Abstract

A system using optical two-level orthogonal-frequency-division-multiplexing (OFDM) – amplitude-shift-keying (ASK) modulation is proposed and demonstrated to reduce the processing latency for the optical mobile fronthaul networks. At the proposed remote-radio-head (RRH), the high data rate OFDM signal does not need to be processed, but is directly launched into a high speed photodiode (HSPD) and subsequently emitted by an antenna. Only a low bandwidth PD is needed to recover the low data rate ASK control signal. Hence, it is simple and provides low-latency. Furthermore, transporting the proposed system over the already deployed optical-distribution-networks (ODNs) of passive-optical-networks (PONs) is also demonstrated with 256 ODN split-ratios.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reconfigurable Optical Mobile Fronthaul Networks for Coordinated Multipoint Transmission and Reception in 5G

Jiawei Zhang, Yuefeng Ji, Songhao Jia, Hui Li, Xiaosong Yu, and Xinbo Wang
J. Opt. Commun. Netw. 9(6) 489-497 (2017)

Low-Latency High-Efficiency Mobile Fronthaul With TDM-PON (Mobile-PON)

Siyu Zhou, Xiang Liu, Frank Effenberger, and Jonathan Chao
J. Opt. Commun. Netw. 10(1) A20-A26 (2018)

Performance Evaluation of Mobile Front-Haul Employing Ethernet-Based TDM-PON With IQ Data Compression [Invited]

Naotaka Shibata, Takayoshi Tashiro, Shigeru Kuwano, Naohiko Yuki, Youichi Fukada, Jun Terada, and Akihiro Otaka
J. Opt. Commun. Netw. 7(11) B16-B22 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. Lannoo, A. Dixit, D. Colle, J. Bauwelinck, B. Dhoedt, B. Jooris, I. Moerman, M. Pickavet, H. Rogier, P. Simoens, G. Torfs, D. V. Ginste, and P. Demeester, “ Radio-over-fibre for ultra-small 5G cells,” In 17th International Conference on Transparent Optical Networks (ICTON, 2015), paper We.C2.4.
  2. C. Liu, J. Wang, L. Cheng, M. Zhu, and G. K. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightwave Technol. 32(20), 3452–3460 (2014).
    [Crossref]
  3. L. Cheng, M. Zhu, M. M. U. Gul, X. Ma, and G. K. Chang, “Adaptive photonics-aided coordinated multipoint transmissions for next-generation mobile fronthaul,” J Lightwave Technol. 32, 1907–1914 (2014).
  4. L. Cheng, M. M. U. Gul, F. Lu, M. Zhu, J. Wang, M. Xu, X. Ma, and G. K. Chang, “Coordinated multipoint transmissions in millimeter-wave radio-over-fiber systems,” J. Lightwave Technol. 32, 653–660 (2015).
  5. M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, H. J. Cho, M. I. Khalil, D. Guidotti, and G.-K. Chang, “FBMC in next-generation mobile fronthaul networks with centralized pre-equalization,” IEEE Photonics Technol. Lett. 28(18), 1912–1915 (2016).
    [Crossref]
  6. X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Efficient mobile fronthaul via DSP-based channel aggregation,” J. Lightwave Technol. 34(6), 1556–1564 (2016).
    [Crossref]
  7. CPRI Specification V6.1, “Common public radio interface (CPRI): Interface specification,” Jul. 2014.
  8. Y. Ma, Z. Xu, H. Lin, M. Zhou, H. Wang, C. Zhang, J. Yu, and X. Wang, “Demonstration of CPRI over self-seeded WDM-PON in commercial LTE environment,” in Proceedings of OFC, 2015, paper M2J.6.
  9. T. Pfeiffer, “Next generation mobile fronthaul architectures,” in Proceedings of OFC, 2015, paper M2J.7.
  10. C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, K. L. Lee, Y. Yang, D. Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Lightwave Technol. 28(4), 390–405 (2010).
    [Crossref]
  11. C. W. Chow, F. M. Kuo, J. W. Shi, C. H. Yeh, Y. F. Wu, C. H. Wang, Y. T. Li, and C. L. Pan, “100 GHz ultra-wideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks,” Opt. Express 18(2), 473–478 (2010).
    [Crossref] [PubMed]
  12. H. H. Lu, H. C. Peng, W. S. Tsai, C. C. Lin, S. J. Tzeng, and Y. Z. Lin, “Bidirectional hybrid CATV/radio-over-fiber WDM transport system,” Opt. Lett. 35(3), 279–281 (2010).
    [Crossref] [PubMed]
  13. C. H. Chang, P. C. Peng, H. W. Gu, C. W. Huang, M. H. Fang, H. L. Hu, P. T. Shen, C. Y. Li, and H. H. Lu, “Hybrid OFDM and radio-over-fiber transport system based on a polarization modulator,” IEEE Photonics J. 7(5), 7903708 (2015).
    [Crossref]
  14. H. Y. Chen, Y. C. Chi, and G. R. Lin, “Remote heterodyne millimeter-wave over fiber based OFDM-PON with master-to-slave injected dual-mode colorless FPLD pair,” Opt. Express 23(17), 22691–22705 (2015).
    [Crossref] [PubMed]

2016 (2)

M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, H. J. Cho, M. I. Khalil, D. Guidotti, and G.-K. Chang, “FBMC in next-generation mobile fronthaul networks with centralized pre-equalization,” IEEE Photonics Technol. Lett. 28(18), 1912–1915 (2016).
[Crossref]

X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Efficient mobile fronthaul via DSP-based channel aggregation,” J. Lightwave Technol. 34(6), 1556–1564 (2016).
[Crossref]

2015 (3)

C. H. Chang, P. C. Peng, H. W. Gu, C. W. Huang, M. H. Fang, H. L. Hu, P. T. Shen, C. Y. Li, and H. H. Lu, “Hybrid OFDM and radio-over-fiber transport system based on a polarization modulator,” IEEE Photonics J. 7(5), 7903708 (2015).
[Crossref]

L. Cheng, M. M. U. Gul, F. Lu, M. Zhu, J. Wang, M. Xu, X. Ma, and G. K. Chang, “Coordinated multipoint transmissions in millimeter-wave radio-over-fiber systems,” J. Lightwave Technol. 32, 653–660 (2015).

H. Y. Chen, Y. C. Chi, and G. R. Lin, “Remote heterodyne millimeter-wave over fiber based OFDM-PON with master-to-slave injected dual-mode colorless FPLD pair,” Opt. Express 23(17), 22691–22705 (2015).
[Crossref] [PubMed]

2014 (2)

C. Liu, J. Wang, L. Cheng, M. Zhu, and G. K. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightwave Technol. 32(20), 3452–3460 (2014).
[Crossref]

L. Cheng, M. Zhu, M. M. U. Gul, X. Ma, and G. K. Chang, “Adaptive photonics-aided coordinated multipoint transmissions for next-generation mobile fronthaul,” J Lightwave Technol. 32, 1907–1914 (2014).

2010 (3)

Bakaul, M.

Chand, N.

Chang, C. H.

C. H. Chang, P. C. Peng, H. W. Gu, C. W. Huang, M. H. Fang, H. L. Hu, P. T. Shen, C. Y. Li, and H. H. Lu, “Hybrid OFDM and radio-over-fiber transport system based on a polarization modulator,” IEEE Photonics J. 7(5), 7903708 (2015).
[Crossref]

Chang, G. K.

L. Cheng, M. M. U. Gul, F. Lu, M. Zhu, J. Wang, M. Xu, X. Ma, and G. K. Chang, “Coordinated multipoint transmissions in millimeter-wave radio-over-fiber systems,” J. Lightwave Technol. 32, 653–660 (2015).

L. Cheng, M. Zhu, M. M. U. Gul, X. Ma, and G. K. Chang, “Adaptive photonics-aided coordinated multipoint transmissions for next-generation mobile fronthaul,” J Lightwave Technol. 32, 1907–1914 (2014).

C. Liu, J. Wang, L. Cheng, M. Zhu, and G. K. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightwave Technol. 32(20), 3452–3460 (2014).
[Crossref]

Chang, G.-K.

M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, H. J. Cho, M. I. Khalil, D. Guidotti, and G.-K. Chang, “FBMC in next-generation mobile fronthaul networks with centralized pre-equalization,” IEEE Photonics Technol. Lett. 28(18), 1912–1915 (2016).
[Crossref]

Chen, H. Y.

Cheng, L.

M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, H. J. Cho, M. I. Khalil, D. Guidotti, and G.-K. Chang, “FBMC in next-generation mobile fronthaul networks with centralized pre-equalization,” IEEE Photonics Technol. Lett. 28(18), 1912–1915 (2016).
[Crossref]

L. Cheng, M. M. U. Gul, F. Lu, M. Zhu, J. Wang, M. Xu, X. Ma, and G. K. Chang, “Coordinated multipoint transmissions in millimeter-wave radio-over-fiber systems,” J. Lightwave Technol. 32, 653–660 (2015).

L. Cheng, M. Zhu, M. M. U. Gul, X. Ma, and G. K. Chang, “Adaptive photonics-aided coordinated multipoint transmissions for next-generation mobile fronthaul,” J Lightwave Technol. 32, 1907–1914 (2014).

C. Liu, J. Wang, L. Cheng, M. Zhu, and G. K. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightwave Technol. 32(20), 3452–3460 (2014).
[Crossref]

Chi, Y. C.

Cho, H. J.

M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, H. J. Cho, M. I. Khalil, D. Guidotti, and G.-K. Chang, “FBMC in next-generation mobile fronthaul networks with centralized pre-equalization,” IEEE Photonics Technol. Lett. 28(18), 1912–1915 (2016).
[Crossref]

Chow, C. W.

Effenberger, F.

Fang, M. H.

C. H. Chang, P. C. Peng, H. W. Gu, C. W. Huang, M. H. Fang, H. L. Hu, P. T. Shen, C. Y. Li, and H. H. Lu, “Hybrid OFDM and radio-over-fiber transport system based on a polarization modulator,” IEEE Photonics J. 7(5), 7903708 (2015).
[Crossref]

Gamage, P.

Gu, H. W.

C. H. Chang, P. C. Peng, H. W. Gu, C. W. Huang, M. H. Fang, H. L. Hu, P. T. Shen, C. Y. Li, and H. H. Lu, “Hybrid OFDM and radio-over-fiber transport system based on a polarization modulator,” IEEE Photonics J. 7(5), 7903708 (2015).
[Crossref]

Guidotti, D.

M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, H. J. Cho, M. I. Khalil, D. Guidotti, and G.-K. Chang, “FBMC in next-generation mobile fronthaul networks with centralized pre-equalization,” IEEE Photonics Technol. Lett. 28(18), 1912–1915 (2016).
[Crossref]

Gul, M. M. U.

L. Cheng, M. M. U. Gul, F. Lu, M. Zhu, J. Wang, M. Xu, X. Ma, and G. K. Chang, “Coordinated multipoint transmissions in millimeter-wave radio-over-fiber systems,” J. Lightwave Technol. 32, 653–660 (2015).

L. Cheng, M. Zhu, M. M. U. Gul, X. Ma, and G. K. Chang, “Adaptive photonics-aided coordinated multipoint transmissions for next-generation mobile fronthaul,” J Lightwave Technol. 32, 1907–1914 (2014).

Hu, H. L.

C. H. Chang, P. C. Peng, H. W. Gu, C. W. Huang, M. H. Fang, H. L. Hu, P. T. Shen, C. Y. Li, and H. H. Lu, “Hybrid OFDM and radio-over-fiber transport system based on a polarization modulator,” IEEE Photonics J. 7(5), 7903708 (2015).
[Crossref]

Huang, C. W.

C. H. Chang, P. C. Peng, H. W. Gu, C. W. Huang, M. H. Fang, H. L. Hu, P. T. Shen, C. Y. Li, and H. H. Lu, “Hybrid OFDM and radio-over-fiber transport system based on a polarization modulator,” IEEE Photonics J. 7(5), 7903708 (2015).
[Crossref]

Khalil, M. I.

M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, H. J. Cho, M. I. Khalil, D. Guidotti, and G.-K. Chang, “FBMC in next-generation mobile fronthaul networks with centralized pre-equalization,” IEEE Photonics Technol. Lett. 28(18), 1912–1915 (2016).
[Crossref]

Kuo, F. M.

Lee, K. L.

Li, C. Y.

C. H. Chang, P. C. Peng, H. W. Gu, C. W. Huang, M. H. Fang, H. L. Hu, P. T. Shen, C. Y. Li, and H. H. Lu, “Hybrid OFDM and radio-over-fiber transport system based on a polarization modulator,” IEEE Photonics J. 7(5), 7903708 (2015).
[Crossref]

Li, Y. T.

Lim, C.

Lin, C. C.

Lin, G. R.

Lin, Y. Z.

Liu, C.

Liu, X.

Lu, F.

M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, H. J. Cho, M. I. Khalil, D. Guidotti, and G.-K. Chang, “FBMC in next-generation mobile fronthaul networks with centralized pre-equalization,” IEEE Photonics Technol. Lett. 28(18), 1912–1915 (2016).
[Crossref]

L. Cheng, M. M. U. Gul, F. Lu, M. Zhu, J. Wang, M. Xu, X. Ma, and G. K. Chang, “Coordinated multipoint transmissions in millimeter-wave radio-over-fiber systems,” J. Lightwave Technol. 32, 653–660 (2015).

Lu, H. H.

C. H. Chang, P. C. Peng, H. W. Gu, C. W. Huang, M. H. Fang, H. L. Hu, P. T. Shen, C. Y. Li, and H. H. Lu, “Hybrid OFDM and radio-over-fiber transport system based on a polarization modulator,” IEEE Photonics J. 7(5), 7903708 (2015).
[Crossref]

H. H. Lu, H. C. Peng, W. S. Tsai, C. C. Lin, S. J. Tzeng, and Y. Z. Lin, “Bidirectional hybrid CATV/radio-over-fiber WDM transport system,” Opt. Lett. 35(3), 279–281 (2010).
[Crossref] [PubMed]

Ma, X.

L. Cheng, M. M. U. Gul, F. Lu, M. Zhu, J. Wang, M. Xu, X. Ma, and G. K. Chang, “Coordinated multipoint transmissions in millimeter-wave radio-over-fiber systems,” J. Lightwave Technol. 32, 653–660 (2015).

L. Cheng, M. Zhu, M. M. U. Gul, X. Ma, and G. K. Chang, “Adaptive photonics-aided coordinated multipoint transmissions for next-generation mobile fronthaul,” J Lightwave Technol. 32, 1907–1914 (2014).

Nirmalathas, A.

Novak, D.

Pan, C. L.

Peng, H. C.

Peng, P. C.

C. H. Chang, P. C. Peng, H. W. Gu, C. W. Huang, M. H. Fang, H. L. Hu, P. T. Shen, C. Y. Li, and H. H. Lu, “Hybrid OFDM and radio-over-fiber transport system based on a polarization modulator,” IEEE Photonics J. 7(5), 7903708 (2015).
[Crossref]

Shen, P. T.

C. H. Chang, P. C. Peng, H. W. Gu, C. W. Huang, M. H. Fang, H. L. Hu, P. T. Shen, C. Y. Li, and H. H. Lu, “Hybrid OFDM and radio-over-fiber transport system based on a polarization modulator,” IEEE Photonics J. 7(5), 7903708 (2015).
[Crossref]

Shi, J. W.

Tsai, W. S.

Tzeng, S. J.

Wang, C. H.

Wang, J.

M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, H. J. Cho, M. I. Khalil, D. Guidotti, and G.-K. Chang, “FBMC in next-generation mobile fronthaul networks with centralized pre-equalization,” IEEE Photonics Technol. Lett. 28(18), 1912–1915 (2016).
[Crossref]

L. Cheng, M. M. U. Gul, F. Lu, M. Zhu, J. Wang, M. Xu, X. Ma, and G. K. Chang, “Coordinated multipoint transmissions in millimeter-wave radio-over-fiber systems,” J. Lightwave Technol. 32, 653–660 (2015).

C. Liu, J. Wang, L. Cheng, M. Zhu, and G. K. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightwave Technol. 32(20), 3452–3460 (2014).
[Crossref]

Waterhouse, R.

Wu, Y. F.

Xu, M.

M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, H. J. Cho, M. I. Khalil, D. Guidotti, and G.-K. Chang, “FBMC in next-generation mobile fronthaul networks with centralized pre-equalization,” IEEE Photonics Technol. Lett. 28(18), 1912–1915 (2016).
[Crossref]

L. Cheng, M. M. U. Gul, F. Lu, M. Zhu, J. Wang, M. Xu, X. Ma, and G. K. Chang, “Coordinated multipoint transmissions in millimeter-wave radio-over-fiber systems,” J. Lightwave Technol. 32, 653–660 (2015).

Yang, Y.

Yeh, C. H.

Zeng, H.

Zhang, J.

M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, H. J. Cho, M. I. Khalil, D. Guidotti, and G.-K. Chang, “FBMC in next-generation mobile fronthaul networks with centralized pre-equalization,” IEEE Photonics Technol. Lett. 28(18), 1912–1915 (2016).
[Crossref]

Zhu, M.

L. Cheng, M. M. U. Gul, F. Lu, M. Zhu, J. Wang, M. Xu, X. Ma, and G. K. Chang, “Coordinated multipoint transmissions in millimeter-wave radio-over-fiber systems,” J. Lightwave Technol. 32, 653–660 (2015).

L. Cheng, M. Zhu, M. M. U. Gul, X. Ma, and G. K. Chang, “Adaptive photonics-aided coordinated multipoint transmissions for next-generation mobile fronthaul,” J Lightwave Technol. 32, 1907–1914 (2014).

C. Liu, J. Wang, L. Cheng, M. Zhu, and G. K. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightwave Technol. 32(20), 3452–3460 (2014).
[Crossref]

IEEE Photonics J. (1)

C. H. Chang, P. C. Peng, H. W. Gu, C. W. Huang, M. H. Fang, H. L. Hu, P. T. Shen, C. Y. Li, and H. H. Lu, “Hybrid OFDM and radio-over-fiber transport system based on a polarization modulator,” IEEE Photonics J. 7(5), 7903708 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, H. J. Cho, M. I. Khalil, D. Guidotti, and G.-K. Chang, “FBMC in next-generation mobile fronthaul networks with centralized pre-equalization,” IEEE Photonics Technol. Lett. 28(18), 1912–1915 (2016).
[Crossref]

J Lightwave Technol. (1)

L. Cheng, M. Zhu, M. M. U. Gul, X. Ma, and G. K. Chang, “Adaptive photonics-aided coordinated multipoint transmissions for next-generation mobile fronthaul,” J Lightwave Technol. 32, 1907–1914 (2014).

J. Lightwave Technol. (4)

Opt. Express (2)

Opt. Lett. (1)

Other (4)

CPRI Specification V6.1, “Common public radio interface (CPRI): Interface specification,” Jul. 2014.

Y. Ma, Z. Xu, H. Lin, M. Zhou, H. Wang, C. Zhang, J. Yu, and X. Wang, “Demonstration of CPRI over self-seeded WDM-PON in commercial LTE environment,” in Proceedings of OFC, 2015, paper M2J.6.

T. Pfeiffer, “Next generation mobile fronthaul architectures,” in Proceedings of OFC, 2015, paper M2J.7.

B. Lannoo, A. Dixit, D. Colle, J. Bauwelinck, B. Dhoedt, B. Jooris, I. Moerman, M. Pickavet, H. Rogier, P. Simoens, G. Torfs, D. V. Ginste, and P. Demeester, “ Radio-over-fibre for ultra-small 5G cells,” In 17th International Conference on Transparent Optical Networks (ICTON, 2015), paper We.C2.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Evolution of the wireless access networks.
Fig. 2
Fig. 2 Encoder and decoder of two-level OFDM-ASK. (a) The encoder in the BBU. (b) The decoder in the UE. Inset: time traces of OFDM-ASK signal: (i) after power normalization; (ii) after control signal modulation.
Fig. 3
Fig. 3 Proof-of-concept experimental setup with Inset (i) to (ix): corresponding optical spectrum at different ports. Black curve: back-to-back; gray curve: 40 km. CO: central office; RN: remote node; OSA: optical spectrum analyzer; AWG: arbitrary waveform generator; TBF: tunable band-pass filter.
Fig. 4
Fig. 4 Measured result of system performance versus the modulation depths of the 2-ASK signals. Blue line: the log(BER) value of the OFDM signal; red line: the Q value of the 2-ASK signal.
Fig. 5
Fig. 5 Signal performance versus received power at RRH. (a) Control signal. (b) Wireless payload signal.

Metrics