Abstract

An all-pass microring-Bragg gratings (APMR-BG) based coupling resonant system is proposed and experimentally demonstrated to generate electromagnetically induced transparency (EIT)-like transmission for the first time. The coupling between two light path ways in the micro-ring resonator and the Fabry–Pérot (F-P) resonator formed by two sections of Bragg gratings gives rise to the EIT-like spectrum. This system has the advantage of a small footprint consisting of only one microring resonator and one bus waveguide with Bragg gratings. It also has a large fabrication tolerance as the overlap requirement between the resonance wavelengths of the microring and the F-P resonator is more relaxed. The two most important properties of the EIT-like transmission namely the insertion loss (IL) and the full-width-at-half-maximum (FWHM) have been analytically investigated by utilizing the specially developed model based on the transfer matrix method. The APMR-BG based coupling resonant system was fabricated on a silicon-on-insulator (SOI) platform. The EIT-like transmission with an extinction ratio (ER) of 12 dB, a FWHM of 0.077 nm and a quality factor (Q factor) of 20200 was achieved, which agree well with the simulated results based on our numerical model. A slow light with a group delay of 38 ps was also obtained.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High quality factor electromagnetically induced transparency-like effect in coupled guided-mode resonant systems

Yunxin Han, Junbo Yang, Xin He, Jie Huang, Jingjing Zhang, Dingbo Chen, and Zhaojian Zhang
Opt. Express 27(5) 7712-7718 (2019)

Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator

Qingzhong Huang, Zhan Shu, Ge Song, Juguang Chen, Jinsong Xia, and Jinzhong Yu
Opt. Express 22(3) 3219-3227 (2014)

Graphene-based electromagnetically induced transparency with coupling Fabry–Perot resonators

Huawei Zhuang, Fanmin Kong, Kang Li, and Shiwei Sheng
Appl. Opt. 54(24) 7455-7461 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
    [Crossref] [PubMed]
  2. Q. Huang, Z. Shu, G. Song, J. Chen, J. Xia, and J. Yu, “Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator,” Opt. Express 22(3), 3219–3227 (2014).
    [Crossref] [PubMed]
  3. R. L. W. Novikova and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
    [Crossref]
  4. S. Emelett and R. Soref, “Synthesis of dual-microring-resonator cross-connect filters,” Opt. Express 13(12), 4439–4456 (2005).
    [Crossref] [PubMed]
  5. Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93(8), 081113 (2008).
    [Crossref]
  6. R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16–18), 2441–2448 (2004).
    [Crossref]
  7. Y. F. Xiao, V. Gaddam, and L. Yang, “Coupled optical microcavities: an enhanced refractometric sensing configuration,” Opt. Express 16(17), 12538–12543 (2008).
    [Crossref] [PubMed]
  8. Q. Huang, X. Zhang, J. Xia, and J. Yu, “Dual-band optical filter based on a single microdisk resonator,” Opt. Lett. 36(23), 4494–4496 (2011).
    [Crossref] [PubMed]
  9. Q. Huang, J. Chen, G. Song, K. Jie, Z. Wang, Y. Wang, J. Xia, and J. Yu, “Experimental demonstration of a microdisk resonator filter/buffer utilizing two-mode interference,” Opt. Lett. 39(23), 6553–6556 (2014).
    [Crossref] [PubMed]
  10. T. Hu, W. J. Wang, C. Qiu, P. Yu, H. Y. Qiu, Y. Zhao, X. Q. Jiang, and J. Y. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photonics Technol. Lett. 24(6), 524–526 (2012).
    [Crossref]
  11. F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17(24), 21986–21991 (2009).
    [Crossref] [PubMed]
  12. C. Ciminelli, F. Dell’Olio, D. Conteduca, C. M. Campanella, and M. N. Armenise, “High performance SOI microring resonator for biochemical sensing,” Opt. Laser Technol. 59, 60–67 (2014).
    [Crossref]
  13. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
    [Crossref] [PubMed]
  14. Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
    [Crossref]
  15. Y. Zhang, S. Darmawan, L. Y. M. Tobing, T. Mei, and D. H. Zhang, “Coupled resonator-induced transparency in ring-bus-ring Mach–Zehnder interferometer,” J. Opt. Soc. Am. B 28(1), 28–36 (2011).
    [Crossref]
  16. S. Darmawan, L. Y. M. Tobing, and D. H. Zhang, “Experimental demonstration of coupled-resonator-induced-transparency in silicon-on-insulator based ring-bus-ring geometry,” Opt. Express 19(18), 17813–17819 (2011).
    [Crossref] [PubMed]
  17. C. Zheng, X. Jiang, S. Hua, L. Chang, G. Li, H. Fan, and M. Xiao, “Controllable optical analog to electromagnetically induced transparency in coupled high-Q microtoroid cavities,” Opt. Express 20(16), 18319–18325 (2012).
    [Crossref] [PubMed]
  18. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
    [Crossref] [PubMed]
  19. C. Lukas and V. M. Hochberg, Silicon Photonics Design from Devices to Systems (Cambridge University, 2015).
  20. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009).
    [Crossref] [PubMed]
  21. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
    [Crossref] [PubMed]
  22. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
    [Crossref] [PubMed]
  23. C. G. H. Roeloffzen, L. Zhuang, R. G. Heideman, A. Borreman, and W. van Etten, “Ring resonator-based Tunable Optical Delay Line in LPCVD waveguide Technology,” in Proceedings Symposim IEEE/LEOS Benelux Chapter (IEEE, 2005), pp. 79–82.

2014 (3)

2012 (3)

C. Zheng, X. Jiang, S. Hua, L. Chang, G. Li, H. Fan, and M. Xiao, “Controllable optical analog to electromagnetically induced transparency in coupled high-Q microtoroid cavities,” Opt. Express 20(16), 18319–18325 (2012).
[Crossref] [PubMed]

T. Hu, W. J. Wang, C. Qiu, P. Yu, H. Y. Qiu, Y. Zhao, X. Q. Jiang, and J. Y. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photonics Technol. Lett. 24(6), 524–526 (2012).
[Crossref]

R. L. W. Novikova and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
[Crossref]

2011 (3)

2009 (2)

2008 (2)

Y. F. Xiao, V. Gaddam, and L. Yang, “Coupled optical microcavities: an enhanced refractometric sensing configuration,” Opt. Express 16(17), 12538–12543 (2008).
[Crossref] [PubMed]

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93(8), 081113 (2008).
[Crossref]

2007 (2)

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[Crossref]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

2006 (2)

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (2)

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16–18), 2441–2448 (2004).
[Crossref]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

1991 (1)

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Armenise, M. N.

C. Ciminelli, F. Dell’Olio, D. Conteduca, C. M. Campanella, and M. N. Armenise, “High performance SOI microring resonator for biochemical sensing,” Opt. Laser Technol. 59, 60–67 (2014).
[Crossref]

Beausoleil, R. G.

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16–18), 2441–2448 (2004).
[Crossref]

Boller, K.-J.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Brimont, A.

Campanella, C. M.

C. Ciminelli, F. Dell’Olio, D. Conteduca, C. M. Campanella, and M. N. Armenise, “High performance SOI microring resonator for biochemical sensing,” Opt. Laser Technol. 59, 60–67 (2014).
[Crossref]

Cardenas, J.

Chang, L.

Chen, J.

Chen, L.

Ciminelli, C.

C. Ciminelli, F. Dell’Olio, D. Conteduca, C. M. Campanella, and M. N. Armenise, “High performance SOI microring resonator for biochemical sensing,” Opt. Laser Technol. 59, 60–67 (2014).
[Crossref]

Conteduca, D.

C. Ciminelli, F. Dell’Olio, D. Conteduca, C. M. Campanella, and M. N. Armenise, “High performance SOI microring resonator for biochemical sensing,” Opt. Laser Technol. 59, 60–67 (2014).
[Crossref]

Darmawan, S.

Dell’Olio, F.

C. Ciminelli, F. Dell’Olio, D. Conteduca, C. M. Campanella, and M. N. Armenise, “High performance SOI microring resonator for biochemical sensing,” Opt. Laser Technol. 59, 60–67 (2014).
[Crossref]

Dong, F.

Dong, P.

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[Crossref]

Dumon, P.

Emelett, S.

Fan, H.

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

Fedeli, J. M.

Gaddam, V.

Gardes, F. Y.

Harris, S. E.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Hu, T.

T. Hu, W. J. Wang, C. Qiu, P. Yu, H. Y. Qiu, Y. Zhao, X. Q. Jiang, and J. Y. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photonics Technol. Lett. 24(6), 524–526 (2012).
[Crossref]

Hua, S.

Huang, Q.

Imamoglu, A.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Jiang, X.

Jiang, X. Q.

T. Hu, W. J. Wang, C. Qiu, P. Yu, H. Y. Qiu, Y. Zhao, X. Q. Jiang, and J. Y. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photonics Technol. Lett. 24(6), 524–526 (2012).
[Crossref]

Jie, K.

Kobayashi, N.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

Krauss, T. F.

Li, G.

Li, Q.

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93(8), 081113 (2008).
[Crossref]

Lipson, M.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009).
[Crossref] [PubMed]

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Liu, F.

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93(8), 081113 (2008).
[Crossref]

Marris-Morini, D.

Martí, J.

Mei, T.

Munro, W. J.

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16–18), 2441–2448 (2004).
[Crossref]

Novikova, R. L. W.

R. L. W. Novikova and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
[Crossref]

O’Faolain, L.

Poitras, C. B.

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Preston, K.

Qiu, C.

T. Hu, W. J. Wang, C. Qiu, P. Yu, H. Y. Qiu, Y. Zhao, X. Q. Jiang, and J. Y. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photonics Technol. Lett. 24(6), 524–526 (2012).
[Crossref]

Qiu, H. Y.

T. Hu, W. J. Wang, C. Qiu, P. Yu, H. Y. Qiu, Y. Zhao, X. Q. Jiang, and J. Y. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photonics Technol. Lett. 24(6), 524–526 (2012).
[Crossref]

Qiu, M.

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93(8), 081113 (2008).
[Crossref]

Rasigade, G.

Reed, G. T.

Robinson, J. T.

Rodrigues, D. A.

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16–18), 2441–2448 (2004).
[Crossref]

Sanchis, P.

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Shu, Z.

Song, G.

Soref, R.

Spiller, T. P.

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16–18), 2441–2448 (2004).
[Crossref]

Su, Y.

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93(8), 081113 (2008).
[Crossref]

Suh, W.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

Tobing, L. Y. M.

Tomita, M.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

Totsuka, K.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

Vivien, L.

Wang, W. J.

T. Hu, W. J. Wang, C. Qiu, P. Yu, H. Y. Qiu, Y. Zhao, X. Q. Jiang, and J. Y. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photonics Technol. Lett. 24(6), 524–526 (2012).
[Crossref]

Wang, Y.

Wang, Z.

Q. Huang, J. Chen, G. Song, K. Jie, Z. Wang, Y. Wang, J. Xia, and J. Yu, “Experimental demonstration of a microdisk resonator filter/buffer utilizing two-mode interference,” Opt. Lett. 39(23), 6553–6556 (2014).
[Crossref] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

Xia, J.

Xiao, M.

Xiao, Y.

R. L. W. Novikova and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
[Crossref]

Xiao, Y. F.

Xu, Q.

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Yang, J. Y.

T. Hu, W. J. Wang, C. Qiu, P. Yu, H. Y. Qiu, Y. Zhao, X. Q. Jiang, and J. Y. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photonics Technol. Lett. 24(6), 524–526 (2012).
[Crossref]

Yang, L.

Yanik, M. F.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

Yu, J.

Yu, P.

T. Hu, W. J. Wang, C. Qiu, P. Yu, H. Y. Qiu, Y. Zhao, X. Q. Jiang, and J. Y. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photonics Technol. Lett. 24(6), 524–526 (2012).
[Crossref]

Zhang, D. H.

Zhang, X.

Zhang, Y.

Zhang, Z.

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93(8), 081113 (2008).
[Crossref]

Zhao, Y.

T. Hu, W. J. Wang, C. Qiu, P. Yu, H. Y. Qiu, Y. Zhao, X. Q. Jiang, and J. Y. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photonics Technol. Lett. 24(6), 524–526 (2012).
[Crossref]

Zheng, C.

Appl. Phys. Lett. (1)

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93(8), 081113 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. Hu, W. J. Wang, C. Qiu, P. Yu, H. Y. Qiu, Y. Zhao, X. Q. Jiang, and J. Y. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photonics Technol. Lett. 24(6), 524–526 (2012).
[Crossref]

J. Mod. Opt. (1)

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16–18), 2441–2448 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

R. L. W. Novikova and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
[Crossref]

Nat. Phys. (1)

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[Crossref]

Opt. Express (7)

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009).
[Crossref] [PubMed]

S. Emelett and R. Soref, “Synthesis of dual-microring-resonator cross-connect filters,” Opt. Express 13(12), 4439–4456 (2005).
[Crossref] [PubMed]

Q. Huang, Z. Shu, G. Song, J. Chen, J. Xia, and J. Yu, “Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator,” Opt. Express 22(3), 3219–3227 (2014).
[Crossref] [PubMed]

Y. F. Xiao, V. Gaddam, and L. Yang, “Coupled optical microcavities: an enhanced refractometric sensing configuration,” Opt. Express 16(17), 12538–12543 (2008).
[Crossref] [PubMed]

S. Darmawan, L. Y. M. Tobing, and D. H. Zhang, “Experimental demonstration of coupled-resonator-induced-transparency in silicon-on-insulator based ring-bus-ring geometry,” Opt. Express 19(18), 17813–17819 (2011).
[Crossref] [PubMed]

C. Zheng, X. Jiang, S. Hua, L. Chang, G. Li, H. Fan, and M. Xiao, “Controllable optical analog to electromagnetically induced transparency in coupled high-Q microtoroid cavities,” Opt. Express 20(16), 18319–18325 (2012).
[Crossref] [PubMed]

F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17(24), 21986–21991 (2009).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

C. Ciminelli, F. Dell’Olio, D. Conteduca, C. M. Campanella, and M. N. Armenise, “High performance SOI microring resonator for biochemical sensing,” Opt. Laser Technol. 59, 60–67 (2014).
[Crossref]

Opt. Lett. (2)

Phys. Rev. Lett. (5)

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

Other (2)

C. G. H. Roeloffzen, L. Zhuang, R. G. Heideman, A. Borreman, and W. van Etten, “Ring resonator-based Tunable Optical Delay Line in LPCVD waveguide Technology,” in Proceedings Symposim IEEE/LEOS Benelux Chapter (IEEE, 2005), pp. 79–82.

C. Lukas and V. M. Hochberg, Silicon Photonics Design from Devices to Systems (Cambridge University, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The schematic of the APMR-BG based coupling resonant system.
Fig. 2
Fig. 2 (a) The normalized transmission spectra of the microring and the F-P resonator. (b) The normalized EIT-like spectrum of the APMR-BG based coupling resonant system.
Fig. 3
Fig. 3 (a) The normalized EIT-like spectra of different pitches under N = 90, dw = 20 nm, k = 0.35i, α2 = 0.9981. (b) The relation between the pitch, IL and FWHM under N = 90, dw = 20 nm, k = 0.35i, α2 = 0.9981.
Fig. 4
Fig. 4 (a) The normalized EIT-like transmission spectra at different N under pitch = 320 nm, dw = 20 nm, k = 0.35i, α2 = 0.9981. (b) The relation between the N, IL and FWHM under pitch = 320 nm, dw = 20 nm, k = 0.35i, α2 = 0.9981.
Fig. 5
Fig. 5 (a) The normalized EIT-like transmission spectra at different dw under pitch = 320 nm, N = 90, k = 0.35i, α2 = 0.9981. (b) The relation between the dw, IL and FWHM under pitch = 320 nm, N = 90, k = 0.35i, α2 = 0.9981.
Fig. 6
Fig. 6 (a) The normalized EIT-like transmission spectra at different k under pitch = 320 nm, N = 90, dw = 20 nm, α2 = 0.9981. (b) The relation between the k, IL and FWHM under pitch = 320 nm, N = 90, dw = 20 nm, α2 = 0.9981.
Fig. 7
Fig. 7 (a) The normalized EIT-like transmission spectra at different α2 under pitch = 320 nm, N = 90, dw = 20 nm, k = 0.35i. (b) The relation between the α2, IL and FWHM under pitch = 320 nm, N = 90, dw = 20 nm, k = 0.35i.
Fig. 8
Fig. 8 (a) The SEM image of the APMR-BG based coupling resonant system. (b) The zoomed-in SEM image of the Bragg grating.
Fig. 9
Fig. 9 (a) The fitting between the experimental result and the theoretical calculation result. (b) The light propagation of the EIT-like spectrum peak at the wavelength of 1560.432 nm. (c) The light propagation of the EIT-like spectrum dip at the wavelength of 1560.252 nm.
Fig. 10
Fig. 10 (a) The phase curve and the EIT-like transmission spectrum. (b) The zoomed-in curves of the phase and EIT-like transmission circled by the dashed line. (c) The group delay curve and the EIT-like transmission spectrum. (d) The zoomed-in curves of the group delay curve and the EIT-like transmission circled by the dashed line.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

t ring_thru = α+t e iφ α t * + e iφ
T ring =( 1/ t ring_thru 0 0 t ring_thru_inv )
T Bg = ( T w_wg_sgmt T w_to_n T n_wg_sgmt T n_to_w ) N
T in = T Bg T wg T ring T wg T Bg T out
τ= dφ dω

Metrics