
[Crossref] [PubMed]

Zhang, Z. G.

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5, 15114 (2015).
[Crossref] [PubMed]

Zhao, J. Y.

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5, 15114 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

IEEE Photonics Technol. Lett. (1)

H. Sasada, “Wavenumber measurements of sub-Doppler spectral lines of Rb at 1.3 μm and 1.5 μm,” IEEE Photonics Technol. Lett. 4(11), 1307–1309 (1992).
[Crossref]

IEEE Trans. Instrum. Meas. (2)

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Têtu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44(2), 162–165 (1995).
[Crossref]

M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).
[Crossref]

J. Chem. Phys. (1)

S. Kasahara, C. Fujiwara, N. Okada, H. Katô, and M. Baba, “Doppler-free optical-optical double resonance polarization spectroscopy of the 39K85Rb 11Π and 21Π states,” J. Chem. Phys. 111(19), 8857–8866 (1999).
[Crossref]

J. Mol. Spectrosc. (1)

A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

Nature (2)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533(7604), 517–520 (2016).
[Crossref] [PubMed]

Opt. Commun. (1)

H. R. Gray and C. R. Stroud., “Autler-Townes effect in double optical resonance,” Opt. Commun. 25(3), 359–362 (1978).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Optica (1)

Phys. Rev. A (4)

W.-K. Lee and H. S. Moon, “Measurement of absolute frequencies and hyperfine structure constants of 4D5/2 and 4D3/2 levels of 87Rb and 85Rb using an optical frequency comb,” Phys. Rev. A 92(1), 012501 (2015).
[Crossref]

B. Yang, Q. Liang, J. He, T. Zhang, and J. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81(4), 043803 (2010).
[Crossref]

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A 80(5), 053806 (2009).
[Crossref]

Phys. Rev. Lett. (2)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

H. Wang, X. T. Wang, P. L. Gould, and W. C. Stwalley, “Optical-optical double resonance photoassociative spectroscopy of ultracold 39K atoms near highly excited asymptotes,” Phys. Rev. Lett. 78(22), 4173–4176 (1997).
[Crossref]

Sci. Rep. (1)

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5, 15114 (2015).
[Crossref] [PubMed]

Other (4)

A. Hipke, S. A. Meek, G. Guelachvili, T. W. Hänsch, and N. Picque, “Doppler-free broad spectral bandwidth two-photon spectroscopy with two laser frequency combs,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTh5C.8.
[Crossref]

N. Kuse, A. Ozawa, I. Ito, and Y. Kobayashi, “Dual-comb saturated absorption spectroscopy,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTu2I.1.

W. Demtröder, Laser Spectroscopy, 4th ed. (Springer, 2008), Vol. 2.

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Energy level diagram for 87Rb. Pump laser excites 5S1/2 - 5P3/2 transition, and dual-comb spectroscopy is used to measure transitions to 4D5/2 and 4D3/2 states. (b) Principle of OODR spectroscopy.

Fig. 2
Fig. 2

Schematic diagram of OODR dual-comb system. ECDL: External-cavity diode laser, EOM: Electro-optic modulator, AOM: Acousto-optic modulator, BPF: Optical band-pass filter.

Fig. 3
Fig. 3

(a) Schematic of setup used to measure relative beat between relatively stabilized signal and local combs. (b) Relative beat spectrum measured by FFT network analyzer.

Fig. 4
Fig. 4

(a) Schematic of setup used to measure relative beat between signal comb (Signal comb 1) and another RF-stabilized comb (Signal comb 2). Repetition and offset frequencies of each comb were locked to RF signals independently. (b) Relative beat spectrum between independently stabilized combs. RF-stabilized comb mode linewidth (Δνcomb) was derived from observed beat spectrum linewidth.

Fig. 5
Fig. 5

Observed interferogram obtained by averaging over 200 s. Magnified views of (a) center burst signal and (b) free-induction decay. (c) Spectrum (195.92-196.11 THz) obtained from FFTs of 17 interferograms. Absorptions corresponding to 5P3/2 - 4D5/2 and 5P3/2 - 4D3/2 transitions are observable.

Fig. 6
Fig. 6

Normalized OODR spectra and fitted Lorentz functions of (a) 5P3/2 - 4D5/2 transition (196.0233-196.0242 THz) and (b) 5P3/2 - 4D3/2transition (196.03675-196.03765 THz) of 87Rb. Transition frequencies reported in [27] are shown by vertical lines and circles. Hyperfine transition assignments are presented above the graphs.

Fig. 7
Fig. 7

(a) Variation of spectral line shape of 5P3/2 ( = 3) - 4D5/2 transition with pump power. (b) FWHM of 5P3/2 ( = 3) - 4D5/2 (F = 4) spectrum versus pump laser power.

Fig. 8
Fig. 8

(a) 5P3/2 ( = 3) - 4D5/2 transition spectra obtained using counter-propagating beams and various pump powers. (b) Splitting introduced by Autler-Townes effect versus square root of pump laser power. Blue line represents linear fit.

Fig. 9
Fig. 9

OODR spectrum of 5P3/2 - 4D5/2 transition obtained using circularly polarized pump laser.

Fig. 10
Fig. 10

(a) Experimental setup for polarization dual-comb OODR spectroscopy. (b) Polarization OODR spectrum of 5P3/2 ( = 3) - 4D5/2 transition.

Tables (1)

Tables Icon

Table 1 Absolute Frequencies of Observed Spectra in This Work and Previous Worka

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Γ OODR = ν comb ν pump ( Γ i +Δ ν pump )+( Γ i + Γ f +Δ ν comb ),

Metrics