P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).

[Crossref]

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533(7604), 517–520 (2016).

[Crossref]
[PubMed]

A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).

[Crossref]

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5, 15114 (2015).

[Crossref]
[PubMed]

S. Okubo, Y.-D. Hsieh, H. Inaba, A. Onae, M. Hashimoto, and T. Yasui, “Near-infrared broadband dual-frequency-comb spectroscopy with a resolution beyond the Fourier limit determined by the observation time window,” Opt. Express 23(26), 33184–33193 (2015).

[Crossref]
[PubMed]

W.-K. Lee and H. S. Moon, “Measurement of absolute frequencies and hyperfine structure constants of 4D5/2 and 4D3/2 levels of 87Rb and 85Rb using an optical frequency comb,” Phys. Rev. A 92(1), 012501 (2015).

[Crossref]

S. Krishnamurthy, Y. Wang, Y. Tu, S. Tseng, and M. S. Shahriar, “Optically controlled polarizer using a ladder transition for high speed Stokesmetric imaging and quantum zeno effect based optical logic,” Opt. Express 21(21), 24514–24531 (2013).

[Crossref]
[PubMed]

A. Nishiyama, D. Ishikawa, and M. Misono, “High resolution molecular spectroscopic system assisted by an optical frequency comb,” J. Opt. Soc. Am. B 30(8), 2107–2112 (2013).

[Crossref]

Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).

[Crossref]
[PubMed]

B. Yang, Q. Liang, J. He, T. Zhang, and J. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81(4), 043803 (2010).

[Crossref]

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A 80(5), 053806 (2009).

[Crossref]

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).

[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).

[Crossref]
[PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).

[Crossref]
[PubMed]

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16(4), 2387–2397 (2008).

[Crossref]
[PubMed]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).

[Crossref]
[PubMed]

H. S. Moon, L. Lee, and J. B. Kim, “Double-resonance optical pumping of Rb atoms,” J. Opt. Soc. Am. B 24(9), 2157–2164 (2007).

[Crossref]

S. Kasahara, C. Fujiwara, N. Okada, H. Katô, and M. Baba, “Doppler-free optical-optical double resonance polarization spectroscopy of the 39K85Rb 11Π and 21Π states,” J. Chem. Phys. 111(19), 8857–8866 (1999).

[Crossref]

H. Wang, X. T. Wang, P. L. Gould, and W. C. Stwalley, “Optical-optical double resonance photoassociative spectroscopy of ultracold 39K atoms near highly excited asymptotes,” Phys. Rev. Lett. 78(22), 4173–4176 (1997).

[Crossref]

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Têtu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44(2), 162–165 (1995).

[Crossref]

M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).

[Crossref]

H. Sasada, “Wavenumber measurements of sub-Doppler spectral lines of Rb at 1.3 μm and 1.5 μm,” IEEE Photonics Technol. Lett. 4(11), 1307–1309 (1992).

[Crossref]

H. R. Gray and C. R. Stroud., “Autler-Townes effect in double optical resonance,” Opt. Commun. 25(3), 359–362 (1978).

[Crossref]

S. Kasahara, C. Fujiwara, N. Okada, H. Katô, and M. Baba, “Doppler-free optical-optical double resonance polarization spectroscopy of the 39K85Rb 11Π and 21Π states,” J. Chem. Phys. 111(19), 8857–8866 (1999).

[Crossref]

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A 80(5), 053806 (2009).

[Crossref]

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533(7604), 517–520 (2016).

[Crossref]
[PubMed]

M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).

[Crossref]

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A 80(5), 053806 (2009).

[Crossref]

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Têtu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44(2), 162–165 (1995).

[Crossref]

M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).

[Crossref]

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533(7604), 517–520 (2016).

[Crossref]
[PubMed]

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).

[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).

[Crossref]
[PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).

[Crossref]
[PubMed]

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Têtu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44(2), 162–165 (1995).

[Crossref]

M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).

[Crossref]

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A 80(5), 053806 (2009).

[Crossref]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).

[Crossref]
[PubMed]

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533(7604), 517–520 (2016).

[Crossref]
[PubMed]

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A 80(5), 053806 (2009).

[Crossref]

S. Kasahara, C. Fujiwara, N. Okada, H. Katô, and M. Baba, “Doppler-free optical-optical double resonance polarization spectroscopy of the 39K85Rb 11Π and 21Π states,” J. Chem. Phys. 111(19), 8857–8866 (1999).

[Crossref]

H. Wang, X. T. Wang, P. L. Gould, and W. C. Stwalley, “Optical-optical double resonance photoassociative spectroscopy of ultracold 39K atoms near highly excited asymptotes,” Phys. Rev. Lett. 78(22), 4173–4176 (1997).

[Crossref]

H. R. Gray and C. R. Stroud., “Autler-Townes effect in double optical resonance,” Opt. Commun. 25(3), 359–362 (1978).

[Crossref]

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).

[Crossref]

A. Hipke, S. A. Meek, G. Guelachvili, T. W. Hänsch, and N. Picque, “Doppler-free broad spectral bandwidth two-photon spectroscopy with two laser frequency combs,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTh5C.8.

[Crossref]

A. Hipke, S. A. Meek, G. Guelachvili, T. W. Hänsch, and N. Picque, “Doppler-free broad spectral bandwidth two-photon spectroscopy with two laser frequency combs,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTh5C.8.

[Crossref]

B. Yang, Q. Liang, J. He, T. Zhang, and J. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81(4), 043803 (2010).

[Crossref]

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533(7604), 517–520 (2016).

[Crossref]
[PubMed]

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A 80(5), 053806 (2009).

[Crossref]

A. Hipke, S. A. Meek, G. Guelachvili, T. W. Hänsch, and N. Picque, “Doppler-free broad spectral bandwidth two-photon spectroscopy with two laser frequency combs,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTh5C.8.

[Crossref]

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A 80(5), 053806 (2009).

[Crossref]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).

[Crossref]
[PubMed]

Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).

[Crossref]
[PubMed]

Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).

[Crossref]
[PubMed]

S. Okubo, Y.-D. Hsieh, H. Inaba, A. Onae, M. Hashimoto, and T. Yasui, “Near-infrared broadband dual-frequency-comb spectroscopy with a resolution beyond the Fourier limit determined by the observation time window,” Opt. Express 23(26), 33184–33193 (2015).

[Crossref]
[PubMed]

Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).

[Crossref]
[PubMed]

N. Kuse, A. Ozawa, I. Ito, and Y. Kobayashi, “Dual-comb saturated absorption spectroscopy,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTu2I.1.

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Têtu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44(2), 162–165 (1995).

[Crossref]

S. Kasahara, C. Fujiwara, N. Okada, H. Katô, and M. Baba, “Doppler-free optical-optical double resonance polarization spectroscopy of the 39K85Rb 11Π and 21Π states,” J. Chem. Phys. 111(19), 8857–8866 (1999).

[Crossref]

S. Kasahara, C. Fujiwara, N. Okada, H. Katô, and M. Baba, “Doppler-free optical-optical double resonance polarization spectroscopy of the 39K85Rb 11Π and 21Π states,” J. Chem. Phys. 111(19), 8857–8866 (1999).

[Crossref]

Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).

[Crossref]
[PubMed]

Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).

[Crossref]
[PubMed]

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).

Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).

[Crossref]
[PubMed]

N. Kuse, A. Ozawa, I. Ito, and Y. Kobayashi, “Dual-comb saturated absorption spectroscopy,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTu2I.1.

Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).

[Crossref]
[PubMed]

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).

N. Kuse, A. Ozawa, I. Ito, and Y. Kobayashi, “Dual-comb saturated absorption spectroscopy,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTu2I.1.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Têtu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44(2), 162–165 (1995).

[Crossref]

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).

W.-K. Lee and H. S. Moon, “Measurement of absolute frequencies and hyperfine structure constants of 4D5/2 and 4D3/2 levels of 87Rb and 85Rb using an optical frequency comb,” Phys. Rev. A 92(1), 012501 (2015).

[Crossref]

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5, 15114 (2015).

[Crossref]
[PubMed]

B. Yang, Q. Liang, J. He, T. Zhang, and J. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81(4), 043803 (2010).

[Crossref]

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).

[Crossref]

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).

A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).

[Crossref]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).

[Crossref]
[PubMed]

A. Hipke, S. A. Meek, G. Guelachvili, T. W. Hänsch, and N. Picque, “Doppler-free broad spectral bandwidth two-photon spectroscopy with two laser frequency combs,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTh5C.8.

[Crossref]

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).

Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).

[Crossref]
[PubMed]

A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).

[Crossref]

A. Nishiyama, D. Ishikawa, and M. Misono, “High resolution molecular spectroscopic system assisted by an optical frequency comb,” J. Opt. Soc. Am. B 30(8), 2107–2112 (2013).

[Crossref]

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).

Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).

[Crossref]
[PubMed]

A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).

[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).

[Crossref]
[PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).

[Crossref]
[PubMed]

A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).

[Crossref]

A. Nishiyama, D. Ishikawa, and M. Misono, “High resolution molecular spectroscopic system assisted by an optical frequency comb,” J. Opt. Soc. Am. B 30(8), 2107–2112 (2013).

[Crossref]

S. Kasahara, C. Fujiwara, N. Okada, H. Katô, and M. Baba, “Doppler-free optical-optical double resonance polarization spectroscopy of the 39K85Rb 11Π and 21Π states,” J. Chem. Phys. 111(19), 8857–8866 (1999).

[Crossref]

S. Okubo, Y.-D. Hsieh, H. Inaba, A. Onae, M. Hashimoto, and T. Yasui, “Near-infrared broadband dual-frequency-comb spectroscopy with a resolution beyond the Fourier limit determined by the observation time window,” Opt. Express 23(26), 33184–33193 (2015).

[Crossref]
[PubMed]

Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).

[Crossref]
[PubMed]

N. Kuse, A. Ozawa, I. Ito, and Y. Kobayashi, “Dual-comb saturated absorption spectroscopy,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTu2I.1.

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533(7604), 517–520 (2016).

[Crossref]
[PubMed]

A. Hipke, S. A. Meek, G. Guelachvili, T. W. Hänsch, and N. Picque, “Doppler-free broad spectral bandwidth two-photon spectroscopy with two laser frequency combs,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTh5C.8.

[Crossref]

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).

[Crossref]

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).

H. Sasada, “Wavenumber measurements of sub-Doppler spectral lines of Rb at 1.3 μm and 1.5 μm,” IEEE Photonics Technol. Lett. 4(11), 1307–1309 (1992).

[Crossref]

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533(7604), 517–520 (2016).

[Crossref]
[PubMed]

H. R. Gray and C. R. Stroud., “Autler-Townes effect in double optical resonance,” Opt. Commun. 25(3), 359–362 (1978).

[Crossref]

H. Wang, X. T. Wang, P. L. Gould, and W. C. Stwalley, “Optical-optical double resonance photoassociative spectroscopy of ultracold 39K atoms near highly excited asymptotes,” Phys. Rev. Lett. 78(22), 4173–4176 (1997).

[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).

[Crossref]
[PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).

[Crossref]
[PubMed]

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Têtu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44(2), 162–165 (1995).

[Crossref]

M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).

[Crossref]

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Têtu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44(2), 162–165 (1995).

[Crossref]

M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).

[Crossref]

H. Wang, X. T. Wang, P. L. Gould, and W. C. Stwalley, “Optical-optical double resonance photoassociative spectroscopy of ultracold 39K atoms near highly excited asymptotes,” Phys. Rev. Lett. 78(22), 4173–4176 (1997).

[Crossref]

B. Yang, Q. Liang, J. He, T. Zhang, and J. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81(4), 043803 (2010).

[Crossref]

H. Wang, X. T. Wang, P. L. Gould, and W. C. Stwalley, “Optical-optical double resonance photoassociative spectroscopy of ultracold 39K atoms near highly excited asymptotes,” Phys. Rev. Lett. 78(22), 4173–4176 (1997).

[Crossref]

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5, 15114 (2015).

[Crossref]
[PubMed]

B. Yang, Q. Liang, J. He, T. Zhang, and J. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81(4), 043803 (2010).

[Crossref]

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5, 15114 (2015).

[Crossref]
[PubMed]

Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).

[Crossref]
[PubMed]

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533(7604), 517–520 (2016).

[Crossref]
[PubMed]

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16(4), 2387–2397 (2008).

[Crossref]
[PubMed]

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5, 15114 (2015).

[Crossref]
[PubMed]

B. Yang, Q. Liang, J. He, T. Zhang, and J. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81(4), 043803 (2010).

[Crossref]

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5, 15114 (2015).

[Crossref]
[PubMed]

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5, 15114 (2015).

[Crossref]
[PubMed]

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5, 15114 (2015).

[Crossref]
[PubMed]

H. Sasada, “Wavenumber measurements of sub-Doppler spectral lines of Rb at 1.3 μm and 1.5 μm,” IEEE Photonics Technol. Lett. 4(11), 1307–1309 (1992).

[Crossref]

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Têtu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44(2), 162–165 (1995).

[Crossref]

M. Breton, N. Cyr, P. Tremblay, M. Têtu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).

[Crossref]

S. Kasahara, C. Fujiwara, N. Okada, H. Katô, and M. Baba, “Doppler-free optical-optical double resonance polarization spectroscopy of the 39K85Rb 11Π and 21Π states,” J. Chem. Phys. 111(19), 8857–8866 (1999).

[Crossref]

A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).

[Crossref]

A. Nishiyama, D. Ishikawa, and M. Misono, “High resolution molecular spectroscopic system assisted by an optical frequency comb,” J. Opt. Soc. Am. B 30(8), 2107–2112 (2013).

[Crossref]

H. S. Moon, L. Lee, and J. B. Kim, “Double-resonance optical pumping of Rb atoms,” J. Opt. Soc. Am. B 24(9), 2157–2164 (2007).

[Crossref]

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).

[Crossref]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).

[Crossref]
[PubMed]

B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, “Continuous probing of cold complex molecules with infrared frequency comb spectroscopy,” Nature 533(7604), 517–520 (2016).

[Crossref]
[PubMed]

H. R. Gray and C. R. Stroud., “Autler-Townes effect in double optical resonance,” Opt. Commun. 25(3), 359–362 (1978).

[Crossref]

S. Krishnamurthy, Y. Wang, Y. Tu, S. Tseng, and M. S. Shahriar, “Optically controlled polarizer using a ladder transition for high speed Stokesmetric imaging and quantum zeno effect based optical logic,” Opt. Express 21(21), 24514–24531 (2013).

[Crossref]
[PubMed]

S. Okubo, Y.-D. Hsieh, H. Inaba, A. Onae, M. Hashimoto, and T. Yasui, “Near-infrared broadband dual-frequency-comb spectroscopy with a resolution beyond the Fourier limit determined by the observation time window,” Opt. Express 23(26), 33184–33193 (2015).

[Crossref]
[PubMed]

Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).

[Crossref]
[PubMed]

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16(4), 2387–2397 (2008).

[Crossref]
[PubMed]

P. Maslowski, K. F. Lee, A. C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A. A. Mills, C. Mohr, J. Jiang, M. E. Fermann, and A. Foltynowicz, “Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs,” Phys. Rev. A 93(2), 021802 (2016).

D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium,” Phys. Rev. A 80(5), 053806 (2009).

[Crossref]

W.-K. Lee and H. S. Moon, “Measurement of absolute frequencies and hyperfine structure constants of 4D5/2 and 4D3/2 levels of 87Rb and 85Rb using an optical frequency comb,” Phys. Rev. A 92(1), 012501 (2015).

[Crossref]

B. Yang, Q. Liang, J. He, T. Zhang, and J. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81(4), 043803 (2010).

[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).

[Crossref]
[PubMed]

H. Wang, X. T. Wang, P. L. Gould, and W. C. Stwalley, “Optical-optical double resonance photoassociative spectroscopy of ultracold 39K atoms near highly excited asymptotes,” Phys. Rev. Lett. 78(22), 4173–4176 (1997).

[Crossref]

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5, 15114 (2015).

[Crossref]
[PubMed]

A. Hipke, S. A. Meek, G. Guelachvili, T. W. Hänsch, and N. Picque, “Doppler-free broad spectral bandwidth two-photon spectroscopy with two laser frequency combs,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTh5C.8.

[Crossref]

N. Kuse, A. Ozawa, I. Ito, and Y. Kobayashi, “Dual-comb saturated absorption spectroscopy,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTu2I.1.

W. Demtröder, Laser Spectroscopy, 4th ed. (Springer, 2008), Vol. 2.

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley, 2007).