Abstract

An inhomogeneous linear refractive index profile, such as that occurring in biological tissues, is shown to significantly alter stimulated Raman scattering (SRS) and coherent anti-Stokes Raman scattering (CARS) microscopy images. Our finite-difference time-domain simulations show that near-field enhancement and microlensing can lead to an increase of an object’s perceived molecular density by a factor of nine and changes in its perceived position by 0.4 μm up to 1.0 μm. Thus the assumption that SRS scales linearly and CARS quadratically with density does not always hold. Furthermore, the inhomogeneous linear index can cause false CARS and AM-SRS signals, even for a homogeneous nonlinear susceptibility.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Image formation in CARS and SRS: effect of an inhomogeneous nonresonant background medium

K. I. Popov, A. F. Pegoraro, A. Stolow, and L. Ramunno
Opt. Lett. 37(4) 473-475 (2012)

Coherent anti-Stokes Raman scattering (CARS) microscopy imaging at interfaces: evidence of interference effects

D. Gachet, F. Billard, N. Sandeau, and H. Rigneault
Opt. Express 15(16) 10408-10420 (2007)

Refractive effects in coherent anti-Stokes Raman scattering microscopy

Nadia Djaker, David Gachet, Nicolas Sandeau, Pierre-Francois Lenne, and Hervé Rigneault
Appl. Opt. 45(27) 7005-7011 (2006)

References

  • View by:
  • |
  • |
  • |

  1. J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science350 (2015).
    [Crossref] [PubMed]
  2. W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: Beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62, 507–530 (2011).
    [Crossref] [PubMed]
  3. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” P. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
    [Crossref]
  4. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330, 1368–1370 (2010).
    [Crossref] [PubMed]
  5. Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated raman scattering,” Nat. Photonics 6, 845–851 (2012).
    [Crossref]
  6. A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal cars microscopy in the fingerprint region,” J. Biophotonics 7, 49–58 (2014).
    [Crossref]
  7. C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, W. R. Hight, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
    [Crossref]
  8. X. Zhang, M. B. J. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated raman scattering microscopy,” ChemPhysChem 13, 1054–1059 (2012).
    [Crossref] [PubMed]
  9. L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated raman scattering,” Nat. Methods 11, 410–412 (2014).
    [Crossref] [PubMed]
  10. D. Fu, J. Zhou, W. S. Zhu, P. W. Manley, Y. K. Wang, T. Hood, A. Wylie, and X. S. Xie, “Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated raman scattering,” Nat. Chem. 6, 614–622 (2014).
    [Crossref] [PubMed]
  11. M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated raman scattering microscopy,” Sci. Transl. Med. 5, 201ra119 (2013).
    [Crossref] [PubMed]
  12. L. Wei, Y. Yu, Y. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated raman scattering microscopy,” P. Natl. Acad. Sci. USA 110, 11226–11231 (2013).
    [Crossref]
  13. K. I. Popov, A. F. Pegoraro, A. Stolow, and L. Ramunno, “Image formation in cars microscopy: effect of the gouy phase shift,” Opt. Express 19, 5902–5911 (2011).
    [Crossref] [PubMed]
  14. A. M. Barlow, K. Popov, M. Andreana, D. J. Moffatt, A. Ridsdale, A. D. Slepkov, J. L. Harden, L. Ramunno, and A. Stolow, “Spatial-spectral coupling in coherent anti-stokes raman scattering microscopy,” Opt. Express 21, 15298–15307 (2013).
    [Crossref] [PubMed]
  15. K. I. Popov, A. F. Pegoraro, A. Stolow, and L. Ramunno, “Image formation in cars and srs: effect of an inhomogeneous nonresonant background medium,” Opt. Lett. 37, 473–475 (2012).
    [Crossref] [PubMed]
  16. von F. Zernike, “Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode,” Physica 1, 689–704 (1934).
    [Crossref]
  17. N. Djaker, D. Gachet, N. Sandeau, P.-F. Lenne, and H. Rigneault, “Refractive effects in coherent anti-stokes raman scattering microscopy,” Appl. Opt. 45, 7005–7011 (2006).
    [Crossref] [PubMed]
  18. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16, 6930–6940 (2008).
    [Crossref] [PubMed]
  19. M. Weinigel, H. G. Breunig, M. E. Darvin, M. Klemp, J. Röwert-Huber, J. Lademann, and K. König, “Impact of refractive index mismatches on coherent anti-stokes raman scattering and multiphoton autofluorescence tomography of human skin in vivo,” Phys. Med. Biol. 60, 6881 (2015).
    [Crossref] [PubMed]
  20. C. Liu, Z. Huang, F. Lu, W. Zheng, D. W. Hutmacher, and C. Sheppard, “Near-field effects on coherent anti-stokes raman scattering microscopy imaging,” Opt. Express 15, 4118–4131 (2007).
    [Crossref] [PubMed]
  21. J. Lin, H. Wang, W. Zheng, F. Lu, C. Sheppard, and Z. Huang, “Numerical study of effects of light polarization, scatterer sizes and orientations on near-field coherent anti-stokes raman scattering microscopy,” Opt. Express 17, 2423–2434 (2009).
    [Crossref] [PubMed]
  22. P. K. Upputuri, Z. Wu, L. Gong, C. K. Ong, and H. Wang, “Super-resolution coherent anti-stokes raman scattering microscopy with photonic nanojets,” Opt. Express 22, 12890–12899 (2014).
    [Crossref] [PubMed]
  23. R. W. Boyd, Nonlinear Optics (Academic, 2008), 3rd ed.
  24. M. Fujii, M. Tahara, I. Sakagami, W. Freude, and P. Russer, “High-order fdtd and auxiliary differential equation formulation of optical pulse propagation in 2-d kerr and raman nonlinear dispersive media,” IEEE J. Quantum Elect. 40, 175–182 (2004).
    [Crossref]

2015 (1)

M. Weinigel, H. G. Breunig, M. E. Darvin, M. Klemp, J. Röwert-Huber, J. Lademann, and K. König, “Impact of refractive index mismatches on coherent anti-stokes raman scattering and multiphoton autofluorescence tomography of human skin in vivo,” Phys. Med. Biol. 60, 6881 (2015).
[Crossref] [PubMed]

2014 (5)

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal cars microscopy in the fingerprint region,” J. Biophotonics 7, 49–58 (2014).
[Crossref]

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, W. R. Hight, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
[Crossref]

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated raman scattering,” Nat. Methods 11, 410–412 (2014).
[Crossref] [PubMed]

D. Fu, J. Zhou, W. S. Zhu, P. W. Manley, Y. K. Wang, T. Hood, A. Wylie, and X. S. Xie, “Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated raman scattering,” Nat. Chem. 6, 614–622 (2014).
[Crossref] [PubMed]

P. K. Upputuri, Z. Wu, L. Gong, C. K. Ong, and H. Wang, “Super-resolution coherent anti-stokes raman scattering microscopy with photonic nanojets,” Opt. Express 22, 12890–12899 (2014).
[Crossref] [PubMed]

2013 (3)

A. M. Barlow, K. Popov, M. Andreana, D. J. Moffatt, A. Ridsdale, A. D. Slepkov, J. L. Harden, L. Ramunno, and A. Stolow, “Spatial-spectral coupling in coherent anti-stokes raman scattering microscopy,” Opt. Express 21, 15298–15307 (2013).
[Crossref] [PubMed]

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated raman scattering microscopy,” Sci. Transl. Med. 5, 201ra119 (2013).
[Crossref] [PubMed]

L. Wei, Y. Yu, Y. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated raman scattering microscopy,” P. Natl. Acad. Sci. USA 110, 11226–11231 (2013).
[Crossref]

2012 (3)

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated raman scattering,” Nat. Photonics 6, 845–851 (2012).
[Crossref]

X. Zhang, M. B. J. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated raman scattering microscopy,” ChemPhysChem 13, 1054–1059 (2012).
[Crossref] [PubMed]

K. I. Popov, A. F. Pegoraro, A. Stolow, and L. Ramunno, “Image formation in cars and srs: effect of an inhomogeneous nonresonant background medium,” Opt. Lett. 37, 473–475 (2012).
[Crossref] [PubMed]

2011 (2)

K. I. Popov, A. F. Pegoraro, A. Stolow, and L. Ramunno, “Image formation in cars microscopy: effect of the gouy phase shift,” Opt. Express 19, 5902–5911 (2011).
[Crossref] [PubMed]

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: Beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62, 507–530 (2011).
[Crossref] [PubMed]

2010 (1)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330, 1368–1370 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

2007 (1)

2006 (1)

2005 (1)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” P. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

2004 (1)

M. Fujii, M. Tahara, I. Sakagami, W. Freude, and P. Russer, “High-order fdtd and auxiliary differential equation formulation of optical pulse propagation in 2-d kerr and raman nonlinear dispersive media,” IEEE J. Quantum Elect. 40, 175–182 (2004).
[Crossref]

1934 (1)

von F. Zernike, “Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode,” Physica 1, 689–704 (1934).
[Crossref]

Agar, N. Y. R.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated raman scattering microscopy,” Sci. Transl. Med. 5, 201ra119 (2013).
[Crossref] [PubMed]

Andreana, M.

Barlow, A. M.

Basu, S.

X. Zhang, M. B. J. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated raman scattering microscopy,” ChemPhysChem 13, 1054–1059 (2012).
[Crossref] [PubMed]

Bonod, N.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2008), 3rd ed.

Breunig, H. G.

M. Weinigel, H. G. Breunig, M. E. Darvin, M. Klemp, J. Röwert-Huber, J. Lademann, and K. König, “Impact of refractive index mismatches on coherent anti-stokes raman scattering and multiphoton autofluorescence tomography of human skin in vivo,” Phys. Med. Biol. 60, 6881 (2015).
[Crossref] [PubMed]

Camelo-Piragua, S.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated raman scattering microscopy,” Sci. Transl. Med. 5, 201ra119 (2013).
[Crossref] [PubMed]

Camp, C. H.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, W. R. Hight, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
[Crossref]

Chen, Z.

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated raman scattering,” Nat. Methods 11, 410–412 (2014).
[Crossref] [PubMed]

Cheng, J.-X.

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science350 (2015).
[Crossref] [PubMed]

Cicerone, M. T.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, W. R. Hight, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
[Crossref]

Côté, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” P. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

Daniele, J. R.

X. Zhang, M. B. J. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated raman scattering microscopy,” ChemPhysChem 13, 1054–1059 (2012).
[Crossref] [PubMed]

Darvin, M. E.

M. Weinigel, H. G. Breunig, M. E. Darvin, M. Klemp, J. Röwert-Huber, J. Lademann, and K. König, “Impact of refractive index mismatches on coherent anti-stokes raman scattering and multiphoton autofluorescence tomography of human skin in vivo,” Phys. Med. Biol. 60, 6881 (2015).
[Crossref] [PubMed]

Devilez, A.

Djaker, N.

Evans, C. L.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” P. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

Ferrand, P.

Freude, W.

M. Fujii, M. Tahara, I. Sakagami, W. Freude, and P. Russer, “High-order fdtd and auxiliary differential equation formulation of optical pulse propagation in 2-d kerr and raman nonlinear dispersive media,” IEEE J. Quantum Elect. 40, 175–182 (2004).
[Crossref]

Freudiger, C. W.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated raman scattering microscopy,” Sci. Transl. Med. 5, 201ra119 (2013).
[Crossref] [PubMed]

X. Zhang, M. B. J. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated raman scattering microscopy,” ChemPhysChem 13, 1054–1059 (2012).
[Crossref] [PubMed]

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: Beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62, 507–530 (2011).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330, 1368–1370 (2010).
[Crossref] [PubMed]

Fu, D.

D. Fu, J. Zhou, W. S. Zhu, P. W. Manley, Y. K. Wang, T. Hood, A. Wylie, and X. S. Xie, “Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated raman scattering,” Nat. Chem. 6, 614–622 (2014).
[Crossref] [PubMed]

X. Zhang, M. B. J. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated raman scattering microscopy,” ChemPhysChem 13, 1054–1059 (2012).
[Crossref] [PubMed]

Fujii, M.

M. Fujii, M. Tahara, I. Sakagami, W. Freude, and P. Russer, “High-order fdtd and auxiliary differential equation formulation of optical pulse propagation in 2-d kerr and raman nonlinear dispersive media,” IEEE J. Quantum Elect. 40, 175–182 (2004).
[Crossref]

Fukui, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated raman scattering,” Nat. Photonics 6, 845–851 (2012).
[Crossref]

Gachet, D.

Golby, A. J.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated raman scattering microscopy,” Sci. Transl. Med. 5, 201ra119 (2013).
[Crossref] [PubMed]

Gong, L.

Harden, J. L.

Hartshorn, C. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, W. R. Hight, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
[Crossref]

Hashimoto, H.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated raman scattering,” Nat. Photonics 6, 845–851 (2012).
[Crossref]

Hayashi, M.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated raman scattering microscopy,” Sci. Transl. Med. 5, 201ra119 (2013).
[Crossref] [PubMed]

Heddleston, J. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, W. R. Hight, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
[Crossref]

Hight, W. R.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, W. R. Hight, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
[Crossref]

Holtom, G. R.

X. Zhang, M. B. J. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated raman scattering microscopy,” ChemPhysChem 13, 1054–1059 (2012).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330, 1368–1370 (2010).
[Crossref] [PubMed]

Hood, T.

D. Fu, J. Zhou, W. S. Zhu, P. W. Manley, Y. K. Wang, T. Hood, A. Wylie, and X. S. Xie, “Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated raman scattering,” Nat. Chem. 6, 614–622 (2014).
[Crossref] [PubMed]

Hu, F.

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated raman scattering,” Nat. Methods 11, 410–412 (2014).
[Crossref] [PubMed]

Huang, Z.

Hutmacher, D. W.

Itoh, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated raman scattering,” Nat. Photonics 6, 845–851 (2012).
[Crossref]

Ji, M.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated raman scattering microscopy,” Sci. Transl. Med. 5, 201ra119 (2013).
[Crossref] [PubMed]

Klemp, M.

M. Weinigel, H. G. Breunig, M. E. Darvin, M. Klemp, J. Röwert-Huber, J. Lademann, and K. König, “Impact of refractive index mismatches on coherent anti-stokes raman scattering and multiphoton autofluorescence tomography of human skin in vivo,” Phys. Med. Biol. 60, 6881 (2015).
[Crossref] [PubMed]

König, K.

M. Weinigel, H. G. Breunig, M. E. Darvin, M. Klemp, J. Röwert-Huber, J. Lademann, and K. König, “Impact of refractive index mismatches on coherent anti-stokes raman scattering and multiphoton autofluorescence tomography of human skin in vivo,” Phys. Med. Biol. 60, 6881 (2015).
[Crossref] [PubMed]

Lademann, J.

M. Weinigel, H. G. Breunig, M. E. Darvin, M. Klemp, J. Röwert-Huber, J. Lademann, and K. König, “Impact of refractive index mismatches on coherent anti-stokes raman scattering and multiphoton autofluorescence tomography of human skin in vivo,” Phys. Med. Biol. 60, 6881 (2015).
[Crossref] [PubMed]

Lathia, J. D.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, W. R. Hight, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
[Crossref]

Lau, D.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated raman scattering microscopy,” Sci. Transl. Med. 5, 201ra119 (2013).
[Crossref] [PubMed]

Lee, Y. J.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, W. R. Hight, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
[Crossref]

Lenne, P.-F.

Ligon, K. L.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated raman scattering microscopy,” Sci. Transl. Med. 5, 201ra119 (2013).
[Crossref] [PubMed]

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” P. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

Lin, C.-C.

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated raman scattering,” Nat. Methods 11, 410–412 (2014).
[Crossref] [PubMed]

Lin, J.

Liu, C.

Liu, X.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated raman scattering microscopy,” Sci. Transl. Med. 5, 201ra119 (2013).
[Crossref] [PubMed]

Lu, F.

Lu, S.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: Beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62, 507–530 (2011).
[Crossref] [PubMed]

Manley, P. W.

D. Fu, J. Zhou, W. S. Zhu, P. W. Manley, Y. K. Wang, T. Hood, A. Wylie, and X. S. Xie, “Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated raman scattering,” Nat. Chem. 6, 614–622 (2014).
[Crossref] [PubMed]

Min, W.

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated raman scattering,” Nat. Methods 11, 410–412 (2014).
[Crossref] [PubMed]

L. Wei, Y. Yu, Y. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated raman scattering microscopy,” P. Natl. Acad. Sci. USA 110, 11226–11231 (2013).
[Crossref]

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: Beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62, 507–530 (2011).
[Crossref] [PubMed]

Moffatt, D. J.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal cars microscopy in the fingerprint region,” J. Biophotonics 7, 49–58 (2014).
[Crossref]

A. M. Barlow, K. Popov, M. Andreana, D. J. Moffatt, A. Ridsdale, A. D. Slepkov, J. L. Harden, L. Ramunno, and A. Stolow, “Spatial-spectral coupling in coherent anti-stokes raman scattering microscopy,” Opt. Express 21, 15298–15307 (2013).
[Crossref] [PubMed]

Nishizawa, N.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated raman scattering,” Nat. Photonics 6, 845–851 (2012).
[Crossref]

Norton, I.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated raman scattering microscopy,” Sci. Transl. Med. 5, 201ra119 (2013).
[Crossref] [PubMed]

Ong, C. K.

Orringer, D. A.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated raman scattering microscopy,” Sci. Transl. Med. 5, 201ra119 (2013).
[Crossref] [PubMed]

Otsuka, Y.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated raman scattering,” Nat. Photonics 6, 845–851 (2012).
[Crossref]

Ozeki, Y.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated raman scattering,” Nat. Photonics 6, 845–851 (2012).
[Crossref]

Pegoraro, A. F.

Pianta, M.

Popov, E.

Popov, K.

Popov, K. I.

Potma, E. O.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” P. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” P. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

Ramkissoon, S.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated raman scattering microscopy,” Sci. Transl. Med. 5, 201ra119 (2013).
[Crossref] [PubMed]

Ramunno, L.

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330, 1368–1370 (2010).
[Crossref] [PubMed]

Rich, J. N.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, W. R. Hight, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
[Crossref]

Ridsdale, A.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal cars microscopy in the fingerprint region,” J. Biophotonics 7, 49–58 (2014).
[Crossref]

A. M. Barlow, K. Popov, M. Andreana, D. J. Moffatt, A. Ridsdale, A. D. Slepkov, J. L. Harden, L. Ramunno, and A. Stolow, “Spatial-spectral coupling in coherent anti-stokes raman scattering microscopy,” Opt. Express 21, 15298–15307 (2013).
[Crossref] [PubMed]

Rigneault, H.

Roeffaers, M. B. J.

X. Zhang, M. B. J. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated raman scattering microscopy,” ChemPhysChem 13, 1054–1059 (2012).
[Crossref] [PubMed]

Röwert-Huber, J.

M. Weinigel, H. G. Breunig, M. E. Darvin, M. Klemp, J. Röwert-Huber, J. Lademann, and K. König, “Impact of refractive index mismatches on coherent anti-stokes raman scattering and multiphoton autofluorescence tomography of human skin in vivo,” Phys. Med. Biol. 60, 6881 (2015).
[Crossref] [PubMed]

Russer, P.

M. Fujii, M. Tahara, I. Sakagami, W. Freude, and P. Russer, “High-order fdtd and auxiliary differential equation formulation of optical pulse propagation in 2-d kerr and raman nonlinear dispersive media,” IEEE J. Quantum Elect. 40, 175–182 (2004).
[Crossref]

Saar, B. G.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330, 1368–1370 (2010).
[Crossref] [PubMed]

Sagher, O.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated raman scattering microscopy,” Sci. Transl. Med. 5, 201ra119 (2013).
[Crossref] [PubMed]

Sakagami, I.

M. Fujii, M. Tahara, I. Sakagami, W. Freude, and P. Russer, “High-order fdtd and auxiliary differential equation formulation of optical pulse propagation in 2-d kerr and raman nonlinear dispersive media,” IEEE J. Quantum Elect. 40, 175–182 (2004).
[Crossref]

Sandeau, N.

Santagata, S.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated raman scattering microscopy,” Sci. Transl. Med. 5, 201ra119 (2013).
[Crossref] [PubMed]

Satoh, S.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated raman scattering,” Nat. Photonics 6, 845–851 (2012).
[Crossref]

Shen, Y.

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated raman scattering,” Nat. Methods 11, 410–412 (2014).
[Crossref] [PubMed]

L. Wei, Y. Yu, Y. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated raman scattering microscopy,” P. Natl. Acad. Sci. USA 110, 11226–11231 (2013).
[Crossref]

Sheppard, C.

Slepkov, A. D.

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal cars microscopy in the fingerprint region,” J. Biophotonics 7, 49–58 (2014).
[Crossref]

A. M. Barlow, K. Popov, M. Andreana, D. J. Moffatt, A. Ridsdale, A. D. Slepkov, J. L. Harden, L. Ramunno, and A. Stolow, “Spatial-spectral coupling in coherent anti-stokes raman scattering microscopy,” Opt. Express 21, 15298–15307 (2013).
[Crossref] [PubMed]

Spino, C.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated raman scattering microscopy,” Sci. Transl. Med. 5, 201ra119 (2013).
[Crossref] [PubMed]

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330, 1368–1370 (2010).
[Crossref] [PubMed]

Stolow, A.

Stout, B.

Sumimura, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated raman scattering,” Nat. Photonics 6, 845–851 (2012).
[Crossref]

Tahara, M.

M. Fujii, M. Tahara, I. Sakagami, W. Freude, and P. Russer, “High-order fdtd and auxiliary differential equation formulation of optical pulse propagation in 2-d kerr and raman nonlinear dispersive media,” IEEE J. Quantum Elect. 40, 175–182 (2004).
[Crossref]

Umemura, W.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated raman scattering,” Nat. Photonics 6, 845–851 (2012).
[Crossref]

Upputuri, P. K.

Wang, H.

Wang, M. C.

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated raman scattering,” Nat. Methods 11, 410–412 (2014).
[Crossref] [PubMed]

L. Wei, Y. Yu, Y. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated raman scattering microscopy,” P. Natl. Acad. Sci. USA 110, 11226–11231 (2013).
[Crossref]

Wang, Y. K.

D. Fu, J. Zhou, W. S. Zhu, P. W. Manley, Y. K. Wang, T. Hood, A. Wylie, and X. S. Xie, “Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated raman scattering,” Nat. Chem. 6, 614–622 (2014).
[Crossref] [PubMed]

Wei, L.

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated raman scattering,” Nat. Methods 11, 410–412 (2014).
[Crossref] [PubMed]

L. Wei, Y. Yu, Y. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated raman scattering microscopy,” P. Natl. Acad. Sci. USA 110, 11226–11231 (2013).
[Crossref]

Weinigel, M.

M. Weinigel, H. G. Breunig, M. E. Darvin, M. Klemp, J. Röwert-Huber, J. Lademann, and K. König, “Impact of refractive index mismatches on coherent anti-stokes raman scattering and multiphoton autofluorescence tomography of human skin in vivo,” Phys. Med. Biol. 60, 6881 (2015).
[Crossref] [PubMed]

Wenger, J.

Wu, Z.

Wylie, A.

D. Fu, J. Zhou, W. S. Zhu, P. W. Manley, Y. K. Wang, T. Hood, A. Wylie, and X. S. Xie, “Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated raman scattering,” Nat. Chem. 6, 614–622 (2014).
[Crossref] [PubMed]

Xie, X. S.

D. Fu, J. Zhou, W. S. Zhu, P. W. Manley, Y. K. Wang, T. Hood, A. Wylie, and X. S. Xie, “Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated raman scattering,” Nat. Chem. 6, 614–622 (2014).
[Crossref] [PubMed]

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated raman scattering microscopy,” Sci. Transl. Med. 5, 201ra119 (2013).
[Crossref] [PubMed]

X. Zhang, M. B. J. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated raman scattering microscopy,” ChemPhysChem 13, 1054–1059 (2012).
[Crossref] [PubMed]

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: Beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62, 507–530 (2011).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330, 1368–1370 (2010).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” P. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science350 (2015).
[Crossref] [PubMed]

Young, G. S.

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated raman scattering microscopy,” Sci. Transl. Med. 5, 201ra119 (2013).
[Crossref] [PubMed]

Yu, Y.

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated raman scattering,” Nat. Methods 11, 410–412 (2014).
[Crossref] [PubMed]

L. Wei, Y. Yu, Y. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated raman scattering microscopy,” P. Natl. Acad. Sci. USA 110, 11226–11231 (2013).
[Crossref]

Zernike, von F.

von F. Zernike, “Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode,” Physica 1, 689–704 (1934).
[Crossref]

Zhang, X.

X. Zhang, M. B. J. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated raman scattering microscopy,” ChemPhysChem 13, 1054–1059 (2012).
[Crossref] [PubMed]

Zheng, W.

Zhou, J.

D. Fu, J. Zhou, W. S. Zhu, P. W. Manley, Y. K. Wang, T. Hood, A. Wylie, and X. S. Xie, “Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated raman scattering,” Nat. Chem. 6, 614–622 (2014).
[Crossref] [PubMed]

Zhu, W. S.

D. Fu, J. Zhou, W. S. Zhu, P. W. Manley, Y. K. Wang, T. Hood, A. Wylie, and X. S. Xie, “Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated raman scattering,” Nat. Chem. 6, 614–622 (2014).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: Beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62, 507–530 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

ChemPhysChem (1)

X. Zhang, M. B. J. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated raman scattering microscopy,” ChemPhysChem 13, 1054–1059 (2012).
[Crossref] [PubMed]

IEEE J. Quantum Elect. (1)

M. Fujii, M. Tahara, I. Sakagami, W. Freude, and P. Russer, “High-order fdtd and auxiliary differential equation formulation of optical pulse propagation in 2-d kerr and raman nonlinear dispersive media,” IEEE J. Quantum Elect. 40, 175–182 (2004).
[Crossref]

J. Biophotonics (1)

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal cars microscopy in the fingerprint region,” J. Biophotonics 7, 49–58 (2014).
[Crossref]

Nat. Chem. (1)

D. Fu, J. Zhou, W. S. Zhu, P. W. Manley, Y. K. Wang, T. Hood, A. Wylie, and X. S. Xie, “Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated raman scattering,” Nat. Chem. 6, 614–622 (2014).
[Crossref] [PubMed]

Nat. Methods (1)

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated raman scattering,” Nat. Methods 11, 410–412 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, W. R. Hight, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
[Crossref]

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated raman scattering,” Nat. Photonics 6, 845–851 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

P. Natl. Acad. Sci. USA (2)

L. Wei, Y. Yu, Y. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated raman scattering microscopy,” P. Natl. Acad. Sci. USA 110, 11226–11231 (2013).
[Crossref]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-stokes raman scattering microscopy,” P. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

Phys. Med. Biol. (1)

M. Weinigel, H. G. Breunig, M. E. Darvin, M. Klemp, J. Röwert-Huber, J. Lademann, and K. König, “Impact of refractive index mismatches on coherent anti-stokes raman scattering and multiphoton autofluorescence tomography of human skin in vivo,” Phys. Med. Biol. 60, 6881 (2015).
[Crossref] [PubMed]

Physica (1)

von F. Zernike, “Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode,” Physica 1, 689–704 (1934).
[Crossref]

Sci. Transl. Med. (1)

M. Ji, D. A. Orringer, C. W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A. J. Golby, I. Norton, M. Hayashi, N. Y. R. Agar, G. S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K. L. Ligon, O. Sagher, and X. S. Xie, “Rapid, label-free detection of brain tumors with stimulated raman scattering microscopy,” Sci. Transl. Med. 5, 201ra119 (2013).
[Crossref] [PubMed]

Science (1)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330, 1368–1370 (2010).
[Crossref] [PubMed]

Other (2)

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science350 (2015).
[Crossref] [PubMed]

R. W. Boyd, Nonlinear Optics (Academic, 2008), 3rd ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The field magnitude of the pump beam in a n = 1.33 medium focused at x = 6.0 μm is shown in the presence of a homogeneous refractive index (left) and for the case where it is distorted by the presence of a r = 1.0 μm sphere with n = 1.5 (right). The position of the sphere is indicated by the (red) circles, where a dotted line means the sphere is refractive index-matched, and a solid line means it is index mismatched.
Fig. 2
Fig. 2 CARS (top left), FM-CARS (top right), AM-SRS (bottom left) and FM-SRS (bottom right) far-field signals as a function of bead positions, x, along the laser propagation axis of a single r = 1.24 μm sphere with (blue filled squares) and without (red open circles) a linear index mismatch with the background medium (n = 1.33). In all cases, the laser focal spot is at x = 6.0 μm.
Fig. 3
Fig. 3 Far-field signals for anti-Stokes (top left), FM anti-Stokes (top right), AM pump (bottom left) and FM pump (bottom right) as a function of bead position x. This is for a single r = 0.25 μm sphere (n = 1.5) index mismatched with a background medium (n = 1.33) and a collecting lens NA of 0.6. The solid blue squares are for a resonant sphere and the orange open circles are for a nonresonant one. The top plots are expressed in units of the far-field NRB signal from bulk. The index-matched off-resonant signal, i.e. the NRB, is indicated by the black dashed line. The bottom plots have been scaled such that the peak value of the solid line for each sphere is one. In all cases, the laser focal spot is at x = 6.0 μm.
Fig. 4
Fig. 4 The field magnitude of the pump beam in a n = 1.33 medium focused at x = 6.0 μm is shown in the presence of a homogeneous refractive index, configuration I, (left) and for the case of two r = 1.0 μm spheres, configuration II (right). The position of the sphere is indicated by the (red) circles, where a dotted line means the sphere is refractive index-matched, and a solid line means it is index mismatched. The field magnitudes for a single index-mismatched sphere, configuration III, are similar to those plotted on the right side of Fig. 1.
Fig. 5
Fig. 5 CARS (top left), FM-CARS (top right), AM-SRS (bottom left) and FM-SRS (bottom right) far-field signals as a function of position along the laser propagation axis of two touching r = 1.0 μm spheres with (blue filled squares) and without (red open circles) a linear index mismatch. The green filled triangles are the signal for a single index-mismatched sphere of r = 1.25 μm. The single sphere has the same volume as the two r = 1.0 μm spheres combined.
Fig. 6
Fig. 6 Far-field enhancement factor calculated as the ratio between the far-field signal intensity from two index-mismatched touching spheres of configuration II to that of two index-matched ones of configuration I. Blue filled circles are CARS, red filled squares are FM-CARS, green empty circles are AM-SRS, and orange empty squares are FM-SRS. That is, the top two lines are CARS/FM-CARS and the bottom two are AM-SRS/FM-SRS. From left to right a collection lens NA of 0.1, 0.3, and 0.6 is used.
Fig. 7
Fig. 7 Far-field enhancement factor calculated as the ratio between the far-field signal intensity from two touching spheres of configuration II to that of a single sphere with equivalent volume of configuration III. Blue filled circles are CARS, red filled squares are FM-CARS, green empty circles are AM-SRS, and orange empty squares are FM-SRS. That is, the top two lines are CARS/FM-CARS and the bottom two are AM-SRS/FM-SRS. From left to right a collection lens NA of 0.1, 0.3, and 0.6 is used.
Fig. 8
Fig. 8 Comparison of the far-field CARS intensity signals for r = 1.5 μm index-matched double spheres (red open circles) of configuration I, index-mismatched double spheres (blue filled squares) of configuration II, and single index-mismatched sphere of double volume (green filled triangles) of configuration III. Plotted is the divergence of the signal on the collecting lens. The divergence is taken as the width of a Gaussian function in units of angle fitted to the far-field intensity distribution.
Fig. 9
Fig. 9 Left: Enhancement (the ratio of the maximum far-field signal intensity for two separated spheres and a single sphere with the same total volume) versus edge-to-edge separation distance of the two spheres. Top left is for two r = 0.5 μm spheres and one r = 0.63 μm sphere. Bottom left is for two r = 1.0 μm spheres and one r = 1.25 μm sphere. The signal was collected with a collection lens with an NA of 0.6. Blue filled circles are CARS, red filled squares are FM-CARS, green empty circles are AM-SRS, and orange empty squares are FM-SRS. That is, the top two lines are CARS/FM-CARS and the bottom two are AM-SRS/FM-SRS. Right: FM-SRS far-field intensity for two r = 0.5 μm spheres (top) and two r = 1.0 μm spheres (bottom) as a function of position along the laser propagation axis. Different curves represent different sphere separation distances as indicated in the legends. Intensity was normalized to that of a single sphere.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P SRS ( ω s ) = 6 0 χ R ( 3 ) ( ω S = ω p ω p + ω S ) | E ( ω p ) | 2 E ( ω S )
P SRS ( ω p ) = 6 0 χ R ( 3 ) ( ω p = ω p ω S + ω S ) E ( ω p ) | E ( ω S ) | 2 ,
P CARS ( 2 ω p ω S ) = 3 0 [ χ R ( 3 ) ( ω A S = ω p + ω p ω S ) + χ N R ( 3 ) ] E 2 ( ω p ) E ( ω S ) ,
D = [ 1 + 4 π ( χ ( 1 ) ( r + χ N R ( 3 ) ( r ) E 2 ) ] E + 4 π P R ,
P R ( r , t ) = 1 4 π E ( χ R ( r , t ) E 2 ( t ) ) ,
χ R ( r , t ) = χ R ( 3 ) ( r ) 1 ( ω R 2 ω R 2 ω 2 + 2 i ω γ R ) .

Metrics