Abstract

In this paper, we study a plasmonic horn nanoantenna on a metal-backed substrate. The horn nanoantenna structure consists of a two-wire transmission line (TWTL) flared at the end. We analyze the effect of the substrate thickness on the nanoantenna’s radiation pattern, and demonstrate beam steering in a broad range of elevation angles. Furthermore, we analyze the effect of the ground plane on the impedance matching between the antenna and the TWTL, and observe that the ground plane increases the back reflection into the waveguide. To reduce the reflection, we develop a transmission line model to design an impedance matching section which leads to 99.75% power transmission to the nanoantenna.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic sectoral horn nanoantennas

Yuanqing Yang, Ding Zhao, Hanmo Gong, Qiang Li, and Min Qiu
Opt. Lett. 39(11) 3204-3207 (2014)

Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction

Yun-Ting Hung, Chen-Bin Huang, and Jer-Shing Huang
Opt. Express 20(18) 20342-20355 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6, 19490 (2016).
    [Crossref] [PubMed]
  2. Y. Yang, D. Zhao, H. Gong, Q. Li, and M. Qiu, “Plasmonic sectoral horn nanoantennas,” Opt. Lett. 39, 3204–3207 (2014).
    [Crossref] [PubMed]
  3. J. M. Merlo, N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D’Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
    [Crossref] [PubMed]
  4. J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Letters 9, 1897–1902 (2009).
    [Crossref] [PubMed]
  5. A. Alù and N. Engheta, “Wireless at the nanoscale: Optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
    [Crossref] [PubMed]
  6. D. M. Solís, J. M. Taboada, F. Obelleiro, and L. Landesa, “Optimization of an optical wireless nanolink using directive nanoantennas,” Opt. Express 21, 2369–2377 (2013).
    [Crossref] [PubMed]
  7. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
    [Crossref] [PubMed]
  8. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
    [Crossref] [PubMed]
  9. K. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nature Photonics 5, 166–169 (2011).
    [Crossref]
  10. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat Photon 6, 737–748 (2012).
    [Crossref]
  11. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
    [Crossref] [PubMed]
  12. D. Ramaccia, F. Bilotti, A. Toscano, and A. Massaro, “Efficient and wideband horn nanoantenna,” Opt. Lett. 36, 1743–1745 (2011).
    [Crossref] [PubMed]
  13. Y. Xu, A. E. Miroshnichenko, S. Lan, Q. Guo, and L.-J. Wu, “Impedance matching induce high transmission and flat response band-pass plasmonic waveguides,” Plasmonics 6, 337–343 (2011).
    [Crossref]
  14. Y. Sachkou, A. Andryieuski, and A. V. Lavrinenko, “Impedance conjugate matching of plasmonic nanoantenna in optical nanocircuits,” in “ELMAR, 2011 Proceedings,” (2011), pp. 389–391.
  15. P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express 15, 6762–6767 (2007).
    [Crossref] [PubMed]
  16. C. A. Balanis, Antenna Theory: Analysis and Design (John Wiley & Sons, 2016).
  17. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
    [Crossref] [PubMed]
  18. Z. Xi, Y. Lu, P. Yao, W. Yu, P. Wang, and H. Ming, “Controllable directive radiation of a circularly polarized dipole above planar metal surface,” Opt. Express 21, 30327–30335 (2013).
    [Crossref]
  19. Q. Min, Y. Pang, D. J. Collins, N. A. Kuklev, K. Gottselig, D. W. Steuerman, and R. Gordon, “Substrate-based platform for boosting the surface-enhanced raman of plasmonic nanoparticles,” Opt. Express 19, 1648–1655 (2011).
    [Crossref] [PubMed]
  20. A. Ahmed and R. Gordon, “Directivity enhanced raman spectroscopy using nanoantennas,” Nano Letters 11, 1800–1803 (2011).
    [Crossref] [PubMed]
  21. T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Letters 11, 2606–2610 (2011).
    [Crossref] [PubMed]
  22. S. Ghadarghadr, Z. Hao, and H. Mosallaei, “Plasmonic array nanoantennas on layered substrates: modeling and radiation characteristics,” Opt. Express 17, 18556–18570 (2009).
    [Crossref]
  23. D.-S. Ly-Gagnon, S. E. Kocabas, and D. A. B. Miller, “Characteristic impedance model for plasmonic metal slot waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1473–1478 (2008).
    [Crossref]
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  25. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
    [Crossref]

2016 (2)

J. M. Merlo, N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D’Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6, 19490 (2016).
[Crossref] [PubMed]

2014 (1)

2013 (3)

2012 (1)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat Photon 6, 737–748 (2012).
[Crossref]

2011 (7)

K. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nature Photonics 5, 166–169 (2011).
[Crossref]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

A. Ahmed and R. Gordon, “Directivity enhanced raman spectroscopy using nanoantennas,” Nano Letters 11, 1800–1803 (2011).
[Crossref] [PubMed]

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Letters 11, 2606–2610 (2011).
[Crossref] [PubMed]

Y. Xu, A. E. Miroshnichenko, S. Lan, Q. Guo, and L.-J. Wu, “Impedance matching induce high transmission and flat response band-pass plasmonic waveguides,” Plasmonics 6, 337–343 (2011).
[Crossref]

Q. Min, Y. Pang, D. J. Collins, N. A. Kuklev, K. Gottselig, D. W. Steuerman, and R. Gordon, “Substrate-based platform for boosting the surface-enhanced raman of plasmonic nanoparticles,” Opt. Express 19, 1648–1655 (2011).
[Crossref] [PubMed]

D. Ramaccia, F. Bilotti, A. Toscano, and A. Massaro, “Efficient and wideband horn nanoantenna,” Opt. Lett. 36, 1743–1745 (2011).
[Crossref] [PubMed]

2010 (2)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Wireless at the nanoscale: Optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[Crossref] [PubMed]

2009 (2)

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Letters 9, 1897–1902 (2009).
[Crossref] [PubMed]

S. Ghadarghadr, Z. Hao, and H. Mosallaei, “Plasmonic array nanoantennas on layered substrates: modeling and radiation characteristics,” Opt. Express 17, 18556–18570 (2009).
[Crossref]

2008 (1)

D.-S. Ly-Gagnon, S. E. Kocabas, and D. A. B. Miller, “Characteristic impedance model for plasmonic metal slot waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1473–1478 (2008).
[Crossref]

2007 (2)

2005 (1)

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Ahmed, A.

A. Ahmed and R. Gordon, “Directivity enhanced raman spectroscopy using nanoantennas,” Nano Letters 11, 1800–1803 (2011).
[Crossref] [PubMed]

Alù, A.

A. Alù and N. Engheta, “Wireless at the nanoscale: Optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[Crossref] [PubMed]

Andryieuski, A.

Y. Sachkou, A. Andryieuski, and A. V. Lavrinenko, “Impedance conjugate matching of plasmonic nanoantenna in optical nanocircuits,” in “ELMAR, 2011 Proceedings,” (2011), pp. 389–391.

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design (John Wiley & Sons, 2016).

Biagioni, P.

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Letters 9, 1897–1902 (2009).
[Crossref] [PubMed]

Bilotti, F.

Bokor, J.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Letters 11, 2606–2610 (2011).
[Crossref] [PubMed]

Burns, M. J.

J. M. Merlo, N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D’Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Cabrini, S.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Letters 11, 2606–2610 (2011).
[Crossref] [PubMed]

Calm, Y. M.

J. M. Merlo, N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D’Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Chen, X.

K. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nature Photonics 5, 166–169 (2011).
[Crossref]

Choo, H.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Letters 11, 2606–2610 (2011).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Collins, D. J.

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

D’Imperio, L.

J. M. Merlo, N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D’Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Dhuey, S.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Letters 11, 2606–2610 (2011).
[Crossref] [PubMed]

Eghlidi, H.

K. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nature Photonics 5, 166–169 (2011).
[Crossref]

Engheta, N.

A. Alù and N. Engheta, “Wireless at the nanoscale: Optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[Crossref] [PubMed]

Fan, S.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[Crossref]

Feichtner, T.

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Letters 9, 1897–1902 (2009).
[Crossref] [PubMed]

Ghadarghadr, S.

Ginzburg, P.

Gong, H.

Gordon, R.

Gottselig, K.

Götzinger, S.

K. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nature Photonics 5, 166–169 (2011).
[Crossref]

Guo, Q.

Y. Xu, A. E. Miroshnichenko, S. Lan, Q. Guo, and L.-J. Wu, “Impedance matching induce high transmission and flat response band-pass plasmonic waveguides,” Plasmonics 6, 337–343 (2011).
[Crossref]

Halas, N. J.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

Hao, Z.

Hecht, B.

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Letters 9, 1897–1902 (2009).
[Crossref] [PubMed]

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Huang, J.-S.

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Letters 9, 1897–1902 (2009).
[Crossref] [PubMed]

Jamshidi, A.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Letters 11, 2606–2610 (2011).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat Photon 6, 737–748 (2012).
[Crossref]

Kempa, K.

J. M. Merlo, N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D’Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Kim, M.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Letters 11, 2606–2610 (2011).
[Crossref] [PubMed]

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

Kocabas, S. E.

D.-S. Ly-Gagnon, S. E. Kocabas, and D. A. B. Miller, “Characteristic impedance model for plasmonic metal slot waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1473–1478 (2008).
[Crossref]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Kuklev, N. A.

Kukura, P.

K. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nature Photonics 5, 166–169 (2011).
[Crossref]

Lakhani, A.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Letters 11, 2606–2610 (2011).
[Crossref] [PubMed]

Lan, S.

Y. Xu, A. E. Miroshnichenko, S. Lan, Q. Guo, and L.-J. Wu, “Impedance matching induce high transmission and flat response band-pass plasmonic waveguides,” Plasmonics 6, 337–343 (2011).
[Crossref]

Landesa, L.

Lavrinenko, A. V.

Y. Sachkou, A. Andryieuski, and A. V. Lavrinenko, “Impedance conjugate matching of plasmonic nanoantenna in optical nanocircuits,” in “ELMAR, 2011 Proceedings,” (2011), pp. 389–391.

Lee, K.

K. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nature Photonics 5, 166–169 (2011).
[Crossref]

Lettow, R.

K. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nature Photonics 5, 166–169 (2011).
[Crossref]

Li, Q.

Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6, 19490 (2016).
[Crossref] [PubMed]

Y. Yang, D. Zhao, H. Gong, Q. Li, and M. Qiu, “Plasmonic sectoral horn nanoantennas,” Opt. Lett. 39, 3204–3207 (2014).
[Crossref] [PubMed]

Lu, Y.

Ly-Gagnon, D.-S.

D.-S. Ly-Gagnon, S. E. Kocabas, and D. A. B. Miller, “Characteristic impedance model for plasmonic metal slot waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1473–1478 (2008).
[Crossref]

Massaro, A.

Merlo, J. M.

J. M. Merlo, N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D’Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Miller, D. A. B.

D.-S. Ly-Gagnon, S. E. Kocabas, and D. A. B. Miller, “Characteristic impedance model for plasmonic metal slot waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1473–1478 (2008).
[Crossref]

Min, Q.

Ming, H.

Miroshnichenko, A. E.

Y. Xu, A. E. Miroshnichenko, S. Lan, Q. Guo, and L.-J. Wu, “Impedance matching induce high transmission and flat response band-pass plasmonic waveguides,” Plasmonics 6, 337–343 (2011).
[Crossref]

Mosallaei, H.

Naughton, J. R.

J. M. Merlo, N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D’Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Naughton, M. J.

J. M. Merlo, N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D’Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Nesbitt, N. T.

J. M. Merlo, N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D’Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Nordlander, P.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[Crossref] [PubMed]

Obelleiro, F.

Orenstein, M.

Pang, Y.

Qiu, M.

Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6, 19490 (2016).
[Crossref] [PubMed]

Y. Yang, D. Zhao, H. Gong, Q. Li, and M. Qiu, “Plasmonic sectoral horn nanoantennas,” Opt. Lett. 39, 3204–3207 (2014).
[Crossref] [PubMed]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Ramaccia, D.

Renn, A.

K. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nature Photonics 5, 166–169 (2011).
[Crossref]

Rose, A. H.

J. M. Merlo, N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D’Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Sachkou, Y.

Y. Sachkou, A. Andryieuski, and A. V. Lavrinenko, “Impedance conjugate matching of plasmonic nanoantenna in optical nanocircuits,” in “ELMAR, 2011 Proceedings,” (2011), pp. 389–391.

Sandoghdar, V.

K. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nature Photonics 5, 166–169 (2011).
[Crossref]

Schuck, P. J.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Letters 11, 2606–2610 (2011).
[Crossref] [PubMed]

Schwartzberg, A. M.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Letters 11, 2606–2610 (2011).
[Crossref] [PubMed]

Seok, T. J.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Letters 11, 2606–2610 (2011).
[Crossref] [PubMed]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

Solís, D. M.

Steuerman, D. W.

Sun, J.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Taboada, J. M.

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Toscano, A.

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Veronis, G.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[Crossref]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Wang, P.

Watts, M. R.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Wu, L.-J.

Y. Xu, A. E. Miroshnichenko, S. Lan, Q. Guo, and L.-J. Wu, “Impedance matching induce high transmission and flat response band-pass plasmonic waveguides,” Plasmonics 6, 337–343 (2011).
[Crossref]

Wu, M. C.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Letters 11, 2606–2610 (2011).
[Crossref] [PubMed]

Xi, Z.

Xu, Y.

Y. Xu, A. E. Miroshnichenko, S. Lan, Q. Guo, and L.-J. Wu, “Impedance matching induce high transmission and flat response band-pass plasmonic waveguides,” Plasmonics 6, 337–343 (2011).
[Crossref]

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Yablonovitch, E.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Letters 11, 2606–2610 (2011).
[Crossref] [PubMed]

Yang, C.

J. M. Merlo, N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D’Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6, 19490 (2016).
[Crossref] [PubMed]

Y. Yang, D. Zhao, H. Gong, Q. Li, and M. Qiu, “Plasmonic sectoral horn nanoantennas,” Opt. Lett. 39, 3204–3207 (2014).
[Crossref] [PubMed]

Yao, P.

Yu, W.

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat Photon 6, 737–748 (2012).
[Crossref]

Zhao, D.

Appl. Phys. Lett. (1)

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D.-S. Ly-Gagnon, S. E. Kocabas, and D. A. B. Miller, “Characteristic impedance model for plasmonic metal slot waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1473–1478 (2008).
[Crossref]

Nano Letters (3)

A. Ahmed and R. Gordon, “Directivity enhanced raman spectroscopy using nanoantennas,” Nano Letters 11, 1800–1803 (2011).
[Crossref] [PubMed]

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Letters 11, 2606–2610 (2011).
[Crossref] [PubMed]

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Letters 9, 1897–1902 (2009).
[Crossref] [PubMed]

Nat Photon (1)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat Photon 6, 737–748 (2012).
[Crossref]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Nature Photonics (1)

K. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nature Photonics 5, 166–169 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (2)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Wireless at the nanoscale: Optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[Crossref] [PubMed]

Plasmonics (1)

Y. Xu, A. E. Miroshnichenko, S. Lan, Q. Guo, and L.-J. Wu, “Impedance matching induce high transmission and flat response band-pass plasmonic waveguides,” Plasmonics 6, 337–343 (2011).
[Crossref]

Sci. Rep. (2)

Y. Yang, Q. Li, and M. Qiu, “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas,” Sci. Rep. 6, 19490 (2016).
[Crossref] [PubMed]

J. M. Merlo, N. T. Nesbitt, Y. M. Calm, A. H. Rose, L. D’Imperio, C. Yang, J. R. Naughton, M. J. Burns, K. Kempa, and M. J. Naughton, “Wireless communication system via nanoscale plasmonic antennas,” Sci. Rep. 6, 31710 (2016).
[Crossref] [PubMed]

Science (2)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Other (2)

Y. Sachkou, A. Andryieuski, and A. V. Lavrinenko, “Impedance conjugate matching of plasmonic nanoantenna in optical nanocircuits,” in “ELMAR, 2011 Proceedings,” (2011), pp. 389–391.

C. A. Balanis, Antenna Theory: Analysis and Design (John Wiley & Sons, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Plasmonic horn nanoantenna. (a) Top view. (b) Side view. (c) 3D view.

Fig. 2
Fig. 2

Horn nanoantenna above an infinite substrate. (a) Ey near field in the XY plane. (b) Ey near field in the XZ plane. (c) H-plane directivity at 1550 nm. (d) Amplitude reflection coefficient Γ, and total radiation efficiency, radiation efficiency in the substrate, and in air.

Fig. 3
Fig. 3

Results for the antenna with a ground plane. (a) Ey near field in the XZ plane for d = 300 nm. (b) Ey near field in the XZ plane for d = 500 nm. (c) & (d) are corresponding H-plane directivities at 1550 nm.

Fig. 4
Fig. 4

Antenna with ground plane (d = 300 nm) and IM. (a) Γ of: analytical model (case 1), simulated result (case 2) with IM, and simulated antenna without IM (case 3). (b) analytic model for IM. (c) air-core TWTL with antenna. (d) air-core TWTL cascaded with glass-core TWTL. (e) H-plane directivity at 1550 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Z in N = Z 0 N 1 [ 1 + Γ ( N 1 ) exp ( 2 γ N l N ) ] / [ 1 Γ ( N 1 ) exp ( 2 γ N l N ) ] .
Γ ( N ) = ( Z in N Z in N + 1 ) / ( Z in N + Z in N + 1 ) .

Metrics