Abstract

We present a near-infrared (NIR) spectrum measurement method using a Schottky photodetector enhanced by surface plasmon resonance (SPR). An Au grating was fabricated on an n-type silicon wafer to form a Schottky barrier and act as an SPR coupler. The resulting photodetector provides wavelength-selective photodetection depending on the SPR coupling angle. A matrix was pre-calculated to describe this characteristic. The spectrum was obtained from this matrix and the measured photocurrents at various SPR coupling angles. Light with single and multiple wavelengths was tested. Comparative measurements showed that our method is able to detect spectra with a wavelength resolution comparable to that of a commercial spectrometer.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors

Mohammad Alavirad, Anthony Olivieri, Langis Roy, and Pierre Berini
Opt. Express 24(20) 22544-22554 (2016)

Polarization-insensitive hot-electron infrared photodetection by double Schottky junction and multilayer grating

Qiaoping Zhang, Cheng Zhang, Linling Qin, and Xiaofeng Li
Opt. Lett. 43(14) 3325-3328 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Pérez-Marín, P. Paz, J.-E. Guerrero, A. Garrido-Varo, and M.-T. Sánchez, “Miniature handheld NIR sensor for the on-site non-destructive assessment of post-harvest quality and refrigerated storage behavior in plums,” J. Food Eng. 99(3), 294–302 (2010).
    [Crossref]
  2. S. F. Malin, T. L. Ruchti, T. B. Blank, S. N. Thennadil, and S. L. Monfre, “Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy,” Clin. Chem. 45(9), 1651–1658 (1999).
    [PubMed]
  3. A. Emadi, H. Wu, G. de Graaf, and R. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter,” Opt. Express 20(1), 489–507 (2012).
    [Crossref] [PubMed]
  4. M. A. Hossain, J. Canning, K. Cook, and A. Jamalipour, “Optical fiber smartphone spectrometer,” Opt. Lett. 41(10), 2237–2240 (2016).
    [Crossref] [PubMed]
  5. S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sens. Actuators Phys. 92(1–3), 88–95 (2001).
    [Crossref]
  6. S. Grabarnik, R. Wolffenbuttel, A. Emadi, M. Loktev, E. Sokolova, and G. Vdovin, “Planar double-grating microspectrometer,” Opt. Express 15(6), 3581–3588 (2007).
    [Crossref] [PubMed]
  7. S. Grabarnik, A. Emadi, H. Wu, G. de Graaf, and R. F. Wolffenbuttel, “Microspectrometer with a concave grating fabricated in a MEMS technology,” in Proceedings of the Eurosensors XXIII Conference, J. Brugger and D. Briand, Eds. (Elsevier Science, 2009), pp. 401–404.
    [Crossref]
  8. R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
    [Crossref]
  9. M. Jestl, A. Kock, W. Beinstingl, and E. Gornik, “Polarization-selective and wavelength-selective photodetectors,” J. Opt. Soc. Am. 5(9), 1581–1584 (1988).
    [Crossref]
  10. S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
    [Crossref]
  11. A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643–1648 (2013).
    [Crossref] [PubMed]
  12. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  13. H. Raether, “Surface plasmons on gratings,” in Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  14. M. Casalino, L. Sirleto, M. Iodice, and G. Coppol, “Silicon photodetectors based on internal photoemission effect: the challenge of detecting near-infrared light,” in Photodetectors, S. Gateva, ed. (InTech, 2012).
  15. S. K. Cheung and N. W. Cheung, “Extraction of Schottky diode parameters from forward current-voltage characteristics,” Appl. Phys. Lett. 49(2), 85–87 (1986).
    [Crossref]
  16. C. Hu and D. Liu, “High-performance grating coupled surface plasmon resonance sensor based on al-au bimetallic layer,” Mod. Appl. Sci. 4(6), 8 (2010).
    [Crossref]
  17. D. Cai, Y. Lu, K. Lin, P. Wang, and H. Ming, “Improving the sensitivity of SPR sensors based on gratings by double-dips method (DDM),” Opt. Express 16(19), 14597–14602 (2008).
    [Crossref] [PubMed]

2016 (1)

2013 (1)

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643–1648 (2013).
[Crossref] [PubMed]

2012 (2)

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

A. Emadi, H. Wu, G. de Graaf, and R. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter,” Opt. Express 20(1), 489–507 (2012).
[Crossref] [PubMed]

2010 (2)

C. Hu and D. Liu, “High-performance grating coupled surface plasmon resonance sensor based on al-au bimetallic layer,” Mod. Appl. Sci. 4(6), 8 (2010).
[Crossref]

D. Pérez-Marín, P. Paz, J.-E. Guerrero, A. Garrido-Varo, and M.-T. Sánchez, “Miniature handheld NIR sensor for the on-site non-destructive assessment of post-harvest quality and refrigerated storage behavior in plums,” J. Food Eng. 99(3), 294–302 (2010).
[Crossref]

2008 (1)

2007 (1)

2005 (1)

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2001 (1)

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sens. Actuators Phys. 92(1–3), 88–95 (2001).
[Crossref]

1999 (1)

S. F. Malin, T. L. Ruchti, T. B. Blank, S. N. Thennadil, and S. L. Monfre, “Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy,” Clin. Chem. 45(9), 1651–1658 (1999).
[PubMed]

1988 (1)

M. Jestl, A. Kock, W. Beinstingl, and E. Gornik, “Polarization-selective and wavelength-selective photodetectors,” J. Opt. Soc. Am. 5(9), 1581–1584 (1988).
[Crossref]

1986 (1)

S. K. Cheung and N. W. Cheung, “Extraction of Schottky diode parameters from forward current-voltage characteristics,” Appl. Phys. Lett. 49(2), 85–87 (1986).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Beinstingl, W.

M. Jestl, A. Kock, W. Beinstingl, and E. Gornik, “Polarization-selective and wavelength-selective photodetectors,” J. Opt. Soc. Am. 5(9), 1581–1584 (1988).
[Crossref]

Blank, T. B.

S. F. Malin, T. L. Ruchti, T. B. Blank, S. N. Thennadil, and S. L. Monfre, “Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy,” Clin. Chem. 45(9), 1651–1658 (1999).
[PubMed]

Brown, L. V.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643–1648 (2013).
[Crossref] [PubMed]

Cai, D.

Canning, J.

Cheung, N. W.

S. K. Cheung and N. W. Cheung, “Extraction of Schottky diode parameters from forward current-voltage characteristics,” Appl. Phys. Lett. 49(2), 85–87 (1986).
[Crossref]

Cheung, S. K.

S. K. Cheung and N. W. Cheung, “Extraction of Schottky diode parameters from forward current-voltage characteristics,” Appl. Phys. Lett. 49(2), 85–87 (1986).
[Crossref]

Cook, K.

de Graaf, G.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Emadi, A.

Fang, Z.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643–1648 (2013).
[Crossref] [PubMed]

Fukushima, N.

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

Garrido-Varo, A.

D. Pérez-Marín, P. Paz, J.-E. Guerrero, A. Garrido-Varo, and M.-T. Sánchez, “Miniature handheld NIR sensor for the on-site non-destructive assessment of post-harvest quality and refrigerated storage behavior in plums,” J. Food Eng. 99(3), 294–302 (2010).
[Crossref]

Gornik, E.

M. Jestl, A. Kock, W. Beinstingl, and E. Gornik, “Polarization-selective and wavelength-selective photodetectors,” J. Opt. Soc. Am. 5(9), 1581–1584 (1988).
[Crossref]

Grabarnik, S.

Guerrero, J.-E.

D. Pérez-Marín, P. Paz, J.-E. Guerrero, A. Garrido-Varo, and M.-T. Sánchez, “Miniature handheld NIR sensor for the on-site non-destructive assessment of post-harvest quality and refrigerated storage behavior in plums,” J. Food Eng. 99(3), 294–302 (2010).
[Crossref]

Halas, N. J.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643–1648 (2013).
[Crossref] [PubMed]

Hossain, M. A.

Hu, C.

C. Hu and D. Liu, “High-performance grating coupled surface plasmon resonance sensor based on al-au bimetallic layer,” Mod. Appl. Sci. 4(6), 8 (2010).
[Crossref]

Jamalipour, A.

Jestl, M.

M. Jestl, A. Kock, W. Beinstingl, and E. Gornik, “Polarization-selective and wavelength-selective photodetectors,” J. Opt. Soc. Am. 5(9), 1581–1584 (1988).
[Crossref]

Kimata, M.

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

King, N. S.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643–1648 (2013).
[Crossref] [PubMed]

Knight, M. W.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643–1648 (2013).
[Crossref] [PubMed]

Kock, A.

M. Jestl, A. Kock, W. Beinstingl, and E. Gornik, “Polarization-selective and wavelength-selective photodetectors,” J. Opt. Soc. Am. 5(9), 1581–1584 (1988).
[Crossref]

Kong, S. H.

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sens. Actuators Phys. 92(1–3), 88–95 (2001).
[Crossref]

Lin, K.

Liu, D.

C. Hu and D. Liu, “High-performance grating coupled surface plasmon resonance sensor based on al-au bimetallic layer,” Mod. Appl. Sci. 4(6), 8 (2010).
[Crossref]

Loktev, M.

Lu, Y.

Malin, S. F.

S. F. Malin, T. L. Ruchti, T. B. Blank, S. N. Thennadil, and S. L. Monfre, “Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy,” Clin. Chem. 45(9), 1651–1658 (1999).
[PubMed]

Ming, H.

Monfre, S. L.

S. F. Malin, T. L. Ruchti, T. B. Blank, S. N. Thennadil, and S. L. Monfre, “Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy,” Clin. Chem. 45(9), 1651–1658 (1999).
[PubMed]

Nordlander, P.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643–1648 (2013).
[Crossref] [PubMed]

Ogawa, S.

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

Okada, K.

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

Paz, P.

D. Pérez-Marín, P. Paz, J.-E. Guerrero, A. Garrido-Varo, and M.-T. Sánchez, “Miniature handheld NIR sensor for the on-site non-destructive assessment of post-harvest quality and refrigerated storage behavior in plums,” J. Food Eng. 99(3), 294–302 (2010).
[Crossref]

Pérez-Marín, D.

D. Pérez-Marín, P. Paz, J.-E. Guerrero, A. Garrido-Varo, and M.-T. Sánchez, “Miniature handheld NIR sensor for the on-site non-destructive assessment of post-harvest quality and refrigerated storage behavior in plums,” J. Food Eng. 99(3), 294–302 (2010).
[Crossref]

Ruchti, T. L.

S. F. Malin, T. L. Ruchti, T. B. Blank, S. N. Thennadil, and S. L. Monfre, “Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy,” Clin. Chem. 45(9), 1651–1658 (1999).
[PubMed]

Sánchez, M.-T.

D. Pérez-Marín, P. Paz, J.-E. Guerrero, A. Garrido-Varo, and M.-T. Sánchez, “Miniature handheld NIR sensor for the on-site non-destructive assessment of post-harvest quality and refrigerated storage behavior in plums,” J. Food Eng. 99(3), 294–302 (2010).
[Crossref]

Sobhani, A.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643–1648 (2013).
[Crossref] [PubMed]

Sokolova, E.

Thennadil, S. N.

S. F. Malin, T. L. Ruchti, T. B. Blank, S. N. Thennadil, and S. L. Monfre, “Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy,” Clin. Chem. 45(9), 1651–1658 (1999).
[PubMed]

Vdovin, G.

Wang, P.

Wang, Y.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643–1648 (2013).
[Crossref] [PubMed]

Wijngaards, D. D. L.

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sens. Actuators Phys. 92(1–3), 88–95 (2001).
[Crossref]

Wolffenbuttel, R.

Wolffenbuttel, R. F.

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
[Crossref]

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sens. Actuators Phys. 92(1–3), 88–95 (2001).
[Crossref]

Wu, H.

Zheng, B.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643–1648 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

S. K. Cheung and N. W. Cheung, “Extraction of Schottky diode parameters from forward current-voltage characteristics,” Appl. Phys. Lett. 49(2), 85–87 (1986).
[Crossref]

Clin. Chem. (1)

S. F. Malin, T. L. Ruchti, T. B. Blank, S. N. Thennadil, and S. L. Monfre, “Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy,” Clin. Chem. 45(9), 1651–1658 (1999).
[PubMed]

J. Food Eng. (1)

D. Pérez-Marín, P. Paz, J.-E. Guerrero, A. Garrido-Varo, and M.-T. Sánchez, “Miniature handheld NIR sensor for the on-site non-destructive assessment of post-harvest quality and refrigerated storage behavior in plums,” J. Food Eng. 99(3), 294–302 (2010).
[Crossref]

J. Micromech. Microeng. (1)

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
[Crossref]

J. Opt. Soc. Am. (1)

M. Jestl, A. Kock, W. Beinstingl, and E. Gornik, “Polarization-selective and wavelength-selective photodetectors,” J. Opt. Soc. Am. 5(9), 1581–1584 (1988).
[Crossref]

Mod. Appl. Sci. (1)

C. Hu and D. Liu, “High-performance grating coupled surface plasmon resonance sensor based on al-au bimetallic layer,” Mod. Appl. Sci. 4(6), 8 (2010).
[Crossref]

Nat. Commun. (1)

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643–1648 (2013).
[Crossref] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Sens. Actuators Phys. (1)

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sens. Actuators Phys. 92(1–3), 88–95 (2001).
[Crossref]

Other (3)

S. Grabarnik, A. Emadi, H. Wu, G. de Graaf, and R. F. Wolffenbuttel, “Microspectrometer with a concave grating fabricated in a MEMS technology,” in Proceedings of the Eurosensors XXIII Conference, J. Brugger and D. Briand, Eds. (Elsevier Science, 2009), pp. 401–404.
[Crossref]

H. Raether, “Surface plasmons on gratings,” in Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

M. Casalino, L. Sirleto, M. Iodice, and G. Coppol, “Silicon photodetectors based on internal photoemission effect: the challenge of detecting near-infrared light,” in Photodetectors, S. Gateva, ed. (InTech, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the (a) structure, (b) band diagram and (c) SPR enhancement of the proposed Schottky photodetector.
Fig. 2
Fig. 2 (a) Fabrication process; (b) Images of a fabricated Schottky photodetector.
Fig. 3
Fig. 3 Experimental setup for measuring the responsivity matrix.
Fig. 4
Fig. 4 (a) Measured photocurrent curves; (b) Measured and calculated SPR angles.
Fig. 5
Fig. 5 21 × 21 Responsivity matrix R.
Fig. 6
Fig. 6 Photocurrents versus incidence angles and spectra measured using the proposed photodetector and a commercial spectrometer under exposure to light with (a) single and (b), (c) multiple wavelengths.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k sp = ω c ε m ε d ε m + ε d ,
k 0 = ω c ε d sinθ+ 2nπ a ,
R= I ph P in .
I θ j = R λ 1 θ j P λ 1 + R λ 2 θ j P λ 2 ++ R λ n θ j P λ n j=1,2,,n.
[ I θ 1 I θ n ]=[ R λ 1 θ 1 R λ n θ 1 R λ 1 θ n R λ n θ n ][ P λ 1 P λ n ],

Metrics