Abstract

Abstract: We report a theoretical and experimental study on a novel type of aluminum super absorber which exhibits a near perfect absorption based on the surface plasmon resonance in the visible and near-infrared spectrum. The absorber consists of Ag/SiO2/Al triple layers in which the top Al layer is patterned by a periodic nano hole array. The absorption spectrum can be easily controlled by adjusting the structure parameters including the radius of the nano hole and the maximal absorption can reach 99.0% in theory. We completely analyze the SPP and LSP modes supported by the metal-dielectric-metal structure and their contribution to the ultrahigh absorption. On this basis, we find a novel method to enhance the absorption via the simultaneous excitation of SPP at different interfaces theoretically and experimentally. Moreover, for the first time we clarify the EOT caused by the nano hole array can enhance the absorption by experiment, which is not reported in previous works. This kind of absorber can be fabricated by low-cost colloidal sphere lithography and the use of stable Al overcomes the disadvantages brought by the noble metal, which make it a more appropriate candidate for photovoltaics, spectroscopy, photodetectors, sensing, and surface enhanced Raman scattering.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Extraordinary optical transmission based on subwavelength metallic grating with ellipse walls

Yuzhang Liang, Wei Peng, Rui Hu, and Helin Zou
Opt. Express 21(5) 6139-6152 (2013)

Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays

Mohamadreza Najiminaini, Fartash Vasefi, Bozena Kaminska, and Jeffrey J. L. Carson
Opt. Express 18(21) 22255-22270 (2010)

Plasmonic Bragg reflectors for enhanced extraordinary optical transmission through nano-hole arrays in a gold film

Pramodha Marthandam and Reuven Gordon
Opt. Express 15(20) 12995-13002 (2007)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
    [PubMed]
  2. S. Y. Chou and W. Ding, “Ultrathin, high-efficiency, broad-band, omniacceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array,” Opt. Express 21(S1), 60–76 (2013).
    [Crossref]
  3. Y. H. Su, Y. F. Ke, S. L. Cai, and Q. Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light Sci. Appl. 1(6), e14 (2012).
    [Crossref]
  4. H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
    [Crossref] [PubMed]
  5. B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
    [Crossref]
  6. C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
    [Crossref]
  7. W. W. Salisbury, “Absorbent body for electromagnetic waves,” U. S. patent 2599944 (June 10, 1952).
  8. A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic nanohole arrays on a robust hybrid substrate for highly sensitive label-free biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
    [Crossref]
  9. C. Valsecchi and A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
    [Crossref] [PubMed]
  10. D. Z. Lin, Y. P. Chen, P. J. Jhuang, J. Y. Chu, J. T. Yeh, and J. K. Wang, “Optimizing electromagnetic enhancement of flexible nano-imprinted hexagonally patterned surface-enhanced Raman scattering substrates,” Opt. Express 19(5), 4337–4345 (2011).
    [Crossref] [PubMed]
  11. G. Dayal and S. A. Ramakrishna, “Design of highly absorbing metamaterials for infrared frequencies,” Opt. Express 20(16), 17503–17508 (2012).
    [Crossref] [PubMed]
  12. J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, and Q. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express 20(14), 14871–14878 (2012).
    [Crossref] [PubMed]
  13. C. F. Guo, T. Y. Sun, F. Cao, Q. Liu, and Z. F. Ren, “Metallic nanostructures for light trapping in energy harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
    [Crossref]
  14. Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
    [Crossref] [PubMed]
  15. G. Li, Y. Shen, G. Xiao, and C. Jin, “Double-layered metal grating for high-performance refractive index sensing,” Opt. Express 23(7), 8995–9003 (2015).
    [Crossref] [PubMed]
  16. N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B 75(23), 235426 (2007).
    [Crossref]
  17. F. Cheng, X. Yang, D. Rosenmann, L. Stan, D. Czaplewski, and J. Gao, “Enhanced structural color generation in aluminum metamaterials coated with a thin polymer layer,” Opt. Express 23(19), 25329–25339 (2015).
    [Crossref] [PubMed]
  18. F. Cheng, J. Gao, L. Stan, D. Rosenmann, D. Czaplewski, and X. Yang, “Aluminum plasmonic metamaterials for structural color printing,” Opt. Express 23(11), 14552–14560 (2015).
    [Crossref] [PubMed]
  19. Z. Y. Fang, Y. R. Zhen, L. R. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 245401 (2012).
    [Crossref]
  20. J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [Crossref]
  21. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  22. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
    [Crossref]
  23. W. Yue, Z. Wang, Y. Yang, J. Li, Y. Wu, L. Chen, B. Ooi, X. Wang, and X. X. Zhang, “Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications,” Nanoscale 6(14), 7917–7923 (2014).
    [Crossref] [PubMed]
  24. S. Shu and Y. Y. Li, “Triple-layer Fabry-Perot/SPP aluminum absorber in the visible and near-infrared region,” Opt. Lett. 40(6), 934–937 (2015).
    [Crossref] [PubMed]
  25. J. Yu, Q. Yan, and D. Shen, “Co-self-assembly of binary colloidal crystals at the air-water interface,” ACS Appl. Mater. Interfaces 2(7), 1922–1926 (2010).
    [Crossref] [PubMed]
  26. S. H. Lee, K. C. Bantz, N. C. Lindquist, S. H. Oh, and C. L. Haynes, “Self-assembled plasmonic nanohole arrays,” Langmuir 25(23), 13685–13693 (2009).
    [Crossref] [PubMed]
  27. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  28. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]

2015 (5)

2014 (4)

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref] [PubMed]

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

W. Yue, Z. Wang, Y. Yang, J. Li, Y. Wu, L. Chen, B. Ooi, X. Wang, and X. X. Zhang, “Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications,” Nanoscale 6(14), 7917–7923 (2014).
[Crossref] [PubMed]

C. F. Guo, T. Y. Sun, F. Cao, Q. Liu, and Z. F. Ren, “Metallic nanostructures for light trapping in energy harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

2013 (3)

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

C. Valsecchi and A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
[Crossref] [PubMed]

S. Y. Chou and W. Ding, “Ultrathin, high-efficiency, broad-band, omniacceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array,” Opt. Express 21(S1), 60–76 (2013).
[Crossref]

2012 (5)

J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, and Q. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express 20(14), 14871–14878 (2012).
[Crossref] [PubMed]

G. Dayal and S. A. Ramakrishna, “Design of highly absorbing metamaterials for infrared frequencies,” Opt. Express 20(16), 17503–17508 (2012).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Z. Y. Fang, Y. R. Zhen, L. R. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 245401 (2012).
[Crossref]

Y. H. Su, Y. F. Ke, S. L. Cai, and Q. Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light Sci. Appl. 1(6), e14 (2012).
[Crossref]

2011 (1)

2010 (3)

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[Crossref] [PubMed]

J. Yu, Q. Yan, and D. Shen, “Co-self-assembly of binary colloidal crystals at the air-water interface,” ACS Appl. Mater. Interfaces 2(7), 1922–1926 (2010).
[Crossref] [PubMed]

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

2009 (1)

S. H. Lee, K. C. Bantz, N. C. Lindquist, S. H. Oh, and C. L. Haynes, “Self-assembled plasmonic nanohole arrays,” Langmuir 25(23), 13685–13693 (2009).
[Crossref] [PubMed]

2007 (2)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B 75(23), 235426 (2007).
[Crossref]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Altug, H.

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic nanohole arrays on a robust hybrid substrate for highly sensitive label-free biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

Alu, A.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

Argyropoulos, C.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

Baik, K. Y.

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Banaee, M. G.

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[Crossref] [PubMed]

Bantz, K. C.

S. H. Lee, K. C. Bantz, N. C. Lindquist, S. H. Oh, and C. L. Haynes, “Self-assembled plasmonic nanohole arrays,” Langmuir 25(23), 13685–13693 (2009).
[Crossref] [PubMed]

Brolo, A. G.

C. Valsecchi and A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
[Crossref] [PubMed]

Brongersma, M. L.

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref] [PubMed]

Busson, M. P.

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic nanohole arrays on a robust hybrid substrate for highly sensitive label-free biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

Cai, G.

Cai, S. L.

Y. H. Su, Y. F. Ke, S. L. Cai, and Q. Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light Sci. Appl. 1(6), e14 (2012).
[Crossref]

Cao, F.

C. F. Guo, T. Y. Sun, F. Cao, Q. Liu, and Z. F. Ren, “Metallic nanostructures for light trapping in energy harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Cetin, A. E.

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic nanohole arrays on a robust hybrid substrate for highly sensitive label-free biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

Chalabi, H.

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref] [PubMed]

Chen, L.

W. Yue, Z. Wang, Y. Yang, J. Li, Y. Wu, L. Chen, B. Ooi, X. Wang, and X. X. Zhang, “Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications,” Nanoscale 6(14), 7917–7923 (2014).
[Crossref] [PubMed]

Chen, Y. P.

Cheng, F.

Cheng, Y.

Cho, C. Y.

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Cho, G. S.

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Choi, E. H.

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Chou, S. Y.

Chu, J. Y.

Chu, Y.

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[Crossref] [PubMed]

Crozier, K. B.

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[Crossref] [PubMed]

Czaplewski, D.

D’Aguanno, G.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

Dayal, G.

Ding, P.

Ding, W.

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Eksioglu, Y.

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic nanohole arrays on a robust hybrid substrate for highly sensitive label-free biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

Etezadi, D.

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic nanohole arrays on a robust hybrid substrate for highly sensitive label-free biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

Fan, C.

Fan, L. R.

Z. Y. Fang, Y. R. Zhen, L. R. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 245401 (2012).
[Crossref]

Fang, Z. Y.

Z. Y. Fang, Y. R. Zhen, L. R. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 245401 (2012).
[Crossref]

Galarreta, B. C.

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic nanohole arrays on a robust hybrid substrate for highly sensitive label-free biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

Gao, J.

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Guo, C. F.

C. F. Guo, T. Y. Sun, F. Cao, Q. Liu, and Z. F. Ren, “Metallic nanostructures for light trapping in energy harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Hao, J. M.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Haynes, C. L.

S. H. Lee, K. C. Bantz, N. C. Lindquist, S. H. Oh, and C. L. Haynes, “Self-assembled plasmonic nanohole arrays,” Langmuir 25(23), 13685–13693 (2009).
[Crossref] [PubMed]

He, J.

Hu, W.

Huh, Y. H.

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Hwang, I.

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Jeon, H. G.

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Jhuang, P. J.

Jin, C.

Ke, Y. F.

Y. H. Su, Y. F. Ke, S. L. Cai, and Q. Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light Sci. Appl. 1(6), e14 (2012).
[Crossref]

Kim, Y. C.

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Le, K. Q.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

Lee, S. H.

S. H. Lee, K. C. Bantz, N. C. Lindquist, S. H. Oh, and C. L. Haynes, “Self-assembled plasmonic nanohole arrays,” Langmuir 25(23), 13685–13693 (2009).
[Crossref] [PubMed]

Lee, Y. I.

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Lezec, H. J.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Li, G.

Li, J.

W. Yue, Z. Wang, Y. Yang, J. Li, Y. Wu, L. Chen, B. Ooi, X. Wang, and X. X. Zhang, “Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications,” Nanoscale 6(14), 7917–7923 (2014).
[Crossref] [PubMed]

Li, Y. Y.

Liang, E.

Lin, D. Z.

Lindquist, N. C.

S. H. Lee, K. C. Bantz, N. C. Lindquist, S. H. Oh, and C. L. Haynes, “Self-assembled plasmonic nanohole arrays,” Langmuir 25(23), 13685–13693 (2009).
[Crossref] [PubMed]

Liu, Q.

C. F. Guo, T. Y. Sun, F. Cao, Q. Liu, and Z. F. Ren, “Metallic nanostructures for light trapping in energy harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Liu, X. L.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Mattiucci, N.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

Nordlander, P.

Z. Y. Fang, Y. R. Zhen, L. R. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 245401 (2012).
[Crossref]

Oh, S. H.

S. H. Lee, K. C. Bantz, N. C. Lindquist, S. H. Oh, and C. L. Haynes, “Self-assembled plasmonic nanohole arrays,” Langmuir 25(23), 13685–13693 (2009).
[Crossref] [PubMed]

Ooi, B.

W. Yue, Z. Wang, Y. Yang, J. Li, Y. Wu, L. Chen, B. Ooi, X. Wang, and X. X. Zhang, “Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications,” Nanoscale 6(14), 7917–7923 (2014).
[Crossref] [PubMed]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Papanikolaou, N.

N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B 75(23), 235426 (2007).
[Crossref]

Park, B.

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Qiu, M.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Ramakrishna, S. A.

Ren, Z. F.

C. F. Guo, T. Y. Sun, F. Cao, Q. Liu, and Z. F. Ren, “Metallic nanostructures for light trapping in energy harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Rosenmann, D.

Schoen, D.

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref] [PubMed]

Shen, D.

J. Yu, Q. Yan, and D. Shen, “Co-self-assembly of binary colloidal crystals at the air-water interface,” ACS Appl. Mater. Interfaces 2(7), 1922–1926 (2010).
[Crossref] [PubMed]

Shen, Y.

Shin, J. C.

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Shu, S.

Stan, L.

Su, Y. H.

Y. H. Su, Y. F. Ke, S. L. Cai, and Q. Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light Sci. Appl. 1(6), e14 (2012).
[Crossref]

Sun, T. Y.

C. F. Guo, T. Y. Sun, F. Cao, Q. Liu, and Z. F. Ren, “Metallic nanostructures for light trapping in energy harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Thio, T.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Uhm, H. S.

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Valsecchi, C.

C. Valsecchi and A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
[Crossref] [PubMed]

Wang, J.

J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, and Q. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express 20(14), 14871–14878 (2012).
[Crossref] [PubMed]

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Wang, J. K.

Wang, X.

W. Yue, Z. Wang, Y. Yang, J. Li, Y. Wu, L. Chen, B. Ooi, X. Wang, and X. X. Zhang, “Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications,” Nanoscale 6(14), 7917–7923 (2014).
[Crossref] [PubMed]

Wang, Z.

W. Yue, Z. Wang, Y. Yang, J. Li, Y. Wu, L. Chen, B. Ooi, X. Wang, and X. X. Zhang, “Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications,” Nanoscale 6(14), 7917–7923 (2014).
[Crossref] [PubMed]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wu, Y.

W. Yue, Z. Wang, Y. Yang, J. Li, Y. Wu, L. Chen, B. Ooi, X. Wang, and X. X. Zhang, “Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications,” Nanoscale 6(14), 7917–7923 (2014).
[Crossref] [PubMed]

Xiao, G.

Xue, Q.

Yan, Q.

J. Yu, Q. Yan, and D. Shen, “Co-self-assembly of binary colloidal crystals at the air-water interface,” ACS Appl. Mater. Interfaces 2(7), 1922–1926 (2010).
[Crossref] [PubMed]

Yang, X.

Yang, Y.

W. Yue, Z. Wang, Y. Yang, J. Li, Y. Wu, L. Chen, B. Ooi, X. Wang, and X. X. Zhang, “Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications,” Nanoscale 6(14), 7917–7923 (2014).
[Crossref] [PubMed]

Yao, Q. Y.

Y. H. Su, Y. F. Ke, S. L. Cai, and Q. Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light Sci. Appl. 1(6), e14 (2012).
[Crossref]

Yeh, J. T.

Yu, J.

J. Yu, Q. Yan, and D. Shen, “Co-self-assembly of binary colloidal crystals at the air-water interface,” ACS Appl. Mater. Interfaces 2(7), 1922–1926 (2010).
[Crossref] [PubMed]

Yue, W.

W. Yue, Z. Wang, Y. Yang, J. Li, Y. Wu, L. Chen, B. Ooi, X. Wang, and X. X. Zhang, “Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications,” Nanoscale 6(14), 7917–7923 (2014).
[Crossref] [PubMed]

Yun, S. H.

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Zhang, X. X.

W. Yue, Z. Wang, Y. Yang, J. Li, Y. Wu, L. Chen, B. Ooi, X. Wang, and X. X. Zhang, “Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications,” Nanoscale 6(14), 7917–7923 (2014).
[Crossref] [PubMed]

Zhen, Y. R.

Z. Y. Fang, Y. R. Zhen, L. R. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 245401 (2012).
[Crossref]

Zhou, L.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Zhu, X.

Z. Y. Fang, Y. R. Zhen, L. R. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 245401 (2012).
[Crossref]

ACS Appl. Mater. Interfaces (1)

J. Yu, Q. Yan, and D. Shen, “Co-self-assembly of binary colloidal crystals at the air-water interface,” ACS Appl. Mater. Interfaces 2(7), 1922–1926 (2010).
[Crossref] [PubMed]

ACS Nano (1)

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[Crossref] [PubMed]

ACS Photonics (1)

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic nanohole arrays on a robust hybrid substrate for highly sensitive label-free biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Appl. Phys. Lett. (1)

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Langmuir (2)

C. Valsecchi and A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
[Crossref] [PubMed]

S. H. Lee, K. C. Bantz, N. C. Lindquist, S. H. Oh, and C. L. Haynes, “Self-assembled plasmonic nanohole arrays,” Langmuir 25(23), 13685–13693 (2009).
[Crossref] [PubMed]

Light Sci. Appl. (3)

C. F. Guo, T. Y. Sun, F. Cao, Q. Liu, and Z. F. Ren, “Metallic nanostructures for light trapping in energy harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Y. H. Su, Y. F. Ke, S. L. Cai, and Q. Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light Sci. Appl. 1(6), e14 (2012).
[Crossref]

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Nano Lett. (1)

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref] [PubMed]

Nanoscale (1)

W. Yue, Z. Wang, Y. Yang, J. Li, Y. Wu, L. Chen, B. Ooi, X. Wang, and X. X. Zhang, “Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications,” Nanoscale 6(14), 7917–7923 (2014).
[Crossref] [PubMed]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Opt. Express (7)

D. Z. Lin, Y. P. Chen, P. J. Jhuang, J. Y. Chu, J. T. Yeh, and J. K. Wang, “Optimizing electromagnetic enhancement of flexible nano-imprinted hexagonally patterned surface-enhanced Raman scattering substrates,” Opt. Express 19(5), 4337–4345 (2011).
[Crossref] [PubMed]

J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, and Q. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express 20(14), 14871–14878 (2012).
[Crossref] [PubMed]

G. Dayal and S. A. Ramakrishna, “Design of highly absorbing metamaterials for infrared frequencies,” Opt. Express 20(16), 17503–17508 (2012).
[Crossref] [PubMed]

S. Y. Chou and W. Ding, “Ultrathin, high-efficiency, broad-band, omniacceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array,” Opt. Express 21(S1), 60–76 (2013).
[Crossref]

G. Li, Y. Shen, G. Xiao, and C. Jin, “Double-layered metal grating for high-performance refractive index sensing,” Opt. Express 23(7), 8995–9003 (2015).
[Crossref] [PubMed]

F. Cheng, J. Gao, L. Stan, D. Rosenmann, D. Czaplewski, and X. Yang, “Aluminum plasmonic metamaterials for structural color printing,” Opt. Express 23(11), 14552–14560 (2015).
[Crossref] [PubMed]

F. Cheng, X. Yang, D. Rosenmann, L. Stan, D. Czaplewski, and J. Gao, “Enhanced structural color generation in aluminum metamaterials coated with a thin polymer layer,” Opt. Express 23(19), 25329–25339 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (4)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B 75(23), 235426 (2007).
[Crossref]

Z. Y. Fang, Y. R. Zhen, L. R. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 245401 (2012).
[Crossref]

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

Other (2)

W. W. Salisbury, “Absorbent body for electromagnetic waves,” U. S. patent 2599944 (June 10, 1952).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Fabrication process flow of the nano hole array in metal Al layer. (b) AFM image of fabricated 2D nano hole array, and surface fluctuation profile along the red line.

Fig. 2
Fig. 2

(a) Absorption for the MDM absorber as a function of wavelength and the radius of the hole r with period L = 500 nm. The three dash lines represent the calculated positions of SPP using Eq. (1) and Eq. (2) in theory, in which from left to right are the (1,0) SPP at Al/air, Ag/SiO2, and Al/SiO2 interfaces, respectively. (b) and (c) The relative magnetic field distributions at the wavelength of peaks B1 and B2 on the x-z plane when r is 100 nm and period L is 500 nm. (d) Transmission as a function of wavelength and the radius r with period L is 500 nm for a 100 thick Al layer with nano hole array coated on the quartz glass. The black lines indicate the calculated positions of SPP using Eq. (1) and Eq. (2). (e) and (f) The relative magnetic field intensity distributions on the x-z plane at two transmission peak T1 and T2 for r = 130 nm and L = 500 nm.

Fig. 3
Fig. 3

The period and radius of the hole are L = 500 nm, r = 130 nm for the MDM absorber. (a) and (c) The relative magnetic field intensity distributions and the flow of Poynting vector at the wavelength of the hybrid mode. (b) and (d) The relative magnetic field intensity distributions and the flow of Poynting vector at the absorption peak B3.

Fig. 4
Fig. 4

(a), (b) and (c) The top view of three selected samples with same period 500 nm and different radius r = 100 nm, 130 nm and 170 nm. The magnified view of an individual nano hole is also shown in (b).

Fig. 5
Fig. 5

(a) and (b) Experimental and simulated transmission of 100 nm thick Al layer with nano hole array coated on quartz glass substrate. The period L is 500 nm and radius r are 130 nm, 170 nm respectively. (c) and (d) Experimental and simulated absorption for MDM structure with the same period L = 500 nm, different r = 100 nm, 130 nm and 170 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k= k 0 sinθ+ 4 3 ( i 2 +ij+ j 2 ) 2π L .
k spp = k 0  ε m ε d ε m + ε d .

Metrics