Abstract

In this paper, a generation scheme of telecom band frequency-degenerate polarization entangled photon pairs is proposed and demonstrated experimentally. It is based on the vector spontaneous four wave mixing (SFWM) process in a Sagnac fiber loop, in which two frequency-degenerate and polarization orthogonal biphoton states have equal probabilities for generating along the clockwise and counter-clockwise directions. The quantum interference between them at the 50:50 fiber coupler of the fiber loop separates the two frequency-degenerate photons in a pair, leading to the generation of polarization entanglement. The raw fringe visibilities of the two-photon interferences under two non-orthogonal polarization bases are 91% and 90%, respectively. Information can be encoded on the generated photon pairs using the polarization entangled Bell states, which requires the frequency-degenerate property. It is demonstrated by a simplified Bell state measurement with a fringe visibility of 83%.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of hyper-entanglement on polarization and energy-time based on a silicon micro-ring cavity

Jing Suo, Shuai Dong, Wei Zhang, Yidong Huang, and Jiangde Peng
Opt. Express 23(4) 3985-3995 (2015)

1.5-μm band polarization entangled photon-pair source with variable Bell states

Shin Arahira, Tadashi Kishimoto, and Hitoshi Murai
Opt. Express 20(9) 9862-9875 (2012)

Production of degenerate polarization entangled photon pairs in the telecom-band from a pump enhanced parametric downconversion process

P. J. Thomas, C. J. Chunnilall, D. J. M. Stothard, D. A. Walsh, and M. H. Dunn
Opt. Express 18(25) 26600-26612 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777 (1935).
    [Crossref]
  2. A. Aspect, P. Grangier, and G. Roger, “Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment a new violation of Bell inequalities,” Phys. Rev. Lett. 49(2) 91–94 (1982).
    [Crossref]
  3. A. K. Ekert, “Quantum cryptography based on Bell theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
    [Crossref] [PubMed]
  4. Y. I. Bogdanov, M. V. Chekhova, S. P. Kulik, G. A. Maslennikov, A. A. Zhukov, C. H. Oh, and M. K. Tey, “Qutrit state engineering with biphotons,” Phys. Rev. Lett. 93, 230503 (2004).
    [Crossref] [PubMed]
  5. H. Weinfurter, “New high-intensity source of polarization-entangled photon pairs,” Europhys. Lett. 25, 559 (1994).
    [Crossref]
  6. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
    [Crossref]
  7. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575 (1997).
    [Crossref]
  8. J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 31891 (2012).
  9. H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108(13), 130503 (2012).
    [Crossref] [PubMed]
  10. Y. Fu, H. L. Yin, T. Y. Chen, and Z. B. Chen, “Long-distance measurement-device-independent multiparty quantum communication,” Phys. Rev. Lett. 114, 090501 (2015).
    [Crossref] [PubMed]
  11. J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012).
    [Crossref]
  12. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656 (1996).
    [Crossref] [PubMed]
  13. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
    [Crossref] [PubMed]
  14. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  15. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
    [Crossref] [PubMed]
  16. H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
    [Crossref]
  17. Q. Zhou, W. Zhang, J. Cheng, Y. Huang, and J. Peng, “Polarization-entangled Bell states generation based on birefringence in high nonlinear microstructure fiber at 1.5 μ m,” Opt. Lett. 34(18), 2706–2708 (2009).
    [Crossref] [PubMed]
  18. O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
    [Crossref] [PubMed]
  19. Q. Zhou, W. Zhang, P. Wang, Y. Huang, and J. Peng, “Polarization entanglement generation at 1.5 μ m based on walk-off effect due to fiber birefringence,” Opt. Lett. 37(10), 1679–1681 (2012).
    [Crossref] [PubMed]
  20. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044 (1987).
    [Crossref] [PubMed]
  21. M. Medic, J. B. Altepeter, M. A. Hall, M. Patel, and P. Kumar, “Fiber-based telecommunication-band source of degenerate entangled photons,” Opt. Lett. 35, 802–804 (2010).
    [Crossref] [PubMed]
  22. E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A 79, 023840 (2009).
    [Crossref]
  23. S. Dong, L. J. Yu, W. Zhang, J. J. Wu, W. J. Zhang, L. X. You, and Y. D. Huang, “Generation of hyper-entanglement in polarization/energy-time and discrete-frequency/energy-time in optical fibers,” Sci. Rep. 5, 9195 (2015).
    [Crossref] [PubMed]
  24. J. K. He, B. A. Bell, A. Casas-Bedoya, Y. B. Zhang, A. S. Clark, C. L. Xiong, and B. J. Eggleton, “Ultracompact quantum splitter of degenerate photon pairs,” Optica 2, 779–782 (2015).
    [Crossref]
  25. W. P. Grice, “Arbitrarily complete Bell-state measurement using only linear optical elements,” Phys. Rev. A 84, 042331 (2011).
    [Crossref]
  26. J. Fulconis, O. Alibart, W.J. Wadsworth, and J. G. Rarity, “Quantum interference with photon pairs using two micro-structured fibres,” New J. Phys. 9, 276 (2007).
    [Crossref]

2015 (3)

Y. Fu, H. L. Yin, T. Y. Chen, and Z. B. Chen, “Long-distance measurement-device-independent multiparty quantum communication,” Phys. Rev. Lett. 114, 090501 (2015).
[Crossref] [PubMed]

S. Dong, L. J. Yu, W. Zhang, J. J. Wu, W. J. Zhang, L. X. You, and Y. D. Huang, “Generation of hyper-entanglement in polarization/energy-time and discrete-frequency/energy-time in optical fibers,” Sci. Rep. 5, 9195 (2015).
[Crossref] [PubMed]

J. K. He, B. A. Bell, A. Casas-Bedoya, Y. B. Zhang, A. S. Clark, C. L. Xiong, and B. J. Eggleton, “Ultracompact quantum splitter of degenerate photon pairs,” Optica 2, 779–782 (2015).
[Crossref]

2012 (4)

Q. Zhou, W. Zhang, P. Wang, Y. Huang, and J. Peng, “Polarization entanglement generation at 1.5 μ m based on walk-off effect due to fiber birefringence,” Opt. Lett. 37(10), 1679–1681 (2012).
[Crossref] [PubMed]

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012).
[Crossref]

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 31891 (2012).

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108(13), 130503 (2012).
[Crossref] [PubMed]

2011 (1)

W. P. Grice, “Arbitrarily complete Bell-state measurement using only linear optical elements,” Phys. Rev. A 84, 042331 (2011).
[Crossref]

2010 (1)

2009 (3)

Q. Zhou, W. Zhang, J. Cheng, Y. Huang, and J. Peng, “Polarization-entangled Bell states generation based on birefringence in high nonlinear microstructure fiber at 1.5 μ m,” Opt. Lett. 34(18), 2706–2708 (2009).
[Crossref] [PubMed]

E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A 79, 023840 (2009).
[Crossref]

O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[Crossref] [PubMed]

2007 (1)

J. Fulconis, O. Alibart, W.J. Wadsworth, and J. G. Rarity, “Quantum interference with photon pairs using two micro-structured fibres,” New J. Phys. 9, 276 (2007).
[Crossref]

2005 (1)

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

2004 (2)

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
[Crossref]

Y. I. Bogdanov, M. V. Chekhova, S. P. Kulik, G. A. Maslennikov, A. A. Zhukov, C. H. Oh, and M. K. Tey, “Qutrit state engineering with biphotons,” Phys. Rev. Lett. 93, 230503 (2004).
[Crossref] [PubMed]

2001 (1)

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

1997 (1)

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575 (1997).
[Crossref]

1996 (1)

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656 (1996).
[Crossref] [PubMed]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
[Crossref] [PubMed]

1994 (1)

H. Weinfurter, “New high-intensity source of polarization-entangled photon pairs,” Europhys. Lett. 25, 559 (1994).
[Crossref]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bell theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref] [PubMed]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044 (1987).
[Crossref] [PubMed]

1982 (1)

A. Aspect, P. Grangier, and G. Roger, “Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment a new violation of Bell inequalities,” Phys. Rev. Lett. 49(2) 91–94 (1982).
[Crossref]

1935 (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777 (1935).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Alibart, O.

J. Fulconis, O. Alibart, W.J. Wadsworth, and J. G. Rarity, “Quantum interference with photon pairs using two micro-structured fibres,” New J. Phys. 9, 276 (2007).
[Crossref]

Altepeter, J. B.

Aspect, A.

A. Aspect, P. Grangier, and G. Roger, “Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment a new violation of Bell inequalities,” Phys. Rev. Lett. 49(2) 91–94 (1982).
[Crossref]

Bell, B. A.

Bogdanov, Y. I.

Y. I. Bogdanov, M. V. Chekhova, S. P. Kulik, G. A. Maslennikov, A. A. Zhukov, C. H. Oh, and M. K. Tey, “Qutrit state engineering with biphotons,” Phys. Rev. Lett. 93, 230503 (2004).
[Crossref] [PubMed]

Bouwmeester, D.

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 31891 (2012).

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575 (1997).
[Crossref]

Brainis, E.

E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A 79, 023840 (2009).
[Crossref]

Casas-Bedoya, A.

Chekhova, M. V.

Y. I. Bogdanov, M. V. Chekhova, S. P. Kulik, G. A. Maslennikov, A. A. Zhukov, C. H. Oh, and M. K. Tey, “Qutrit state engineering with biphotons,” Phys. Rev. Lett. 93, 230503 (2004).
[Crossref] [PubMed]

Chen, T. Y.

Y. Fu, H. L. Yin, T. Y. Chen, and Z. B. Chen, “Long-distance measurement-device-independent multiparty quantum communication,” Phys. Rev. Lett. 114, 090501 (2015).
[Crossref] [PubMed]

Chen, Z. B.

Y. Fu, H. L. Yin, T. Y. Chen, and Z. B. Chen, “Long-distance measurement-device-independent multiparty quantum communication,” Phys. Rev. Lett. 114, 090501 (2015).
[Crossref] [PubMed]

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012).
[Crossref]

Cheng, J.

Clark, A. S.

Cohen, O.

O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[Crossref] [PubMed]

Curty, M.

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108(13), 130503 (2012).
[Crossref] [PubMed]

Dong, S.

S. Dong, L. J. Yu, W. Zhang, J. J. Wu, W. J. Zhang, L. X. You, and Y. D. Huang, “Generation of hyper-entanglement in polarization/energy-time and discrete-frequency/energy-time in optical fibers,” Sci. Rep. 5, 9195 (2015).
[Crossref] [PubMed]

Eggleton, B. J.

Eibl, M.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575 (1997).
[Crossref]

Einstein, A.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777 (1935).
[Crossref]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref] [PubMed]

Fu, Y.

Y. Fu, H. L. Yin, T. Y. Chen, and Z. B. Chen, “Long-distance measurement-device-independent multiparty quantum communication,” Phys. Rev. Lett. 114, 090501 (2015).
[Crossref] [PubMed]

Fulconis, J.

J. Fulconis, O. Alibart, W.J. Wadsworth, and J. G. Rarity, “Quantum interference with photon pairs using two micro-structured fibres,” New J. Phys. 9, 276 (2007).
[Crossref]

Grangier, P.

A. Aspect, P. Grangier, and G. Roger, “Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment a new violation of Bell inequalities,” Phys. Rev. Lett. 49(2) 91–94 (1982).
[Crossref]

Grice, W. P.

W. P. Grice, “Arbitrarily complete Bell-state measurement using only linear optical elements,” Phys. Rev. A 84, 042331 (2011).
[Crossref]

Hall, M. A.

He, J. K.

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044 (1987).
[Crossref] [PubMed]

Huang, Y.

Huang, Y. D.

S. Dong, L. J. Yu, W. Zhang, J. J. Wu, W. J. Zhang, L. X. You, and Y. D. Huang, “Generation of hyper-entanglement in polarization/energy-time and discrete-frequency/energy-time in optical fibers,” Sci. Rep. 5, 9195 (2015).
[Crossref] [PubMed]

Inoue, K.

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
[Crossref]

James, D. F. V.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Kulik, S. P.

Y. I. Bogdanov, M. V. Chekhova, S. P. Kulik, G. A. Maslennikov, A. A. Zhukov, C. H. Oh, and M. K. Tey, “Qutrit state engineering with biphotons,” Phys. Rev. Lett. 93, 230503 (2004).
[Crossref] [PubMed]

Kumar, P.

M. Medic, J. B. Altepeter, M. A. Hall, M. Patel, and P. Kumar, “Fiber-based telecommunication-band source of degenerate entangled photons,” Opt. Lett. 35, 802–804 (2010).
[Crossref] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

Kwiat, P. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656 (1996).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
[Crossref] [PubMed]

Li, X.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

Lo, H.-K.

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108(13), 130503 (2012).
[Crossref] [PubMed]

Lu, C. Y.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012).
[Crossref]

Lundeen, J.

O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[Crossref] [PubMed]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044 (1987).
[Crossref] [PubMed]

Maslennikov, G. A.

Y. I. Bogdanov, M. V. Chekhova, S. P. Kulik, G. A. Maslennikov, A. A. Zhukov, C. H. Oh, and M. K. Tey, “Qutrit state engineering with biphotons,” Phys. Rev. Lett. 93, 230503 (2004).
[Crossref] [PubMed]

Mattle, K.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575 (1997).
[Crossref]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656 (1996).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
[Crossref] [PubMed]

Medic, M.

Mosley, P.

O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[Crossref] [PubMed]

Munro, W. J.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Oh, C. H.

Y. I. Bogdanov, M. V. Chekhova, S. P. Kulik, G. A. Maslennikov, A. A. Zhukov, C. H. Oh, and M. K. Tey, “Qutrit state engineering with biphotons,” Phys. Rev. Lett. 93, 230503 (2004).
[Crossref] [PubMed]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044 (1987).
[Crossref] [PubMed]

Pan, J. W.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012).
[Crossref]

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 31891 (2012).

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575 (1997).
[Crossref]

Patel, M.

Peng, J.

Podolsky, B.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777 (1935).
[Crossref]

Puentes, G.

O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[Crossref] [PubMed]

Qi, B.

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108(13), 130503 (2012).
[Crossref] [PubMed]

Rarity, J. G.

J. Fulconis, O. Alibart, W.J. Wadsworth, and J. G. Rarity, “Quantum interference with photon pairs using two micro-structured fibres,” New J. Phys. 9, 276 (2007).
[Crossref]

Roger, G.

A. Aspect, P. Grangier, and G. Roger, “Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment a new violation of Bell inequalities,” Phys. Rev. Lett. 49(2) 91–94 (1982).
[Crossref]

Rosen, N.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777 (1935).
[Crossref]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
[Crossref] [PubMed]

Sharping, J. E.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
[Crossref] [PubMed]

Smith, B.

O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[Crossref] [PubMed]

Takesue, H.

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
[Crossref]

Tey, M. K.

Y. I. Bogdanov, M. V. Chekhova, S. P. Kulik, G. A. Maslennikov, A. A. Zhukov, C. H. Oh, and M. K. Tey, “Qutrit state engineering with biphotons,” Phys. Rev. Lett. 93, 230503 (2004).
[Crossref] [PubMed]

Voss, P. L.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

Wadsworth, W.J.

J. Fulconis, O. Alibart, W.J. Wadsworth, and J. G. Rarity, “Quantum interference with photon pairs using two micro-structured fibres,” New J. Phys. 9, 276 (2007).
[Crossref]

Walmsley, I. A.

O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[Crossref] [PubMed]

Wang, P.

Weinfurter, H.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012).
[Crossref]

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 31891 (2012).

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575 (1997).
[Crossref]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656 (1996).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
[Crossref] [PubMed]

H. Weinfurter, “New high-intensity source of polarization-entangled photon pairs,” Europhys. Lett. 25, 559 (1994).
[Crossref]

White, A. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Wu, J. J.

S. Dong, L. J. Yu, W. Zhang, J. J. Wu, W. J. Zhang, L. X. You, and Y. D. Huang, “Generation of hyper-entanglement in polarization/energy-time and discrete-frequency/energy-time in optical fibers,” Sci. Rep. 5, 9195 (2015).
[Crossref] [PubMed]

Xiong, C. L.

Yin, H. L.

Y. Fu, H. L. Yin, T. Y. Chen, and Z. B. Chen, “Long-distance measurement-device-independent multiparty quantum communication,” Phys. Rev. Lett. 114, 090501 (2015).
[Crossref] [PubMed]

You, L. X.

S. Dong, L. J. Yu, W. Zhang, J. J. Wu, W. J. Zhang, L. X. You, and Y. D. Huang, “Generation of hyper-entanglement in polarization/energy-time and discrete-frequency/energy-time in optical fibers,” Sci. Rep. 5, 9195 (2015).
[Crossref] [PubMed]

Yu, L. J.

S. Dong, L. J. Yu, W. Zhang, J. J. Wu, W. J. Zhang, L. X. You, and Y. D. Huang, “Generation of hyper-entanglement in polarization/energy-time and discrete-frequency/energy-time in optical fibers,” Sci. Rep. 5, 9195 (2015).
[Crossref] [PubMed]

Zeilinger, A.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012).
[Crossref]

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 31891 (2012).

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575 (1997).
[Crossref]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656 (1996).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
[Crossref] [PubMed]

Zhang, W.

Zhang, W. J.

S. Dong, L. J. Yu, W. Zhang, J. J. Wu, W. J. Zhang, L. X. You, and Y. D. Huang, “Generation of hyper-entanglement in polarization/energy-time and discrete-frequency/energy-time in optical fibers,” Sci. Rep. 5, 9195 (2015).
[Crossref] [PubMed]

Zhang, Y. B.

Zhou, Q.

Zhukov, A. A.

Y. I. Bogdanov, M. V. Chekhova, S. P. Kulik, G. A. Maslennikov, A. A. Zhukov, C. H. Oh, and M. K. Tey, “Qutrit state engineering with biphotons,” Phys. Rev. Lett. 93, 230503 (2004).
[Crossref] [PubMed]

Zukowski, M.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012).
[Crossref]

Europhys. Lett. (1)

H. Weinfurter, “New high-intensity source of polarization-entangled photon pairs,” Europhys. Lett. 25, 559 (1994).
[Crossref]

Nature (London) (1)

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575 (1997).
[Crossref]

New J. Phys. (1)

J. Fulconis, O. Alibart, W.J. Wadsworth, and J. G. Rarity, “Quantum interference with photon pairs using two micro-structured fibres,” New J. Phys. 9, 276 (2007).
[Crossref]

Opt. Lett. (3)

Optica (1)

Phys. Rev. (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777 (1935).
[Crossref]

Phys. Rev. A (4)

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
[Crossref]

E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A 79, 023840 (2009).
[Crossref]

W. P. Grice, “Arbitrarily complete Bell-state measurement using only linear optical elements,” Phys. Rev. A 84, 042331 (2011).
[Crossref]

Phys. Rev. Lett. (11)

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[Crossref] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044 (1987).
[Crossref] [PubMed]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656 (1996).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
[Crossref] [PubMed]

A. Aspect, P. Grangier, and G. Roger, “Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment a new violation of Bell inequalities,” Phys. Rev. Lett. 49(2) 91–94 (1982).
[Crossref]

A. K. Ekert, “Quantum cryptography based on Bell theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref] [PubMed]

Y. I. Bogdanov, M. V. Chekhova, S. P. Kulik, G. A. Maslennikov, A. A. Zhukov, C. H. Oh, and M. K. Tey, “Qutrit state engineering with biphotons,” Phys. Rev. Lett. 93, 230503 (2004).
[Crossref] [PubMed]

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 31891 (2012).

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108(13), 130503 (2012).
[Crossref] [PubMed]

Y. Fu, H. L. Yin, T. Y. Chen, and Z. B. Chen, “Long-distance measurement-device-independent multiparty quantum communication,” Phys. Rev. Lett. 114, 090501 (2015).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012).
[Crossref]

Sci. Rep. (1)

S. Dong, L. J. Yu, W. Zhang, J. J. Wu, W. J. Zhang, L. X. You, and Y. D. Huang, “Generation of hyper-entanglement in polarization/energy-time and discrete-frequency/energy-time in optical fibers,” Sci. Rep. 5, 9195 (2015).
[Crossref] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Sketch of the vector SFWM used in this scheme. (b) Diagram of the quantum interference in the Sagnac fiber loop.

Fig. 2
Fig. 2

Sketch of the experiment setup. DWDM: dense wavelength division multiplexer. T: Transmission port. R: Reflection port. EDFA: erbium doped fiber amplifier. VOA: variable optical attenuator. PC: polarization controller. DSF: dispersion shifted fiber.

Fig. 3
Fig. 3

The property of the photon pair generation in the setup. (a) The relation between the average single side photon counts and the pump power. The average single side photon counts are fit by a quadratic polynomial. The black, blue and green lines indicate the contributions of the second-order, first-order and the constant terms which show the contribution of photon generation by the SFWM, the spontaneous Raman scattering, the leaky pump photons and the dark counts of detectors. (b) The relation between the coincident to accidental coincidence ratio. The red line is the fitting curve of the six points under high pump levels. It is fitted by C A R = A P 2, where P is the pump power. (c) The relation between the heralding efficiency and the pump power.

Fig. 4
Fig. 4

The experimental results of two photon interferences under two nonorthogonal polarization bases. The blue squares and red circles are the coincidence counts when the polarization detecting direction of one path varies and that of the other path is set as 0 degree and 45 degree, respectively. The blue and red lines are their fitting curves by the sinusoidal function. The raw visibility of the two curves are 91% and 90% respectively.

Fig. 5
Fig. 5

The experiment of BSM on the generated polarization-entangled Bell states. (a) the setup. VOA: variable optical attenuator. PC: polarization controller. SPD: single photon detector. TCSPC: time correlated single photon counting module. (b) The coincidence number of two states under different optical delay. The hollow squares and circles show the curves corresponding the states in Eq. (3) and Eq. (4), respectively. The visibility of the curve is 83%

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

| φ = [ 1 + γ ( a ^ 3 , H a ^ 3 , V + a ^ 4 , H a ^ 4 , V ) + O ( γ 2 ) ] | v a c
| ϕ = [ 1 + γ ( a ^ 1 , H + i a ^ 2 , H 2 a ^ 1 , V + i a ^ 2 , V 2 + a ^ 2 , H + i a ^ 1 , H 2 a ^ 2 , V + i a ^ 1 , V 2 ) + O ( γ 2 ) ] | v a c = [ 1 + i γ ( a ^ 1 , H a ^ 2 , H + a ^ 1 . V a ^ 2 , V ) + O ( γ 2 ) ] | v a c
| ψ = ( a ^ 1 , H a ^ 2 , V a ^ 1 , V a ^ 2 , H ) | v a c / 2
| ψ = ( a ^ 1 , H a ^ 2 , H + a ^ 1 , V a ^ 2 , V ) | v a c / 2

Metrics