Abstract

A spatio-temporal analysis of non-degenerate two-wave mixing in a saturable absorber, such as bacteriorhodopsin (bR) film, is performed. To do this, a theoretical model describing the temporal variation of the intensities is developed by taking into account the dielectric constant as a function of bR population. A good agreement between theory and experimental measurements is obtained. Thus, the dependence of the optical gain and the main dielectric constant parameters are studied at different intensities and frequencies. As a result, the best intensity-frequency zones where higher coupling is reached are proposed, and it is also demonstrated that non-uniform patterns, which evolve over time as a function of frequency difference, can be observed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Non-degenerate near-resonant two-wave mixing in diode pumped Nd3+ and Yb3+ doped crystals in the presence of athermal refractive index grating

R. Soulard, A. Brignon, J. P. Huignard, and R. Moncorgé
J. Opt. Soc. Am. B 27(11) 2203-2210 (2010)

A general theory of two-wave mixing in nonlinear media

Mingjun Chi, Jean-Pierre Huignard, and Paul Michael Petersen
J. Opt. Soc. Am. B 26(8) 1578-1584 (2009)

All-optical time-delay switch based on grating buildup time of two-wave mixing in a bacteriorhodopsin film

Guiying Chen, Wenqiang Lu, Xuxu Xu, Jianguo Tian, and Chunping Zhang
Appl. Opt. 48(28) 5205-5211 (2009)

References

  • View by:
  • |
  • |
  • |

  1. W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).
    [Crossref]
  2. R. Birge, N. Gillespie, E. Izaguirre, A. Kusnetzow, A. Lawrence, D. Singh, Q. Song, E. Schmidt, J. Stuart, S. Seetharaman, and K. Wise, “Biomolecular electronics: Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746–10766 (1999).
    [Crossref]
  3. N. Hampp, “Bacteriorhodopsin as a photochromic retinal for optical memories,” Chem. Rev. 100, 1755–1776 (2000).
    [Crossref]
  4. C. Braüchle, N. Hampp, and D. Oesterhelt, “Optical applications of bacteriorhodopsin and its mutated variants,” Adv. Mater. 3, 420–428 (1991).
    [Crossref]
  5. K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, “Optimization of bacteriorhodopsin for bioelectronic devices,” Trends Biotechnol. 20, 387–394 (2002).
    [Crossref] [PubMed]
  6. N. Hampp, A. Popp, C. Braüchle, and D. Oesterhelt, “Diffraction efficiency of bacteriorhodopsin films for holography containing bacteriorhodopsin wildtype BRWT and its variants BRD85E and BRD96N,” J. Phys. Chem. 964679–4685 (1992).
    [Crossref]
  7. J. D. Downie, “Real-time holographic image correction using bacteriorhodopsin,” Appl. Opt. 33, 4353–4357 (1994).
    [Crossref] [PubMed]
  8. B. L. Yao, Y. L. Wang, M. Lei, N. Menke, G. F. Chen, Y. Chen, T. K. Li, and M. G. Fan, “Polarization patterns hide and display using photoinduced anisotropy of photochromic fulgide,” Opt. Express 13, 20–25 (2005).
    [Crossref] [PubMed]
  9. C. P. Singh and S. Roy, “All-optical switching in bacteriorhodopsin based on m state dynamics and its application to photonic logic gates,” Opt. Commun. 218, 55–66 (2003).
    [Crossref]
  10. T. Miyasaka and K. Koyama, “Image sensing and processing by a bacteriorhodopsin-based artificial photoreceptor,” Appl. Opt. 32, 6371–6379 (1993).
    [Crossref] [PubMed]
  11. P. F. Wu and D. V. G. L. N. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett. 95253601 (2005).
    [Crossref] [PubMed]
  12. P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484–519 (1989).
    [Crossref]
  13. P. Yeh, Introduction to Photorefractive Nonlinear Optics (John Wiley and Sons, 1993).
  14. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford University, 1996).
  15. M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
    [Crossref] [PubMed]
  16. J. S. Liu, “Holographic solitons in photorefractive dissipative systems,” Opt. Lett. 28, 2237–2239 (2003).
    [Crossref] [PubMed]
  17. U. Bortolozzo, S. Residori, and J. P. Huignard, “Slow and fast light: basic concepts and recent advancements based on nonlinear wave-mixing processes,” Laser & Photonics Reviews 4, 483–498 (2010).
    [Crossref]
  18. J. P. Huignard and A. Marrakchi, “2-wave mixing and energy-transfer in Bi12SiO20 crystals - application to image amplification and vibration analysis,” Opt. Lett. 6, 622–624 (1981).
    [Crossref] [PubMed]
  19. M. B. Klein, “Beam coupling in undoped gaas at 1.06-mu-m using the photorefractive effect,” Opt. Lett. 9, 350–352 (1984).
    [Crossref] [PubMed]
  20. W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997).
    [Crossref]
  21. Y. Silberberg and I. Bar-Joseph, “Instabilities, self-oscillation, and chaos in a simple non-linear optical interaction,” Phys. Rev. Lett. 48, 1541–1543 (1982).
    [Crossref]
  22. Y. Silberberg and I. Bar-Joseph, “Optical instabilities in a nonlinear kerr medium,” J. Opt. Am. Soc. B 1, 662–670 (1984).
    [Crossref]
  23. O. L. Antipov, S. I. Belyaev, A. S. Kuzhelev, and D. V. Chausov, “Resonant two-wave mixing of optical beams by refractive-index and gain gratings in inverted Nd:YAG,” J. Opt. Am. Soc. B 15, 2276–2282 (1998).
    [Crossref]
  24. M. Chi, S. B. Jensen, J.-P. Huignard, and P. M. Petersen, “Two-wave mixing in a broad-area semiconductor amplifier,” Opt. Express 14, 12373–12379 (2006).
    [Crossref] [PubMed]
  25. M. Chi, J.-P. Huignard, and P. M. Petersen, “A general theory of two-wave mixing in nonlinear media,” J. Opt. Soc Am B 26, 1578–1584 (2009).
    [Crossref]
  26. I. Mcmichael, P. Yeh, and P. Beckwith, “Nondegenerate 2-wave mixing in ruby,” Opt. Lett. 13, 500–502 (1988).
    [Crossref] [PubMed]
  27. S. A. Boothroyd, J. Chrostowski, and M. S. Osullivan, “2-wave mixing by phase and absorption gratings in saturable absorbers,” J. Opt. Am. Soc. B 6, 766–771 (1989).
    [Crossref]
  28. S. A. Boothroyd, J. Chrostowski, and M. S. Osullivan, “Determination of the phase of the complex nonlinear refractive-index by transient 2-wave mixing in saturable absorbers,” Opt. Lett. 14, 946–948 (1989).
    [Crossref] [PubMed]
  29. S. C. Zilio, J. C. Penaforte, E. A. Gouveia, and M. J. V. Bell, “Nearly degenerate 2-wave mixing in saturable absorbers,” Opt. Commun. 86, 81–87 (1991).
    [Crossref]
  30. R. C. Sharma, A. Barman, S. N. Thakur, and J. P. Singh, “Two-coherent-wave coupling in rhodamine 110-doped boric acid glass solid films,” J. Opt. Am. Soc. B 24, 1130–1137 (2007).
    [Crossref]
  31. S. Stepanov, “Dynamic population gratings in rare-earth-doped optical fibres,” J. Phys D: Appl. Phys. 41, 224002 (2008).
    [Crossref]
  32. R. C. Sharma, T. A. Waigh, and J. P. Singh, “Modulated optical phase conjugation in rhodamine 110 doped boric acid glass saturable absorber thin films,” Appl. Phys. Lett. 92, 101125 (2008).
    [Crossref]
  33. J. Pinsl, M. Gehrtz, and C. Bräuchle, “Phase-modulated holography: a new technique for investigation of solid-state photochemistry and hologram formation mechanism,” J. Phys. Chem. 90, 6754–6756 (1986).
    [Crossref]
  34. M. Gehrtz, J. Pinsl, and C. Bräuchle, “Sensitive detection of phase and absorption gratings: Phase-modulated, homodyne detected holography,” Appl. Phys. B 43, 61–77 (1987).
    [Crossref]
  35. F. Hrebabetzky and C. Bräuchle, “Dynamical-phase-modulated holography (dpmh)-a method for measuring hologram formation mechanisms and the nonlinear refractive index,” in “Holographic Systems, Components and Applications, 1989., Second International Conference on,” (1989), pp. 106–110.
  36. I. Mcmichael, R. Saxena, T. Y. Chang, Q. Z. Shu, S. Rand, J. Chen, and H. Tuller, “High-gain nondegenerate 2-wave mixing in Cr − YAlO3,” Opt. Lett. 19, 1511–1513 (1994).
    [Crossref] [PubMed]
  37. A. G. Skirtach, D. J. Simkin, and S. A. Boothroyd, “Nondegenerate two-wave mixing in Cr3+ : Er 3+ : YAlO3,” J. Opt. Am. Soc.B 13, 546–552 (1996).
    [Crossref]
  38. G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: A potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
    [Crossref]
  39. M. A. Kramer, W. R. Tompkin, and R. W. Boyd, “Nonlinear-optical interactions in fluorescein-doped boric-acid glass,” Phys. Rev. A 34, 2026–2031 (1986).
    [Crossref]
  40. G. R. Kumar, B. P. Singh, and K. K. Sharma, “Optical-phase conjugation in rhodamine-6g doped boric-acid glass,” Opt. Commun. 73, 81–84 (1989).
    [Crossref]
  41. H. Fujiwara, K. Shio, and S. Miyanaga, “Power transfer by nearly degenerate 2-wave mixing in a saturable dye-doped film,” J. Opt.Soc. Am. B 8, 1740–1746 (1991).
    [Crossref]
  42. K. D. Rao and K. K. Sharma, “Multiwave diffraction in saturable absorbers,” J.Opt. Soc. Am. B 12, 658–664 (1995).
    [Crossref]
  43. A. Sharan and K. K. Sharma, “Non-degenerate two wave mixing in R6G doped boric acid glass films,” Opt. Commun. 194, 381–392 (2001).
    [Crossref]
  44. W. R. Tompkin, R. W. Boyd, D. W. Hall, and P. A. Tick, “Nonlinear-optical properties of lead tin fluorophosphate glass containing acridine-dyes,” J. Opt. Am. Soc.B 4, 1030–1034 (1987).
    [Crossref]
  45. A. G. Skirtach, D. J. Simkin, and S. A. Boothroyd, “Theory of nondegenerate two-wave mixing in an absorptive kerr medium,” J. Opt. Am. Soc. B 13, 2164–2169 (1996).
    [Crossref]
  46. H. L. Fragnito, S. F. Pereira, and A. Kiel, “Self-diffraction in population gratings,” J. Opt. Am.Soc. B 4, 1309–1315 (1987).
    [Crossref]
  47. H. T. Zhou, X. Mi, Q. Jiang, R. H. Zhang, and P. X. Ye, “Saturation effect in nondegenerate 2-wave mixing,” Opt. Commun. 78, 382–386 (1990).
    [Crossref]
  48. P. Acebal, L. Carretero, S. Blaya, A. Murciano, and A. Fimia, “Theoretical approach to photoinduced inhomogeneous anisotropy in bacteriorhodopsin films,” Phys Rev E 76, 016608 (2007).
    [Crossref]
  49. C. C. Bowley, A. Smuk, G. P. Crawford, and N. M. Lawandy, “Two wave mixing in holographic polymer dispersed liquid crystal (h-pdlc) formation,” Mol. Cryst. and Liq. Cryst. 358, 185–198 (2001).
    [Crossref]
  50. P. Yeh, “Exact solution of a nonlinear model of two-wave mixing in kerr media,” J. Opt. Soc. Am. B 3, 747–750 (1986).
    [Crossref]
  51. S. Blaya, M. Candela, P. Acebal, L. Carretero, and A. Fimia, “Theoretical and experimental analysis of pulse delay in bacteriorhodopsin films by a saturable absorber theory,” Opt. Express 22, 11600–11609 (2014).
    [Crossref] [PubMed]
  52. J. D. Downie and D. T. Smithey, “Measurements of holographic properties of bacteriorhodopsin films,” Appl. Opt. 35, 5780–5789 (1996).
    [Crossref] [PubMed]
  53. P. Acebal, S. Blaya, L. Carretero, R. F. Madrigal, and A. Fimia, “Rigorous analysis of the propagation of sinusoidal pulses in bacteriorhodopsin films,” Opt. Express 20, 25497–25512 (2012).
    [Crossref] [PubMed]
  54. R. K. Banyal, G. A. Hegde, B. R. Prasad, and K. P. J. Reddy, “A time-dependent multistate model for bacteriorhodopsin photocycle,” Curr. Appl. Phys. 5, 133–138 (2005).
    [Crossref]
  55. O. Werner, B. Fischer, A. Lewis, and I. Nebenzahl, “Saturable absorption, wave mixing, and phase conjugation with bacteriorhodopsin,” Opt. Lett. 15, 1117–1119 (1990).
    [Crossref] [PubMed]
  56. J. D. Downie and D. A. Timucin, “Modeling the grating-formation process in thick bacteriorhodopsin films,” Appl. Opt. 37, 2102–2111 (1998).
    [Crossref]
  57. J. C. Kralik and M. S. Malcuit, “Transient oscillations in nondegenerate 2-beam coupling,” Opt. Commun. 107, 401–405 (1994).
    [Crossref]

2014 (1)

2012 (1)

2010 (1)

U. Bortolozzo, S. Residori, and J. P. Huignard, “Slow and fast light: basic concepts and recent advancements based on nonlinear wave-mixing processes,” Laser & Photonics Reviews 4, 483–498 (2010).
[Crossref]

2009 (1)

M. Chi, J.-P. Huignard, and P. M. Petersen, “A general theory of two-wave mixing in nonlinear media,” J. Opt. Soc Am B 26, 1578–1584 (2009).
[Crossref]

2008 (2)

S. Stepanov, “Dynamic population gratings in rare-earth-doped optical fibres,” J. Phys D: Appl. Phys. 41, 224002 (2008).
[Crossref]

R. C. Sharma, T. A. Waigh, and J. P. Singh, “Modulated optical phase conjugation in rhodamine 110 doped boric acid glass saturable absorber thin films,” Appl. Phys. Lett. 92, 101125 (2008).
[Crossref]

2007 (2)

R. C. Sharma, A. Barman, S. N. Thakur, and J. P. Singh, “Two-coherent-wave coupling in rhodamine 110-doped boric acid glass solid films,” J. Opt. Am. Soc. B 24, 1130–1137 (2007).
[Crossref]

P. Acebal, L. Carretero, S. Blaya, A. Murciano, and A. Fimia, “Theoretical approach to photoinduced inhomogeneous anisotropy in bacteriorhodopsin films,” Phys Rev E 76, 016608 (2007).
[Crossref]

2006 (1)

2005 (3)

P. F. Wu and D. V. G. L. N. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett. 95253601 (2005).
[Crossref] [PubMed]

B. L. Yao, Y. L. Wang, M. Lei, N. Menke, G. F. Chen, Y. Chen, T. K. Li, and M. G. Fan, “Polarization patterns hide and display using photoinduced anisotropy of photochromic fulgide,” Opt. Express 13, 20–25 (2005).
[Crossref] [PubMed]

R. K. Banyal, G. A. Hegde, B. R. Prasad, and K. P. J. Reddy, “A time-dependent multistate model for bacteriorhodopsin photocycle,” Curr. Appl. Phys. 5, 133–138 (2005).
[Crossref]

2003 (2)

C. P. Singh and S. Roy, “All-optical switching in bacteriorhodopsin based on m state dynamics and its application to photonic logic gates,” Opt. Commun. 218, 55–66 (2003).
[Crossref]

J. S. Liu, “Holographic solitons in photorefractive dissipative systems,” Opt. Lett. 28, 2237–2239 (2003).
[Crossref] [PubMed]

2002 (1)

K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, “Optimization of bacteriorhodopsin for bioelectronic devices,” Trends Biotechnol. 20, 387–394 (2002).
[Crossref] [PubMed]

2001 (2)

C. C. Bowley, A. Smuk, G. P. Crawford, and N. M. Lawandy, “Two wave mixing in holographic polymer dispersed liquid crystal (h-pdlc) formation,” Mol. Cryst. and Liq. Cryst. 358, 185–198 (2001).
[Crossref]

A. Sharan and K. K. Sharma, “Non-degenerate two wave mixing in R6G doped boric acid glass films,” Opt. Commun. 194, 381–392 (2001).
[Crossref]

2000 (1)

N. Hampp, “Bacteriorhodopsin as a photochromic retinal for optical memories,” Chem. Rev. 100, 1755–1776 (2000).
[Crossref]

1999 (1)

R. Birge, N. Gillespie, E. Izaguirre, A. Kusnetzow, A. Lawrence, D. Singh, Q. Song, E. Schmidt, J. Stuart, S. Seetharaman, and K. Wise, “Biomolecular electronics: Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746–10766 (1999).
[Crossref]

1998 (3)

O. L. Antipov, S. I. Belyaev, A. S. Kuzhelev, and D. V. Chausov, “Resonant two-wave mixing of optical beams by refractive-index and gain gratings in inverted Nd:YAG,” J. Opt. Am. Soc. B 15, 2276–2282 (1998).
[Crossref]

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: A potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[Crossref]

J. D. Downie and D. A. Timucin, “Modeling the grating-formation process in thick bacteriorhodopsin films,” Appl. Opt. 37, 2102–2111 (1998).
[Crossref]

1997 (1)

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997).
[Crossref]

1996 (3)

A. G. Skirtach, D. J. Simkin, and S. A. Boothroyd, “Nondegenerate two-wave mixing in Cr3+ : Er 3+ : YAlO3,” J. Opt. Am. Soc.B 13, 546–552 (1996).
[Crossref]

A. G. Skirtach, D. J. Simkin, and S. A. Boothroyd, “Theory of nondegenerate two-wave mixing in an absorptive kerr medium,” J. Opt. Am. Soc. B 13, 2164–2169 (1996).
[Crossref]

J. D. Downie and D. T. Smithey, “Measurements of holographic properties of bacteriorhodopsin films,” Appl. Opt. 35, 5780–5789 (1996).
[Crossref] [PubMed]

1995 (1)

K. D. Rao and K. K. Sharma, “Multiwave diffraction in saturable absorbers,” J.Opt. Soc. Am. B 12, 658–664 (1995).
[Crossref]

1994 (3)

1993 (1)

1992 (2)

N. Hampp, A. Popp, C. Braüchle, and D. Oesterhelt, “Diffraction efficiency of bacteriorhodopsin films for holography containing bacteriorhodopsin wildtype BRWT and its variants BRD85E and BRD96N,” J. Phys. Chem. 964679–4685 (1992).
[Crossref]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[Crossref] [PubMed]

1991 (3)

C. Braüchle, N. Hampp, and D. Oesterhelt, “Optical applications of bacteriorhodopsin and its mutated variants,” Adv. Mater. 3, 420–428 (1991).
[Crossref]

S. C. Zilio, J. C. Penaforte, E. A. Gouveia, and M. J. V. Bell, “Nearly degenerate 2-wave mixing in saturable absorbers,” Opt. Commun. 86, 81–87 (1991).
[Crossref]

H. Fujiwara, K. Shio, and S. Miyanaga, “Power transfer by nearly degenerate 2-wave mixing in a saturable dye-doped film,” J. Opt.Soc. Am. B 8, 1740–1746 (1991).
[Crossref]

1990 (2)

H. T. Zhou, X. Mi, Q. Jiang, R. H. Zhang, and P. X. Ye, “Saturation effect in nondegenerate 2-wave mixing,” Opt. Commun. 78, 382–386 (1990).
[Crossref]

O. Werner, B. Fischer, A. Lewis, and I. Nebenzahl, “Saturable absorption, wave mixing, and phase conjugation with bacteriorhodopsin,” Opt. Lett. 15, 1117–1119 (1990).
[Crossref] [PubMed]

1989 (4)

G. R. Kumar, B. P. Singh, and K. K. Sharma, “Optical-phase conjugation in rhodamine-6g doped boric-acid glass,” Opt. Commun. 73, 81–84 (1989).
[Crossref]

S. A. Boothroyd, J. Chrostowski, and M. S. Osullivan, “2-wave mixing by phase and absorption gratings in saturable absorbers,” J. Opt. Am. Soc. B 6, 766–771 (1989).
[Crossref]

S. A. Boothroyd, J. Chrostowski, and M. S. Osullivan, “Determination of the phase of the complex nonlinear refractive-index by transient 2-wave mixing in saturable absorbers,” Opt. Lett. 14, 946–948 (1989).
[Crossref] [PubMed]

P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484–519 (1989).
[Crossref]

1988 (1)

1987 (3)

M. Gehrtz, J. Pinsl, and C. Bräuchle, “Sensitive detection of phase and absorption gratings: Phase-modulated, homodyne detected holography,” Appl. Phys. B 43, 61–77 (1987).
[Crossref]

H. L. Fragnito, S. F. Pereira, and A. Kiel, “Self-diffraction in population gratings,” J. Opt. Am.Soc. B 4, 1309–1315 (1987).
[Crossref]

W. R. Tompkin, R. W. Boyd, D. W. Hall, and P. A. Tick, “Nonlinear-optical properties of lead tin fluorophosphate glass containing acridine-dyes,” J. Opt. Am. Soc.B 4, 1030–1034 (1987).
[Crossref]

1986 (3)

M. A. Kramer, W. R. Tompkin, and R. W. Boyd, “Nonlinear-optical interactions in fluorescein-doped boric-acid glass,” Phys. Rev. A 34, 2026–2031 (1986).
[Crossref]

P. Yeh, “Exact solution of a nonlinear model of two-wave mixing in kerr media,” J. Opt. Soc. Am. B 3, 747–750 (1986).
[Crossref]

J. Pinsl, M. Gehrtz, and C. Bräuchle, “Phase-modulated holography: a new technique for investigation of solid-state photochemistry and hologram formation mechanism,” J. Phys. Chem. 90, 6754–6756 (1986).
[Crossref]

1984 (2)

Y. Silberberg and I. Bar-Joseph, “Optical instabilities in a nonlinear kerr medium,” J. Opt. Am. Soc. B 1, 662–670 (1984).
[Crossref]

M. B. Klein, “Beam coupling in undoped gaas at 1.06-mu-m using the photorefractive effect,” Opt. Lett. 9, 350–352 (1984).
[Crossref] [PubMed]

1982 (1)

Y. Silberberg and I. Bar-Joseph, “Instabilities, self-oscillation, and chaos in a simple non-linear optical interaction,” Phys. Rev. Lett. 48, 1541–1543 (1982).
[Crossref]

1981 (1)

1979 (1)

W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).
[Crossref]

Acebal, P.

Antipov, O. L.

O. L. Antipov, S. I. Belyaev, A. S. Kuzhelev, and D. V. Chausov, “Resonant two-wave mixing of optical beams by refractive-index and gain gratings in inverted Nd:YAG,” J. Opt. Am. Soc. B 15, 2276–2282 (1998).
[Crossref]

Banyal, R. K.

R. K. Banyal, G. A. Hegde, B. R. Prasad, and K. P. J. Reddy, “A time-dependent multistate model for bacteriorhodopsin photocycle,” Curr. Appl. Phys. 5, 133–138 (2005).
[Crossref]

Bar-Joseph, I.

Y. Silberberg and I. Bar-Joseph, “Optical instabilities in a nonlinear kerr medium,” J. Opt. Am. Soc. B 1, 662–670 (1984).
[Crossref]

Y. Silberberg and I. Bar-Joseph, “Instabilities, self-oscillation, and chaos in a simple non-linear optical interaction,” Phys. Rev. Lett. 48, 1541–1543 (1982).
[Crossref]

Barman, A.

R. C. Sharma, A. Barman, S. N. Thakur, and J. P. Singh, “Two-coherent-wave coupling in rhodamine 110-doped boric acid glass solid films,” J. Opt. Am. Soc. B 24, 1130–1137 (2007).
[Crossref]

Beckwith, P.

Bell, M. J. V.

S. C. Zilio, J. C. Penaforte, E. A. Gouveia, and M. J. V. Bell, “Nearly degenerate 2-wave mixing in saturable absorbers,” Opt. Commun. 86, 81–87 (1991).
[Crossref]

Belyaev, S. I.

O. L. Antipov, S. I. Belyaev, A. S. Kuzhelev, and D. V. Chausov, “Resonant two-wave mixing of optical beams by refractive-index and gain gratings in inverted Nd:YAG,” J. Opt. Am. Soc. B 15, 2276–2282 (1998).
[Crossref]

Birge, R.

R. Birge, N. Gillespie, E. Izaguirre, A. Kusnetzow, A. Lawrence, D. Singh, Q. Song, E. Schmidt, J. Stuart, S. Seetharaman, and K. Wise, “Biomolecular electronics: Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746–10766 (1999).
[Crossref]

Birge, R. R.

K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, “Optimization of bacteriorhodopsin for bioelectronic devices,” Trends Biotechnol. 20, 387–394 (2002).
[Crossref] [PubMed]

Blaya, S.

Bogomolni, R. A.

W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).
[Crossref]

Boothroyd, S. A.

A. G. Skirtach, D. J. Simkin, and S. A. Boothroyd, “Nondegenerate two-wave mixing in Cr3+ : Er 3+ : YAlO3,” J. Opt. Am. Soc.B 13, 546–552 (1996).
[Crossref]

A. G. Skirtach, D. J. Simkin, and S. A. Boothroyd, “Theory of nondegenerate two-wave mixing in an absorptive kerr medium,” J. Opt. Am. Soc. B 13, 2164–2169 (1996).
[Crossref]

S. A. Boothroyd, J. Chrostowski, and M. S. Osullivan, “Determination of the phase of the complex nonlinear refractive-index by transient 2-wave mixing in saturable absorbers,” Opt. Lett. 14, 946–948 (1989).
[Crossref] [PubMed]

S. A. Boothroyd, J. Chrostowski, and M. S. Osullivan, “2-wave mixing by phase and absorption gratings in saturable absorbers,” J. Opt. Am. Soc. B 6, 766–771 (1989).
[Crossref]

Bortolozzo, U.

U. Bortolozzo, S. Residori, and J. P. Huignard, “Slow and fast light: basic concepts and recent advancements based on nonlinear wave-mixing processes,” Laser & Photonics Reviews 4, 483–498 (2010).
[Crossref]

Bowley, C. C.

C. C. Bowley, A. Smuk, G. P. Crawford, and N. M. Lawandy, “Two wave mixing in holographic polymer dispersed liquid crystal (h-pdlc) formation,” Mol. Cryst. and Liq. Cryst. 358, 185–198 (2001).
[Crossref]

Boyd, R. W.

W. R. Tompkin, R. W. Boyd, D. W. Hall, and P. A. Tick, “Nonlinear-optical properties of lead tin fluorophosphate glass containing acridine-dyes,” J. Opt. Am. Soc.B 4, 1030–1034 (1987).
[Crossref]

M. A. Kramer, W. R. Tompkin, and R. W. Boyd, “Nonlinear-optical interactions in fluorescein-doped boric-acid glass,” Phys. Rev. A 34, 2026–2031 (1986).
[Crossref]

Braüchle, C.

N. Hampp, A. Popp, C. Braüchle, and D. Oesterhelt, “Diffraction efficiency of bacteriorhodopsin films for holography containing bacteriorhodopsin wildtype BRWT and its variants BRD85E and BRD96N,” J. Phys. Chem. 964679–4685 (1992).
[Crossref]

C. Braüchle, N. Hampp, and D. Oesterhelt, “Optical applications of bacteriorhodopsin and its mutated variants,” Adv. Mater. 3, 420–428 (1991).
[Crossref]

Bräuchle, C.

M. Gehrtz, J. Pinsl, and C. Bräuchle, “Sensitive detection of phase and absorption gratings: Phase-modulated, homodyne detected holography,” Appl. Phys. B 43, 61–77 (1987).
[Crossref]

J. Pinsl, M. Gehrtz, and C. Bräuchle, “Phase-modulated holography: a new technique for investigation of solid-state photochemistry and hologram formation mechanism,” J. Phys. Chem. 90, 6754–6756 (1986).
[Crossref]

F. Hrebabetzky and C. Bräuchle, “Dynamical-phase-modulated holography (dpmh)-a method for measuring hologram formation mechanisms and the nonlinear refractive index,” in “Holographic Systems, Components and Applications, 1989., Second International Conference on,” (1989), pp. 106–110.

Candela, M.

Carretero, L.

Caulfield, H. J.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: A potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[Crossref]

Chang, T. Y.

Chausov, D. V.

O. L. Antipov, S. I. Belyaev, A. S. Kuzhelev, and D. V. Chausov, “Resonant two-wave mixing of optical beams by refractive-index and gain gratings in inverted Nd:YAG,” J. Opt. Am. Soc. B 15, 2276–2282 (1998).
[Crossref]

Chen, G. F.

Chen, J.

Chen, Y.

Chi, M.

M. Chi, J.-P. Huignard, and P. M. Petersen, “A general theory of two-wave mixing in nonlinear media,” J. Opt. Soc Am B 26, 1578–1584 (2009).
[Crossref]

M. Chi, S. B. Jensen, J.-P. Huignard, and P. M. Petersen, “Two-wave mixing in a broad-area semiconductor amplifier,” Opt. Express 14, 12373–12379 (2006).
[Crossref] [PubMed]

Chrostowski, J.

S. A. Boothroyd, J. Chrostowski, and M. S. Osullivan, “2-wave mixing by phase and absorption gratings in saturable absorbers,” J. Opt. Am. Soc. B 6, 766–771 (1989).
[Crossref]

S. A. Boothroyd, J. Chrostowski, and M. S. Osullivan, “Determination of the phase of the complex nonlinear refractive-index by transient 2-wave mixing in saturable absorbers,” Opt. Lett. 14, 946–948 (1989).
[Crossref] [PubMed]

Crawford, G. P.

C. C. Bowley, A. Smuk, G. P. Crawford, and N. M. Lawandy, “Two wave mixing in holographic polymer dispersed liquid crystal (h-pdlc) formation,” Mol. Cryst. and Liq. Cryst. 358, 185–198 (2001).
[Crossref]

Crosignani, B.

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[Crossref] [PubMed]

Curley, M.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: A potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[Crossref]

Downie, J. D.

Fan, M. G.

Fimia, A.

Fischer, B.

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[Crossref] [PubMed]

O. Werner, B. Fischer, A. Lewis, and I. Nebenzahl, “Saturable absorption, wave mixing, and phase conjugation with bacteriorhodopsin,” Opt. Lett. 15, 1117–1119 (1990).
[Crossref] [PubMed]

Fragnito, H. L.

H. L. Fragnito, S. F. Pereira, and A. Kiel, “Self-diffraction in population gratings,” J. Opt. Am.Soc. B 4, 1309–1315 (1987).
[Crossref]

Fujiwara, H.

H. Fujiwara, K. Shio, and S. Miyanaga, “Power transfer by nearly degenerate 2-wave mixing in a saturable dye-doped film,” J. Opt.Soc. Am. B 8, 1740–1746 (1991).
[Crossref]

Gehrtz, M.

M. Gehrtz, J. Pinsl, and C. Bräuchle, “Sensitive detection of phase and absorption gratings: Phase-modulated, homodyne detected holography,” Appl. Phys. B 43, 61–77 (1987).
[Crossref]

J. Pinsl, M. Gehrtz, and C. Bräuchle, “Phase-modulated holography: a new technique for investigation of solid-state photochemistry and hologram formation mechanism,” J. Phys. Chem. 90, 6754–6756 (1986).
[Crossref]

Gillespie, N.

R. Birge, N. Gillespie, E. Izaguirre, A. Kusnetzow, A. Lawrence, D. Singh, Q. Song, E. Schmidt, J. Stuart, S. Seetharaman, and K. Wise, “Biomolecular electronics: Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746–10766 (1999).
[Crossref]

Gillespie, N. B.

K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, “Optimization of bacteriorhodopsin for bioelectronic devices,” Trends Biotechnol. 20, 387–394 (2002).
[Crossref] [PubMed]

Gouveia, E. A.

S. C. Zilio, J. C. Penaforte, E. A. Gouveia, and M. J. V. Bell, “Nearly degenerate 2-wave mixing in saturable absorbers,” Opt. Commun. 86, 81–87 (1991).
[Crossref]

Grunnet-Jepsen, A.

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997).
[Crossref]

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford University, 1996).

Hall, D. W.

W. R. Tompkin, R. W. Boyd, D. W. Hall, and P. A. Tick, “Nonlinear-optical properties of lead tin fluorophosphate glass containing acridine-dyes,” J. Opt. Am. Soc.B 4, 1030–1034 (1987).
[Crossref]

Hampp, N.

N. Hampp, “Bacteriorhodopsin as a photochromic retinal for optical memories,” Chem. Rev. 100, 1755–1776 (2000).
[Crossref]

N. Hampp, A. Popp, C. Braüchle, and D. Oesterhelt, “Diffraction efficiency of bacteriorhodopsin films for holography containing bacteriorhodopsin wildtype BRWT and its variants BRD85E and BRD96N,” J. Phys. Chem. 964679–4685 (1992).
[Crossref]

C. Braüchle, N. Hampp, and D. Oesterhelt, “Optical applications of bacteriorhodopsin and its mutated variants,” Adv. Mater. 3, 420–428 (1991).
[Crossref]

Hegde, G. A.

R. K. Banyal, G. A. Hegde, B. R. Prasad, and K. P. J. Reddy, “A time-dependent multistate model for bacteriorhodopsin photocycle,” Curr. Appl. Phys. 5, 133–138 (2005).
[Crossref]

Hrebabetzky, F.

F. Hrebabetzky and C. Bräuchle, “Dynamical-phase-modulated holography (dpmh)-a method for measuring hologram formation mechanisms and the nonlinear refractive index,” in “Holographic Systems, Components and Applications, 1989., Second International Conference on,” (1989), pp. 106–110.

Huignard, J. P.

U. Bortolozzo, S. Residori, and J. P. Huignard, “Slow and fast light: basic concepts and recent advancements based on nonlinear wave-mixing processes,” Laser & Photonics Reviews 4, 483–498 (2010).
[Crossref]

J. P. Huignard and A. Marrakchi, “2-wave mixing and energy-transfer in Bi12SiO20 crystals - application to image amplification and vibration analysis,” Opt. Lett. 6, 622–624 (1981).
[Crossref] [PubMed]

Huignard, J.-P.

M. Chi, J.-P. Huignard, and P. M. Petersen, “A general theory of two-wave mixing in nonlinear media,” J. Opt. Soc Am B 26, 1578–1584 (2009).
[Crossref]

M. Chi, S. B. Jensen, J.-P. Huignard, and P. M. Petersen, “Two-wave mixing in a broad-area semiconductor amplifier,” Opt. Express 14, 12373–12379 (2006).
[Crossref] [PubMed]

Izaguirre, E.

R. Birge, N. Gillespie, E. Izaguirre, A. Kusnetzow, A. Lawrence, D. Singh, Q. Song, E. Schmidt, J. Stuart, S. Seetharaman, and K. Wise, “Biomolecular electronics: Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746–10766 (1999).
[Crossref]

Jensen, S. B.

Jiang, Q.

H. T. Zhou, X. Mi, Q. Jiang, R. H. Zhang, and P. X. Ye, “Saturation effect in nondegenerate 2-wave mixing,” Opt. Commun. 78, 382–386 (1990).
[Crossref]

Kiel, A.

H. L. Fragnito, S. F. Pereira, and A. Kiel, “Self-diffraction in population gratings,” J. Opt. Am.Soc. B 4, 1309–1315 (1987).
[Crossref]

Klein, M. B.

Koyama, K.

Kralik, J. C.

J. C. Kralik and M. S. Malcuit, “Transient oscillations in nondegenerate 2-beam coupling,” Opt. Commun. 107, 401–405 (1994).
[Crossref]

Kramer, M. A.

M. A. Kramer, W. R. Tompkin, and R. W. Boyd, “Nonlinear-optical interactions in fluorescein-doped boric-acid glass,” Phys. Rev. A 34, 2026–2031 (1986).
[Crossref]

Krebs, M. P.

K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, “Optimization of bacteriorhodopsin for bioelectronic devices,” Trends Biotechnol. 20, 387–394 (2002).
[Crossref] [PubMed]

Kukhtarev, N.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: A potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[Crossref]

Kumar, G. R.

G. R. Kumar, B. P. Singh, and K. K. Sharma, “Optical-phase conjugation in rhodamine-6g doped boric-acid glass,” Opt. Commun. 73, 81–84 (1989).
[Crossref]

Kusnetzow, A.

R. Birge, N. Gillespie, E. Izaguirre, A. Kusnetzow, A. Lawrence, D. Singh, Q. Song, E. Schmidt, J. Stuart, S. Seetharaman, and K. Wise, “Biomolecular electronics: Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746–10766 (1999).
[Crossref]

Kuzhelev, A. S.

O. L. Antipov, S. I. Belyaev, A. S. Kuzhelev, and D. V. Chausov, “Resonant two-wave mixing of optical beams by refractive-index and gain gratings in inverted Nd:YAG,” J. Opt. Am. Soc. B 15, 2276–2282 (1998).
[Crossref]

Lawandy, N. M.

C. C. Bowley, A. Smuk, G. P. Crawford, and N. M. Lawandy, “Two wave mixing in holographic polymer dispersed liquid crystal (h-pdlc) formation,” Mol. Cryst. and Liq. Cryst. 358, 185–198 (2001).
[Crossref]

Lawrence, A.

R. Birge, N. Gillespie, E. Izaguirre, A. Kusnetzow, A. Lawrence, D. Singh, Q. Song, E. Schmidt, J. Stuart, S. Seetharaman, and K. Wise, “Biomolecular electronics: Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746–10766 (1999).
[Crossref]

Lei, M.

Lewis, A.

Li, T. K.

Liu, J. S.

Loutts, G. B.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: A potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[Crossref]

Lozier, R. H.

W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).
[Crossref]

Madrigal, R. F.

Malcuit, M. S.

J. C. Kralik and M. S. Malcuit, “Transient oscillations in nondegenerate 2-beam coupling,” Opt. Commun. 107, 401–405 (1994).
[Crossref]

Marrakchi, A.

Mcmichael, I.

Menke, N.

Mi, X.

H. T. Zhou, X. Mi, Q. Jiang, R. H. Zhang, and P. X. Ye, “Saturation effect in nondegenerate 2-wave mixing,” Opt. Commun. 78, 382–386 (1990).
[Crossref]

Miller, G.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: A potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[Crossref]

Miyanaga, S.

H. Fujiwara, K. Shio, and S. Miyanaga, “Power transfer by nearly degenerate 2-wave mixing in a saturable dye-doped film,” J. Opt.Soc. Am. B 8, 1740–1746 (1991).
[Crossref]

Miyasaka, T.

Moerner, W. E.

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997).
[Crossref]

Murciano, A.

P. Acebal, L. Carretero, S. Blaya, A. Murciano, and A. Fimia, “Theoretical approach to photoinduced inhomogeneous anisotropy in bacteriorhodopsin films,” Phys Rev E 76, 016608 (2007).
[Crossref]

Nebenzahl, I.

Noginov, M. A.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: A potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[Crossref]

Noginova, N.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: A potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[Crossref]

Oesterhelt, D.

N. Hampp, A. Popp, C. Braüchle, and D. Oesterhelt, “Diffraction efficiency of bacteriorhodopsin films for holography containing bacteriorhodopsin wildtype BRWT and its variants BRD85E and BRD96N,” J. Phys. Chem. 964679–4685 (1992).
[Crossref]

C. Braüchle, N. Hampp, and D. Oesterhelt, “Optical applications of bacteriorhodopsin and its mutated variants,” Adv. Mater. 3, 420–428 (1991).
[Crossref]

Osullivan, M. S.

S. A. Boothroyd, J. Chrostowski, and M. S. Osullivan, “2-wave mixing by phase and absorption gratings in saturable absorbers,” J. Opt. Am. Soc. B 6, 766–771 (1989).
[Crossref]

S. A. Boothroyd, J. Chrostowski, and M. S. Osullivan, “Determination of the phase of the complex nonlinear refractive-index by transient 2-wave mixing in saturable absorbers,” Opt. Lett. 14, 946–948 (1989).
[Crossref] [PubMed]

Penaforte, J. C.

S. C. Zilio, J. C. Penaforte, E. A. Gouveia, and M. J. V. Bell, “Nearly degenerate 2-wave mixing in saturable absorbers,” Opt. Commun. 86, 81–87 (1991).
[Crossref]

Pereira, S. F.

H. L. Fragnito, S. F. Pereira, and A. Kiel, “Self-diffraction in population gratings,” J. Opt. Am.Soc. B 4, 1309–1315 (1987).
[Crossref]

Petersen, P. M.

M. Chi, J.-P. Huignard, and P. M. Petersen, “A general theory of two-wave mixing in nonlinear media,” J. Opt. Soc Am B 26, 1578–1584 (2009).
[Crossref]

M. Chi, S. B. Jensen, J.-P. Huignard, and P. M. Petersen, “Two-wave mixing in a broad-area semiconductor amplifier,” Opt. Express 14, 12373–12379 (2006).
[Crossref] [PubMed]

Pinsl, J.

M. Gehrtz, J. Pinsl, and C. Bräuchle, “Sensitive detection of phase and absorption gratings: Phase-modulated, homodyne detected holography,” Appl. Phys. B 43, 61–77 (1987).
[Crossref]

J. Pinsl, M. Gehrtz, and C. Bräuchle, “Phase-modulated holography: a new technique for investigation of solid-state photochemistry and hologram formation mechanism,” J. Phys. Chem. 90, 6754–6756 (1986).
[Crossref]

Popp, A.

N. Hampp, A. Popp, C. Braüchle, and D. Oesterhelt, “Diffraction efficiency of bacteriorhodopsin films for holography containing bacteriorhodopsin wildtype BRWT and its variants BRD85E and BRD96N,” J. Phys. Chem. 964679–4685 (1992).
[Crossref]

Prasad, B. R.

R. K. Banyal, G. A. Hegde, B. R. Prasad, and K. P. J. Reddy, “A time-dependent multistate model for bacteriorhodopsin photocycle,” Curr. Appl. Phys. 5, 133–138 (2005).
[Crossref]

Rakhimov, R. R.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: A potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[Crossref]

Rand, S.

Rao, D. V. G. L. N.

P. F. Wu and D. V. G. L. N. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett. 95253601 (2005).
[Crossref] [PubMed]

Rao, K. D.

K. D. Rao and K. K. Sharma, “Multiwave diffraction in saturable absorbers,” J.Opt. Soc. Am. B 12, 658–664 (1995).
[Crossref]

Reddy, K. P. J.

R. K. Banyal, G. A. Hegde, B. R. Prasad, and K. P. J. Reddy, “A time-dependent multistate model for bacteriorhodopsin photocycle,” Curr. Appl. Phys. 5, 133–138 (2005).
[Crossref]

Residori, S.

U. Bortolozzo, S. Residori, and J. P. Huignard, “Slow and fast light: basic concepts and recent advancements based on nonlinear wave-mixing processes,” Laser & Photonics Reviews 4, 483–498 (2010).
[Crossref]

Ries, H. R.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: A potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[Crossref]

Roy, S.

C. P. Singh and S. Roy, “All-optical switching in bacteriorhodopsin based on m state dynamics and its application to photonic logic gates,” Opt. Commun. 218, 55–66 (2003).
[Crossref]

Saxena, R.

Schmidt, E.

R. Birge, N. Gillespie, E. Izaguirre, A. Kusnetzow, A. Lawrence, D. Singh, Q. Song, E. Schmidt, J. Stuart, S. Seetharaman, and K. Wise, “Biomolecular electronics: Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746–10766 (1999).
[Crossref]

Seetharaman, S.

R. Birge, N. Gillespie, E. Izaguirre, A. Kusnetzow, A. Lawrence, D. Singh, Q. Song, E. Schmidt, J. Stuart, S. Seetharaman, and K. Wise, “Biomolecular electronics: Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746–10766 (1999).
[Crossref]

Segev, M.

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[Crossref] [PubMed]

Sharan, A.

A. Sharan and K. K. Sharma, “Non-degenerate two wave mixing in R6G doped boric acid glass films,” Opt. Commun. 194, 381–392 (2001).
[Crossref]

Sharma, K. K.

A. Sharan and K. K. Sharma, “Non-degenerate two wave mixing in R6G doped boric acid glass films,” Opt. Commun. 194, 381–392 (2001).
[Crossref]

K. D. Rao and K. K. Sharma, “Multiwave diffraction in saturable absorbers,” J.Opt. Soc. Am. B 12, 658–664 (1995).
[Crossref]

G. R. Kumar, B. P. Singh, and K. K. Sharma, “Optical-phase conjugation in rhodamine-6g doped boric-acid glass,” Opt. Commun. 73, 81–84 (1989).
[Crossref]

Sharma, R. C.

R. C. Sharma, T. A. Waigh, and J. P. Singh, “Modulated optical phase conjugation in rhodamine 110 doped boric acid glass saturable absorber thin films,” Appl. Phys. Lett. 92, 101125 (2008).
[Crossref]

R. C. Sharma, A. Barman, S. N. Thakur, and J. P. Singh, “Two-coherent-wave coupling in rhodamine 110-doped boric acid glass solid films,” J. Opt. Am. Soc. B 24, 1130–1137 (2007).
[Crossref]

Shio, K.

H. Fujiwara, K. Shio, and S. Miyanaga, “Power transfer by nearly degenerate 2-wave mixing in a saturable dye-doped film,” J. Opt.Soc. Am. B 8, 1740–1746 (1991).
[Crossref]

Shu, Q. Z.

Silberberg, Y.

Y. Silberberg and I. Bar-Joseph, “Optical instabilities in a nonlinear kerr medium,” J. Opt. Am. Soc. B 1, 662–670 (1984).
[Crossref]

Y. Silberberg and I. Bar-Joseph, “Instabilities, self-oscillation, and chaos in a simple non-linear optical interaction,” Phys. Rev. Lett. 48, 1541–1543 (1982).
[Crossref]

Simkin, D. J.

A. G. Skirtach, D. J. Simkin, and S. A. Boothroyd, “Nondegenerate two-wave mixing in Cr3+ : Er 3+ : YAlO3,” J. Opt. Am. Soc.B 13, 546–552 (1996).
[Crossref]

A. G. Skirtach, D. J. Simkin, and S. A. Boothroyd, “Theory of nondegenerate two-wave mixing in an absorptive kerr medium,” J. Opt. Am. Soc. B 13, 2164–2169 (1996).
[Crossref]

Singh, B. P.

G. R. Kumar, B. P. Singh, and K. K. Sharma, “Optical-phase conjugation in rhodamine-6g doped boric-acid glass,” Opt. Commun. 73, 81–84 (1989).
[Crossref]

Singh, C. P.

C. P. Singh and S. Roy, “All-optical switching in bacteriorhodopsin based on m state dynamics and its application to photonic logic gates,” Opt. Commun. 218, 55–66 (2003).
[Crossref]

Singh, D.

R. Birge, N. Gillespie, E. Izaguirre, A. Kusnetzow, A. Lawrence, D. Singh, Q. Song, E. Schmidt, J. Stuart, S. Seetharaman, and K. Wise, “Biomolecular electronics: Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746–10766 (1999).
[Crossref]

Singh, J. P.

R. C. Sharma, T. A. Waigh, and J. P. Singh, “Modulated optical phase conjugation in rhodamine 110 doped boric acid glass saturable absorber thin films,” Appl. Phys. Lett. 92, 101125 (2008).
[Crossref]

R. C. Sharma, A. Barman, S. N. Thakur, and J. P. Singh, “Two-coherent-wave coupling in rhodamine 110-doped boric acid glass solid films,” J. Opt. Am. Soc. B 24, 1130–1137 (2007).
[Crossref]

Skirtach, A. G.

A. G. Skirtach, D. J. Simkin, and S. A. Boothroyd, “Theory of nondegenerate two-wave mixing in an absorptive kerr medium,” J. Opt. Am. Soc. B 13, 2164–2169 (1996).
[Crossref]

A. G. Skirtach, D. J. Simkin, and S. A. Boothroyd, “Nondegenerate two-wave mixing in Cr3+ : Er 3+ : YAlO3,” J. Opt. Am. Soc.B 13, 546–552 (1996).
[Crossref]

Smithey, D. T.

Smuk, A.

C. C. Bowley, A. Smuk, G. P. Crawford, and N. M. Lawandy, “Two wave mixing in holographic polymer dispersed liquid crystal (h-pdlc) formation,” Mol. Cryst. and Liq. Cryst. 358, 185–198 (2001).
[Crossref]

Solymar, L.

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford University, 1996).

Song, Q.

R. Birge, N. Gillespie, E. Izaguirre, A. Kusnetzow, A. Lawrence, D. Singh, Q. Song, E. Schmidt, J. Stuart, S. Seetharaman, and K. Wise, “Biomolecular electronics: Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746–10766 (1999).
[Crossref]

Stepanov, S.

S. Stepanov, “Dynamic population gratings in rare-earth-doped optical fibres,” J. Phys D: Appl. Phys. 41, 224002 (2008).
[Crossref]

Stoeckenius, W.

W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).
[Crossref]

Stuart, J.

R. Birge, N. Gillespie, E. Izaguirre, A. Kusnetzow, A. Lawrence, D. Singh, Q. Song, E. Schmidt, J. Stuart, S. Seetharaman, and K. Wise, “Biomolecular electronics: Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746–10766 (1999).
[Crossref]

Stuart, J. A.

K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, “Optimization of bacteriorhodopsin for bioelectronic devices,” Trends Biotechnol. 20, 387–394 (2002).
[Crossref] [PubMed]

Taylor, L.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: A potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[Crossref]

Thakur, S. N.

R. C. Sharma, A. Barman, S. N. Thakur, and J. P. Singh, “Two-coherent-wave coupling in rhodamine 110-doped boric acid glass solid films,” J. Opt. Am. Soc. B 24, 1130–1137 (2007).
[Crossref]

Thompson, C. L.

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997).
[Crossref]

Tick, P. A.

W. R. Tompkin, R. W. Boyd, D. W. Hall, and P. A. Tick, “Nonlinear-optical properties of lead tin fluorophosphate glass containing acridine-dyes,” J. Opt. Am. Soc.B 4, 1030–1034 (1987).
[Crossref]

Timucin, D. A.

Tompkin, W. R.

W. R. Tompkin, R. W. Boyd, D. W. Hall, and P. A. Tick, “Nonlinear-optical properties of lead tin fluorophosphate glass containing acridine-dyes,” J. Opt. Am. Soc.B 4, 1030–1034 (1987).
[Crossref]

M. A. Kramer, W. R. Tompkin, and R. W. Boyd, “Nonlinear-optical interactions in fluorescein-doped boric-acid glass,” Phys. Rev. A 34, 2026–2031 (1986).
[Crossref]

Tuller, H.

Venkateswarlu, P.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: A potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[Crossref]

Waigh, T. A.

R. C. Sharma, T. A. Waigh, and J. P. Singh, “Modulated optical phase conjugation in rhodamine 110 doped boric acid glass saturable absorber thin films,” Appl. Phys. Lett. 92, 101125 (2008).
[Crossref]

Wang, Y. L.

Warren, M.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: A potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[Crossref]

Webb, D. J.

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford University, 1996).

Werner, O.

Wise, K.

R. Birge, N. Gillespie, E. Izaguirre, A. Kusnetzow, A. Lawrence, D. Singh, Q. Song, E. Schmidt, J. Stuart, S. Seetharaman, and K. Wise, “Biomolecular electronics: Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746–10766 (1999).
[Crossref]

Wise, K. J.

K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, “Optimization of bacteriorhodopsin for bioelectronic devices,” Trends Biotechnol. 20, 387–394 (2002).
[Crossref] [PubMed]

Wu, P. F.

P. F. Wu and D. V. G. L. N. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett. 95253601 (2005).
[Crossref] [PubMed]

Yao, B. L.

Yariv, A.

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[Crossref] [PubMed]

Ye, P. X.

H. T. Zhou, X. Mi, Q. Jiang, R. H. Zhang, and P. X. Ye, “Saturation effect in nondegenerate 2-wave mixing,” Opt. Commun. 78, 382–386 (1990).
[Crossref]

Yeh, P.

P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484–519 (1989).
[Crossref]

I. Mcmichael, P. Yeh, and P. Beckwith, “Nondegenerate 2-wave mixing in ruby,” Opt. Lett. 13, 500–502 (1988).
[Crossref] [PubMed]

P. Yeh, “Exact solution of a nonlinear model of two-wave mixing in kerr media,” J. Opt. Soc. Am. B 3, 747–750 (1986).
[Crossref]

P. Yeh, Introduction to Photorefractive Nonlinear Optics (John Wiley and Sons, 1993).

Zhang, R. H.

H. T. Zhou, X. Mi, Q. Jiang, R. H. Zhang, and P. X. Ye, “Saturation effect in nondegenerate 2-wave mixing,” Opt. Commun. 78, 382–386 (1990).
[Crossref]

Zhou, H. T.

H. T. Zhou, X. Mi, Q. Jiang, R. H. Zhang, and P. X. Ye, “Saturation effect in nondegenerate 2-wave mixing,” Opt. Commun. 78, 382–386 (1990).
[Crossref]

Zilio, S. C.

S. C. Zilio, J. C. Penaforte, E. A. Gouveia, and M. J. V. Bell, “Nearly degenerate 2-wave mixing in saturable absorbers,” Opt. Commun. 86, 81–87 (1991).
[Crossref]

Adv. Mater. (1)

C. Braüchle, N. Hampp, and D. Oesterhelt, “Optical applications of bacteriorhodopsin and its mutated variants,” Adv. Mater. 3, 420–428 (1991).
[Crossref]

Annu. Rev. Mater. Sci. (1)

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997).
[Crossref]

Appl. Opt. (4)

Appl. Phys. B (1)

M. Gehrtz, J. Pinsl, and C. Bräuchle, “Sensitive detection of phase and absorption gratings: Phase-modulated, homodyne detected holography,” Appl. Phys. B 43, 61–77 (1987).
[Crossref]

Appl. Phys. Lett. (1)

R. C. Sharma, T. A. Waigh, and J. P. Singh, “Modulated optical phase conjugation in rhodamine 110 doped boric acid glass saturable absorber thin films,” Appl. Phys. Lett. 92, 101125 (2008).
[Crossref]

Biochim. Biophys. Acta (1)

W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta 505, 215–278 (1979).
[Crossref]

Chem. Rev. (1)

N. Hampp, “Bacteriorhodopsin as a photochromic retinal for optical memories,” Chem. Rev. 100, 1755–1776 (2000).
[Crossref]

Curr. Appl. Phys. (1)

R. K. Banyal, G. A. Hegde, B. R. Prasad, and K. P. J. Reddy, “A time-dependent multistate model for bacteriorhodopsin photocycle,” Curr. Appl. Phys. 5, 133–138 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484–519 (1989).
[Crossref]

J. Opt. Am. Soc. B (5)

R. C. Sharma, A. Barman, S. N. Thakur, and J. P. Singh, “Two-coherent-wave coupling in rhodamine 110-doped boric acid glass solid films,” J. Opt. Am. Soc. B 24, 1130–1137 (2007).
[Crossref]

Y. Silberberg and I. Bar-Joseph, “Optical instabilities in a nonlinear kerr medium,” J. Opt. Am. Soc. B 1, 662–670 (1984).
[Crossref]

O. L. Antipov, S. I. Belyaev, A. S. Kuzhelev, and D. V. Chausov, “Resonant two-wave mixing of optical beams by refractive-index and gain gratings in inverted Nd:YAG,” J. Opt. Am. Soc. B 15, 2276–2282 (1998).
[Crossref]

S. A. Boothroyd, J. Chrostowski, and M. S. Osullivan, “2-wave mixing by phase and absorption gratings in saturable absorbers,” J. Opt. Am. Soc. B 6, 766–771 (1989).
[Crossref]

A. G. Skirtach, D. J. Simkin, and S. A. Boothroyd, “Theory of nondegenerate two-wave mixing in an absorptive kerr medium,” J. Opt. Am. Soc. B 13, 2164–2169 (1996).
[Crossref]

J. Opt. Am. Soc.B (2)

A. G. Skirtach, D. J. Simkin, and S. A. Boothroyd, “Nondegenerate two-wave mixing in Cr3+ : Er 3+ : YAlO3,” J. Opt. Am. Soc.B 13, 546–552 (1996).
[Crossref]

W. R. Tompkin, R. W. Boyd, D. W. Hall, and P. A. Tick, “Nonlinear-optical properties of lead tin fluorophosphate glass containing acridine-dyes,” J. Opt. Am. Soc.B 4, 1030–1034 (1987).
[Crossref]

J. Opt. Am.Soc. B (1)

H. L. Fragnito, S. F. Pereira, and A. Kiel, “Self-diffraction in population gratings,” J. Opt. Am.Soc. B 4, 1309–1315 (1987).
[Crossref]

J. Opt. Soc Am B (1)

M. Chi, J.-P. Huignard, and P. M. Petersen, “A general theory of two-wave mixing in nonlinear media,” J. Opt. Soc Am B 26, 1578–1584 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Opt.Soc. Am. B (1)

H. Fujiwara, K. Shio, and S. Miyanaga, “Power transfer by nearly degenerate 2-wave mixing in a saturable dye-doped film,” J. Opt.Soc. Am. B 8, 1740–1746 (1991).
[Crossref]

J. Phys D: Appl. Phys. (1)

S. Stepanov, “Dynamic population gratings in rare-earth-doped optical fibres,” J. Phys D: Appl. Phys. 41, 224002 (2008).
[Crossref]

J. Phys. Chem. (2)

J. Pinsl, M. Gehrtz, and C. Bräuchle, “Phase-modulated holography: a new technique for investigation of solid-state photochemistry and hologram formation mechanism,” J. Phys. Chem. 90, 6754–6756 (1986).
[Crossref]

N. Hampp, A. Popp, C. Braüchle, and D. Oesterhelt, “Diffraction efficiency of bacteriorhodopsin films for holography containing bacteriorhodopsin wildtype BRWT and its variants BRD85E and BRD96N,” J. Phys. Chem. 964679–4685 (1992).
[Crossref]

J. Phys. Chem. B (1)

R. Birge, N. Gillespie, E. Izaguirre, A. Kusnetzow, A. Lawrence, D. Singh, Q. Song, E. Schmidt, J. Stuart, S. Seetharaman, and K. Wise, “Biomolecular electronics: Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746–10766 (1999).
[Crossref]

J.Opt. Soc. Am. B (1)

K. D. Rao and K. K. Sharma, “Multiwave diffraction in saturable absorbers,” J.Opt. Soc. Am. B 12, 658–664 (1995).
[Crossref]

Laser & Photonics Reviews (1)

U. Bortolozzo, S. Residori, and J. P. Huignard, “Slow and fast light: basic concepts and recent advancements based on nonlinear wave-mixing processes,” Laser & Photonics Reviews 4, 483–498 (2010).
[Crossref]

Mol. Cryst. and Liq. Cryst. (1)

C. C. Bowley, A. Smuk, G. P. Crawford, and N. M. Lawandy, “Two wave mixing in holographic polymer dispersed liquid crystal (h-pdlc) formation,” Mol. Cryst. and Liq. Cryst. 358, 185–198 (2001).
[Crossref]

Opt. Commun. (6)

J. C. Kralik and M. S. Malcuit, “Transient oscillations in nondegenerate 2-beam coupling,” Opt. Commun. 107, 401–405 (1994).
[Crossref]

A. Sharan and K. K. Sharma, “Non-degenerate two wave mixing in R6G doped boric acid glass films,” Opt. Commun. 194, 381–392 (2001).
[Crossref]

G. R. Kumar, B. P. Singh, and K. K. Sharma, “Optical-phase conjugation in rhodamine-6g doped boric-acid glass,” Opt. Commun. 73, 81–84 (1989).
[Crossref]

H. T. Zhou, X. Mi, Q. Jiang, R. H. Zhang, and P. X. Ye, “Saturation effect in nondegenerate 2-wave mixing,” Opt. Commun. 78, 382–386 (1990).
[Crossref]

C. P. Singh and S. Roy, “All-optical switching in bacteriorhodopsin based on m state dynamics and its application to photonic logic gates,” Opt. Commun. 218, 55–66 (2003).
[Crossref]

S. C. Zilio, J. C. Penaforte, E. A. Gouveia, and M. J. V. Bell, “Nearly degenerate 2-wave mixing in saturable absorbers,” Opt. Commun. 86, 81–87 (1991).
[Crossref]

Opt. Express (4)

Opt. Lett. (7)

Phys Rev E (1)

P. Acebal, L. Carretero, S. Blaya, A. Murciano, and A. Fimia, “Theoretical approach to photoinduced inhomogeneous anisotropy in bacteriorhodopsin films,” Phys Rev E 76, 016608 (2007).
[Crossref]

Phys. Rev. A (1)

M. A. Kramer, W. R. Tompkin, and R. W. Boyd, “Nonlinear-optical interactions in fluorescein-doped boric-acid glass,” Phys. Rev. A 34, 2026–2031 (1986).
[Crossref]

Phys. Rev. B (1)

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: A potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[Crossref]

Phys. Rev. Lett. (3)

Y. Silberberg and I. Bar-Joseph, “Instabilities, self-oscillation, and chaos in a simple non-linear optical interaction,” Phys. Rev. Lett. 48, 1541–1543 (1982).
[Crossref]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[Crossref] [PubMed]

P. F. Wu and D. V. G. L. N. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett. 95253601 (2005).
[Crossref] [PubMed]

Trends Biotechnol. (1)

K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, “Optimization of bacteriorhodopsin for bioelectronic devices,” Trends Biotechnol. 20, 387–394 (2002).
[Crossref] [PubMed]

Other (3)

P. Yeh, Introduction to Photorefractive Nonlinear Optics (John Wiley and Sons, 1993).

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford University, 1996).

F. Hrebabetzky and C. Bräuchle, “Dynamical-phase-modulated holography (dpmh)-a method for measuring hologram formation mechanisms and the nonlinear refractive index,” in “Holographic Systems, Components and Applications, 1989., Second International Conference on,” (1989), pp. 106–110.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The experimental setup used to analyze the two wave mixing process in a bacteriorhodopsin film, where M is mirror, BS beam Splitter, D photodetector, and PZT mirror mounted on a piezoelectric transducer.
Fig. 2
Fig. 2 Temporal variation of the normalized intensities in non-degenerate two wave mixing. (a) Experimental, (b) Theoretical, (c) experimental and theoretical for beam 1 and (d) experimental and theoretical for beam 2. The parameters used in the theoretical simulations were: I10 = 14.2mW/cm2, I20 = 25.2mW/cm2, Ω0/(2π) = 32Hz, τM = 0.43s, φ0 = π/4rad, ϕa = 56π/45rad, ϕp = (ϕaπ) rad, α = 450cm−1, β2 = 385.6cm2/J, β1 = 275.5cm2/J, Δαw = 6.0×10−3, Δαwp = 6×10−4nw = 0.07 and Δnwp = 7.7×10−2.
Fig. 3
Fig. 3 Variation of optical gain (cm−1) as a function of the total intensity and frequency difference obtained from the comparative analysis of temporal non-degenerate two wave mixing curves.
Fig. 4
Fig. 4 Variation of τM as a function of the total intensity at different frequency detunings obtained from the comparative analysis of temporal non-degenerate two wave mixing curves.
Fig. 5
Fig. 5 Variation of β1 and β2 at frequency difference of 8 Hz as a function of the total intensity obtained from the comparative analysis of temporal non-degenerate two wave mixing curves.
Fig. 6
Fig. 6 Variation of ϕMσM as a function of the total intensity at different frequency detuning obtained from the comparative analysis of temporal non-degenerate two wave mixing curves.
Fig. 7
Fig. 7 Variation of Δnwp as a function of the total intensity at different frequency detuning obtained from the comparative analysis of temporal non-degenerate two wave mixing curves.
Fig. 8
Fig. 8 Temporal and depth variation of the uniform refractive index change (Δn0(z, t)) at different intensities obtained from the comparative analysis of temporal non-degenerate two wave mixing curves. (a) Itotal = 2.1mW/cm2, (b) Itotal = 5.5mW/cm2, (c) Itotal = 9.3mW/cm2 and (d) Itotal = 13.4mW/cm2
Fig. 9
Fig. 9 Temporal and depth variation of the modulated refractive index change (Δn1(z, t)) at different intensities obtained from the comparative analysis of temporal non-degenerate two wave mixing curves. (a) Itotal = 2.1mW/cm2, (b) Itotal = 5.5mW/cm2, (c) Itotal = 9.3mW/cm2 and (d) Itotal = 13.4mW/cm2
Fig. 10
Fig. 10 Temporal and depth variation of the modulated refractive index change (Δn1(z, t)) at different frequencies obtained from the comparative analysis of temporal non-degenerate two wave mixing curves at Itotal = 11.1mW/cm2. (a) Ω0/(2π) = 0Hz, (b) Ω0/(2π) = 1Hz, (c) Ω0/(2π) = 4Hz, (d) Ω0/(2π) = 32Hz.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

E j = A j ( z ) exp ( i ( ω j t k j r ) ) j = 1 , 2
ε r = ε r 0 i ε i 0 + ε r a i ε i a + 1 2 k r m ( t ) ( exp ( i ϕ p ) A 1 ( z ) A 2 ( z ) * exp ( i ( K r Ω 0 t ) ) + c . c . ) i 1 2 k i m ( t ) ( exp ( i ϕ a ) A 1 ( z ) A 2 ( z ) * exp ( i ( K r Ω 0 t ) ) + c . c . )
ε r a = k r ( t ) ( | A 1 ( z ) | 2 + | A 2 ( z ) | 2 )
ε i a = k i ( t ) ( | A 1 ( z ) | 2 + | A 2 ( z ) | 2 )
d A 1 ( z ) d z = A 1 ( z ) ( α cos θ + γ 0 ( t ) + γ 1 ( t ) 2 | A 2 ( z ) | 2 exp ( i ϕ a ) + + i ( 2 κ 0 ( t ) + exp ( i ϕ p ) κ 1 ( t ) | A 2 ( z ) | 2 ) ) d A 2 ( z ) d z = A 2 ( z ) ( α cos θ + γ 0 ( t ) + γ 1 ( t ) 2 | A 1 ( z ) | 2 exp ( i ϕ a ) + + i ( 2 κ 0 ( t ) + exp ( i ϕ p ) κ 1 ( t ) | A 1 ( z ) | 2 ) )
κ 0 ( t ) = π n w ( t ) ( | A 1 ( z ) | 2 + | A 2 ( z ) | 2 ) λ 2 cos θ
κ 1 ( t ) = π n w m ( t ) λ 2 cos θ
γ 0 ( t ) = π α w ( t ) ( | A 1 ( z ) | 2 + | A 2 ( z ) | 2 ) λ cos θ
γ 1 ( t ) = π α w m ( t ) λ cos θ
A 1 ( z ) = I 1 ( z ) exp ( i Ψ 1 ( z ) ) A 2 ( z ) = I 2 ( z ) exp ( i Ψ 2 ( z ) )
d I 1 ( z ) d z = 2 ( α cos θ + γ 0 ( t ) ) I 1 ( z ) + ( γ 1 ( t ) cos ϕ a + 2 κ 1 ( t ) sin ϕ p ) I 1 ( z ) I 2 ( z ) d I 2 ( z ) d z = 2 ( α cos θ + γ 0 ( t ) ) I 2 ( z ) + ( γ 1 ( t ) cos ϕ a 2 κ 1 ( t ) sin ϕ p ) I 1 ( z ) I 2 ( z )
d Ψ 1 ( z ) d z = 2 κ 0 ( t ) I 2 ( z ) ( κ 1 ( t ) cos ϕ p + γ 1 ( t ) 2 sin ϕ a ) d Ψ 2 ( z ) d z = 2 κ 0 ( t ) + I 2 ( z ) ( κ 1 ( t ) cos ϕ p + γ 1 ( t ) 2 sin ϕ a )
ν m ( t ) t = ( β 1 β 2 ν M ( t ) ) I ( t ) ν M ( t ) τ M
X ( x , t ) = X 0 ( t ) + X p ( x , t )
ν M 0 ( t ) t + ν M p ( x , t ) t = ( β 1 β 2 ( ν M 0 ( t ) + ν M p ( x , t ) ) ) ( I 0 ( t ) + I p ( x , t ) ) ν M 0 ( t ) + ν M p ( x , t ) τ M
ν M 0 ( t ) t = β 1 I 0 ν M 0 ( t ) δ τ M
ν M p ( x , t ) t = ( β 1 β 2 ν M 0 ( t ) ) I p ( x ) ν M p ( x , t ) δ τ M
ν M 0 ( t ) = ( 1 η ) I 0 β 1 τ M δ
ν M p ( t ) = I p β 1 τ M ( δ 2 + ( τ M Ω 0 ) 2 ) ( ξ ( cos ( Ω 0 t + φ 0 ) η cos φ 0 ) η Ω 0 ( δ I 0 β 2 + τ M Ω 0 2 ) sin φ 0 + + sin ( Ω 0 t + φ 0 ) ( η I 0 β 2 δ Ω 0 ( δ 2 + ( τ M Ω 0 ) 2 ) + τ M Ω 0 ξ δ ) )
η = exp ( t δ τ M )
ξ = δ I 0 β 2 τ M
n w ( t ) ( | A 1 ( z ) | 2 + | A 2 ( z ) | 2 ) Δ n w ν M 0 ( z , t )
α w ( t ) ( | A 1 ( z ) | 2 + | A 2 ( z ) | 2 ) Δ α w ν M 0 ( z , t )
n w m ( t ) Δ n w p ν M p ( z , t ) I p
α w m ( t ) Δ α w p ν M p ( z , t ) I p
Γ ( t ) = 1 d L n ( I 1 ( d , t ) I 2 ( d , t ) I 20 I 10 )
Δ n 0 ( z , t ) = Δ n w ν M 0 ( z , t )
Δ α 0 ( z , t ) = π Δ α w ν M 0 ( z , t ) λ
Δ n 1 ( z , t ) = Δ n w p ν M p ( z , t )
Δ α 1 ( z , t ) = π Δ α w p ν M p ( z , t ) λ

Metrics