Abstract

We perform far-field spectroscopy of infrared metal antennas on silicon oxide layers of different thickness, where we find a splitting of the plasmonic resonance. This splitting can result in a transparency window, corresponding to suppression of antenna scattering, respectively “cloaking” of the antenna. Backed up by theory, we show that this effect is caused by strong coupling between the metal antenna plasmons and the surface phonon polaritons in the oxide layer. The effect is a kind of induced transparency in which the strength of the phonon-polariton field plays the crucial role. It represents a further tuning possibility for the optical performance of infrared devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Band structure and dispersion engineering of strongly coupled plasmon-phonon-polaritons in graphene-integrated structures

Feng Liu, Tianrong Zhan, Alexander Y. Zhu, Fei Yi, and Wangzhou Shi
Opt. Express 24(2) 1480-1494 (2016)

Surface plasmons in suspended graphene: launching with in-plane gold nanoantenna and propagation properties

D. Legrand, L. O. Le Cunff, A. Bruyant, R. Salas-Montiel, Z. Liu, B.K. Tay, T. Maurer, and R. Bachelot
Opt. Express 25(15) 17306-17321 (2017)

Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes

Daniel Weber, Pablo Albella, Pablo Alonso-González, Frank Neubrech, Han Gui, Tadaaki Nagao, Rainer Hillenbrand, Javier Aizpurua, and Annemarie Pucci
Opt. Express 19(16) 15047-15061 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M.G. Cottam and D.R. Tilley, Introduction to Surface and Superlattice Excitations (Cambridge University, 1989).
    [Crossref]
  2. D. Mirlin, “Surface Phonon Polaritons in Dielectrics and Semiconductors,” in Surface Polaritons Electromagnetic Waves at Surfaces and Interfaces (Elsevier, 1982).
    [Crossref]
  3. K. L. Kliewer and R. Fuchs, “Optical modes of vibration in an ionic crystal slab including retardation. I. nonradiative region,” Phys. Rev. 144(2), 495–503 (1966).
    [Crossref]
  4. K. L. Kliewer and R. Fuchs, “Optical modes of vibration in an ionic crystal slab including retardation. II. radiative region,” Phys. Rev. 150(2), 573–588 (1966).
    [Crossref]
  5. J. D. Caldwell, L. Lucas, G. Vincenzo, V. Igor, T. L Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
    [Crossref]
  6. T. Wang, P. Li, B. Hauer, D. N. Chigrin, and T. Taubner, “Optical properties of single infrared resonant circular microcavities for surface phonon polaritons,” Nano Lett. 13(11), 5051–5055 (2013).
    [Crossref] [PubMed]
  7. R. Marty, A. Mlayah, A. Arbouet, C. Girard, and S. Tripathy, “Plasphonics: local hybridization of plasmons and phonons,” Opt. Express 21(4), 4551–4559 (2013).
    [Crossref] [PubMed]
  8. N. Ocelic, R. Hillenbrand, A. Arbouet, C. Girard, and S. Tripathy, “Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation,” Nat. Mater. 3(9), 606–609 (2004).
    [Crossref] [PubMed]
  9. M. S. Anderson, “Enhanced infrared absorption with dielectric nanoparticles,” Appl. Phys. Lett. 83(14), 2964–2966 (2003).
    [Crossref]
  10. H. C. Kim and X. Cheng, “Surface phonon polaritons on sic substrate for surface-enhanced infrared absorption spectroscopy,” J. Opt. Soc. Am. B 27(11), 2393–2397 (2010).
    [Crossref]
  11. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
    [Crossref]
  12. P. Weis, J. L. Garcia-Pomar, R. Beigang, and M. Rahm, “Hybridization induced transparency in composites of metamaterials and atomic media,” Opt. Express 19(23), 23573–23580 (2011).
    [Crossref] [PubMed]
  13. D. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
    [Crossref] [PubMed]
  14. J. M. Hoffmann, H. Janssen, D. N. Chigrin, and T. Taubner, “Enhanced infrared spectroscopy using small-gap antennas prepared with two-step evaporation nanosphere lithography,” Opt. Express 22(12), 14425–14432 (2014).
    [Crossref] [PubMed]
  15. D. Berreman, “Infrared absorption at longitudinal optic frequency in cubic crystal films,” Phys. Rev. 130(6), 2193–2198 (1963).
    [Crossref]
  16. F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114(16), 7299–7301 (2010).
    [Crossref]
  17. F. Neubrech and A. Pucci, “Plasmonic enhancement of vibrational excitations in the infrared,” IEEE J. Sel. Topics Quantum Electron. 19(3), 4600809 (2013).
    [Crossref]
  18. R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun. 4, 2154 (2013).
    [Crossref] [PubMed]
  19. Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene–SiO2 interface,” Nano Lett. 11(11), 4701–4705 (2011).
    [Crossref] [PubMed]
  20. I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide,” ACS Photonics 1(11), 1151–1155 (2014).
    [Crossref]
  21. H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nature Photon. 7(5), 394–399 (2013).
    [Crossref]
  22. T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of plasmonic scattering for an optimal enhancement of vibrational absorption in SEIRA with linear metallic antennas,” J. Phys. Chem. C 119(47), 26652–26662 (2015).
    [Crossref]
  23. M. K. Gunde, “Vvibrational modes in amorphous silicon dioxide,” PHYSICA B 292(3–4), 286–295 (2000).
    [Crossref]
  24. H. Lüth, Solid Surfaces, Interfaces and Thin Films (Springer, 2010).
    [Crossref]
  25. P. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  26. Y. Jia, H. Zhao, Q. Guo, X. Wang, H. Wang, and F. Xia, “Tunable plasmon-phonon polaritons in layered graphene-hexagonal boron nitride heterostructures,” ACS Photonics 2(7), 907–912 (2015).
    [Crossref]
  27. H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
    [Crossref] [PubMed]
  28. P. Senet, P. Lambin, and A. Lucas, “Standing-wave optical phonons confined in ultrathin overlayers of ionic materials,” Phys. Rev. Lett. 74(4), 570–573 (1995).
    [Crossref] [PubMed]
  29. W. Gao, Y. Fujikawa, K. Saiki, and A. Koma, “Surface phonons of LiBr/Si(100) epitaxial layers by high resolution electron energy loss spectroscopy,” Solid State Commun. 87(11), 1013–1015 (1993).
    [Crossref]
  30. C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
    [Crossref] [PubMed]
  31. S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: Effects of collective excitations on seira enhancement,” ACS Photonics 2(6), 779–786 (2015).
    [Crossref]
  32. D. Weber, P. Albella, P. Alonso-González, F. Neubrech, H. Gui, T. Nagao, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes,” Opt. Express 19(16), 15047–15061 (2011).
    [Crossref] [PubMed]
  33. D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
    [Crossref] [PubMed]
  34. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [Crossref] [PubMed]
  35. F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extend of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
    [Crossref] [PubMed]

2015 (5)

J. D. Caldwell, L. Lucas, G. Vincenzo, V. Igor, T. L Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Y. Jia, H. Zhao, Q. Guo, X. Wang, H. Wang, and F. Xia, “Tunable plasmon-phonon polaritons in layered graphene-hexagonal boron nitride heterostructures,” ACS Photonics 2(7), 907–912 (2015).
[Crossref]

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of plasmonic scattering for an optimal enhancement of vibrational absorption in SEIRA with linear metallic antennas,” J. Phys. Chem. C 119(47), 26652–26662 (2015).
[Crossref]

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: Effects of collective excitations on seira enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

2014 (5)

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
[Crossref] [PubMed]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extend of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

J. M. Hoffmann, H. Janssen, D. N. Chigrin, and T. Taubner, “Enhanced infrared spectroscopy using small-gap antennas prepared with two-step evaporation nanosphere lithography,” Opt. Express 22(12), 14425–14432 (2014).
[Crossref] [PubMed]

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide,” ACS Photonics 1(11), 1151–1155 (2014).
[Crossref]

2013 (6)

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nature Photon. 7(5), 394–399 (2013).
[Crossref]

F. Neubrech and A. Pucci, “Plasmonic enhancement of vibrational excitations in the infrared,” IEEE J. Sel. Topics Quantum Electron. 19(3), 4600809 (2013).
[Crossref]

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun. 4, 2154 (2013).
[Crossref] [PubMed]

T. Wang, P. Li, B. Hauer, D. N. Chigrin, and T. Taubner, “Optical properties of single infrared resonant circular microcavities for surface phonon polaritons,” Nano Lett. 13(11), 5051–5055 (2013).
[Crossref] [PubMed]

R. Marty, A. Mlayah, A. Arbouet, C. Girard, and S. Tripathy, “Plasphonics: local hybridization of plasmons and phonons,” Opt. Express 21(4), 4551–4559 (2013).
[Crossref] [PubMed]

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[Crossref] [PubMed]

2011 (4)

D. Weber, P. Albella, P. Alonso-González, F. Neubrech, H. Gui, T. Nagao, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes,” Opt. Express 19(16), 15047–15061 (2011).
[Crossref] [PubMed]

P. Weis, J. L. Garcia-Pomar, R. Beigang, and M. Rahm, “Hybridization induced transparency in composites of metamaterials and atomic media,” Opt. Express 19(23), 23573–23580 (2011).
[Crossref] [PubMed]

D. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene–SiO2 interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

2010 (2)

H. C. Kim and X. Cheng, “Surface phonon polaritons on sic substrate for surface-enhanced infrared absorption spectroscopy,” J. Opt. Soc. Am. B 27(11), 2393–2397 (2010).
[Crossref]

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114(16), 7299–7301 (2010).
[Crossref]

2007 (1)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

2004 (1)

N. Ocelic, R. Hillenbrand, A. Arbouet, C. Girard, and S. Tripathy, “Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation,” Nat. Mater. 3(9), 606–609 (2004).
[Crossref] [PubMed]

2003 (1)

M. S. Anderson, “Enhanced infrared absorption with dielectric nanoparticles,” Appl. Phys. Lett. 83(14), 2964–2966 (2003).
[Crossref]

2000 (1)

M. K. Gunde, “Vvibrational modes in amorphous silicon dioxide,” PHYSICA B 292(3–4), 286–295 (2000).
[Crossref]

1995 (1)

P. Senet, P. Lambin, and A. Lucas, “Standing-wave optical phonons confined in ultrathin overlayers of ionic materials,” Phys. Rev. Lett. 74(4), 570–573 (1995).
[Crossref] [PubMed]

1993 (1)

W. Gao, Y. Fujikawa, K. Saiki, and A. Koma, “Surface phonons of LiBr/Si(100) epitaxial layers by high resolution electron energy loss spectroscopy,” Solid State Commun. 87(11), 1013–1015 (1993).
[Crossref]

1966 (2)

K. L. Kliewer and R. Fuchs, “Optical modes of vibration in an ionic crystal slab including retardation. I. nonradiative region,” Phys. Rev. 144(2), 495–503 (1966).
[Crossref]

K. L. Kliewer and R. Fuchs, “Optical modes of vibration in an ionic crystal slab including retardation. II. radiative region,” Phys. Rev. 150(2), 573–588 (1966).
[Crossref]

1963 (1)

D. Berreman, “Infrared absorption at longitudinal optic frequency in cubic crystal films,” Phys. Rev. 130(6), 2193–2198 (1963).
[Crossref]

Adato, R.

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun. 4, 2154 (2013).
[Crossref] [PubMed]

Aizpurua, J.

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of plasmonic scattering for an optimal enhancement of vibrational absorption in SEIRA with linear metallic antennas,” J. Phys. Chem. C 119(47), 26652–26662 (2015).
[Crossref]

D. Weber, P. Albella, P. Alonso-González, F. Neubrech, H. Gui, T. Nagao, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes,” Opt. Express 19(16), 15047–15061 (2011).
[Crossref] [PubMed]

Albella, P.

Alonso-González, P.

Altug, H.

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun. 4, 2154 (2013).
[Crossref] [PubMed]

Anderson, M. S.

M. S. Anderson, “Enhanced infrared absorption with dielectric nanoparticles,” Appl. Phys. Lett. 83(14), 2964–2966 (2003).
[Crossref]

Andreev, G. O.

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene–SiO2 interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Arbouet, A.

R. Marty, A. Mlayah, A. Arbouet, C. Girard, and S. Tripathy, “Plasphonics: local hybridization of plasmons and phonons,” Opt. Express 21(4), 4551–4559 (2013).
[Crossref] [PubMed]

N. Ocelic, R. Hillenbrand, A. Arbouet, C. Girard, and S. Tripathy, “Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation,” Nat. Mater. 3(9), 606–609 (2004).
[Crossref] [PubMed]

Avouris, P.

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
[Crossref] [PubMed]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nature Photon. 7(5), 394–399 (2013).
[Crossref]

Bagheri, S.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: Effects of collective excitations on seira enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

Bao, W.

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene–SiO2 interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Barnes, W. L.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Basov, D. N.

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene–SiO2 interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Beck, S.

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extend of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

Beigang, R.

Berreman, D.

D. Berreman, “Infrared absorption at longitudinal optic frequency in cubic crystal films,” Phys. Rev. 130(6), 2193–2198 (1963).
[Crossref]

Boreman, G. D.

D. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Brener, I.

D. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Caldwell, J. D.

J. D. Caldwell, L. Lucas, G. Vincenzo, V. Igor, T. L Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Castro-Neto, A. H.

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene–SiO2 interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Cheng, X.

Chigrin, D. N.

J. M. Hoffmann, H. Janssen, D. N. Chigrin, and T. Taubner, “Enhanced infrared spectroscopy using small-gap antennas prepared with two-step evaporation nanosphere lithography,” Opt. Express 22(12), 14425–14432 (2014).
[Crossref] [PubMed]

T. Wang, P. Li, B. Hauer, D. N. Chigrin, and T. Taubner, “Optical properties of single infrared resonant circular microcavities for surface phonon polaritons,” Nano Lett. 13(11), 5051–5055 (2013).
[Crossref] [PubMed]

Coffey, K. R.

D. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Cottam, M.G.

M.G. Cottam and D.R. Tilley, Introduction to Surface and Superlattice Excitations (Cambridge University, 1989).
[Crossref]

Dominguez, G.

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene–SiO2 interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Dregely, D.

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[Crossref] [PubMed]

Duan, H.

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[Crossref] [PubMed]

Enders, D.

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114(16), 7299–7301 (2010).
[Crossref]

Faist, J.

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide,” ACS Photonics 1(11), 1151–1155 (2014).
[Crossref]

Fei, Z.

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene–SiO2 interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Fogler, M. M.

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene–SiO2 interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Freitag, M.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nature Photon. 7(5), 394–399 (2013).
[Crossref]

Fuchs, R.

K. L. Kliewer and R. Fuchs, “Optical modes of vibration in an ionic crystal slab including retardation. I. nonradiative region,” Phys. Rev. 144(2), 495–503 (1966).
[Crossref]

K. L. Kliewer and R. Fuchs, “Optical modes of vibration in an ionic crystal slab including retardation. II. radiative region,” Phys. Rev. 150(2), 573–588 (1966).
[Crossref]

Fujikawa, Y.

W. Gao, Y. Fujikawa, K. Saiki, and A. Koma, “Surface phonons of LiBr/Si(100) epitaxial layers by high resolution electron energy loss spectroscopy,” Solid State Commun. 87(11), 1013–1015 (1993).
[Crossref]

Gan, C. H.

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide,” ACS Photonics 1(11), 1151–1155 (2014).
[Crossref]

Gao, W.

W. Gao, Y. Fujikawa, K. Saiki, and A. Koma, “Surface phonons of LiBr/Si(100) epitaxial layers by high resolution electron energy loss spectroscopy,” Solid State Commun. 87(11), 1013–1015 (1993).
[Crossref]

Garcia-Pomar, J. L.

Gerbert, D.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Giessen, H.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: Effects of collective excitations on seira enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extend of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[Crossref] [PubMed]

Ginn, J. C.

D. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Girard, C.

R. Marty, A. Mlayah, A. Arbouet, C. Girard, and S. Tripathy, “Plasphonics: local hybridization of plasmons and phonons,” Opt. Express 21(4), 4551–4559 (2013).
[Crossref] [PubMed]

N. Ocelic, R. Hillenbrand, A. Arbouet, C. Girard, and S. Tripathy, “Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation,” Nat. Mater. 3(9), 606–609 (2004).
[Crossref] [PubMed]

Gissibl, T.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: Effects of collective excitations on seira enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

Glaser, T.

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extend of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

Glembocki, O. J.

J. D. Caldwell, L. Lucas, G. Vincenzo, V. Igor, T. L Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Gui, H.

Guinea, F.

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
[Crossref] [PubMed]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nature Photon. 7(5), 394–399 (2013).
[Crossref]

Gunde, M. K.

M. K. Gunde, “Vvibrational modes in amorphous silicon dioxide,” PHYSICA B 292(3–4), 286–295 (2000).
[Crossref]

Guo, Q.

Y. Jia, H. Zhao, Q. Guo, X. Wang, H. Wang, and F. Xia, “Tunable plasmon-phonon polaritons in layered graphene-hexagonal boron nitride heterostructures,” ACS Photonics 2(7), 907–912 (2015).
[Crossref]

Härtling, T.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Hauer, B.

T. Wang, P. Li, B. Hauer, D. N. Chigrin, and T. Taubner, “Optical properties of single infrared resonant circular microcavities for surface phonon polaritons,” Nano Lett. 13(11), 5051–5055 (2013).
[Crossref] [PubMed]

Hentschel, M.

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extend of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

Hillenbrand, R.

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of plasmonic scattering for an optimal enhancement of vibrational absorption in SEIRA with linear metallic antennas,” J. Phys. Chem. C 119(47), 26652–26662 (2015).
[Crossref]

D. Weber, P. Albella, P. Alonso-González, F. Neubrech, H. Gui, T. Nagao, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes,” Opt. Express 19(16), 15047–15061 (2011).
[Crossref] [PubMed]

N. Ocelic, R. Hillenbrand, A. Arbouet, C. Girard, and S. Tripathy, “Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation,” Nat. Mater. 3(9), 606–609 (2004).
[Crossref] [PubMed]

Hoffmann, J. M.

Huck, C.

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of plasmonic scattering for an optimal enhancement of vibrational absorption in SEIRA with linear metallic antennas,” J. Phys. Chem. C 119(47), 26652–26662 (2015).
[Crossref]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Igor, V.

J. D. Caldwell, L. Lucas, G. Vincenzo, V. Igor, T. L Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Janssen, H.

Jia, Y.

Y. Jia, H. Zhao, Q. Guo, X. Wang, H. Wang, and F. Xia, “Tunable plasmon-phonon polaritons in layered graphene-hexagonal boron nitride heterostructures,” ACS Photonics 2(7), 907–912 (2015).
[Crossref]

Katzmann, J.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Keilmann, F.

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene–SiO2 interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Kim, H. C.

Kliewer, K. L.

K. L. Kliewer and R. Fuchs, “Optical modes of vibration in an ionic crystal slab including retardation. II. radiative region,” Phys. Rev. 150(2), 573–588 (1966).
[Crossref]

K. L. Kliewer and R. Fuchs, “Optical modes of vibration in an ionic crystal slab including retardation. I. nonradiative region,” Phys. Rev. 144(2), 495–503 (1966).
[Crossref]

Koma, A.

W. Gao, Y. Fujikawa, K. Saiki, and A. Koma, “Surface phonons of LiBr/Si(100) epitaxial layers by high resolution electron energy loss spectroscopy,” Solid State Commun. 87(11), 1013–1015 (1993).
[Crossref]

Lambin, P.

P. Senet, P. Lambin, and A. Lucas, “Standing-wave optical phonons confined in ultrathin overlayers of ionic materials,” Phys. Rev. Lett. 74(4), 570–573 (1995).
[Crossref] [PubMed]

Lau, C. N.

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene–SiO2 interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Li, P.

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide,” ACS Photonics 1(11), 1151–1155 (2014).
[Crossref]

T. Wang, P. Li, B. Hauer, D. N. Chigrin, and T. Taubner, “Optical properties of single infrared resonant circular microcavities for surface phonon polaritons,” Nano Lett. 13(11), 5051–5055 (2013).
[Crossref] [PubMed]

Li, X.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nature Photon. 7(5), 394–399 (2013).
[Crossref]

Liu, P. Q.

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide,” ACS Photonics 1(11), 1151–1155 (2014).
[Crossref]

Low, T.

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
[Crossref] [PubMed]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nature Photon. 7(5), 394–399 (2013).
[Crossref]

Lucas, A.

P. Senet, P. Lambin, and A. Lucas, “Standing-wave optical phonons confined in ultrathin overlayers of ionic materials,” Phys. Rev. Lett. 74(4), 570–573 (1995).
[Crossref] [PubMed]

Lucas, L.

J. D. Caldwell, L. Lucas, G. Vincenzo, V. Igor, T. L Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Lüth, H.

H. Lüth, Solid Surfaces, Interfaces and Thin Films (Springer, 2010).
[Crossref]

Luxmoore, I. J.

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide,” ACS Photonics 1(11), 1151–1155 (2014).
[Crossref]

Maier, S. A.

J. D. Caldwell, L. Lucas, G. Vincenzo, V. Igor, T. L Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Marty, R.

McLeod, A. S.

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene–SiO2 interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Mirlin, D.

D. Mirlin, “Surface Phonon Polaritons in Dielectrics and Semiconductors,” in Surface Polaritons Electromagnetic Waves at Surfaces and Interfaces (Elsevier, 1982).
[Crossref]

Mlayah, A.

Nagao, T.

Nash, G. R.

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide,” ACS Photonics 1(11), 1151–1155 (2014).
[Crossref]

Neubrech, F.

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of plasmonic scattering for an optimal enhancement of vibrational absorption in SEIRA with linear metallic antennas,” J. Phys. Chem. C 119(47), 26652–26662 (2015).
[Crossref]

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: Effects of collective excitations on seira enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extend of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

F. Neubrech and A. Pucci, “Plasmonic enhancement of vibrational excitations in the infrared,” IEEE J. Sel. Topics Quantum Electron. 19(3), 4600809 (2013).
[Crossref]

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[Crossref] [PubMed]

D. Weber, P. Albella, P. Alonso-González, F. Neubrech, H. Gui, T. Nagao, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes,” Opt. Express 19(16), 15047–15061 (2011).
[Crossref] [PubMed]

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114(16), 7299–7301 (2010).
[Crossref]

Neuman, T.

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of plasmonic scattering for an optimal enhancement of vibrational absorption in SEIRA with linear metallic antennas,” J. Phys. Chem. C 119(47), 26652–26662 (2015).
[Crossref]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

Ocelic, N.

N. Ocelic, R. Hillenbrand, A. Arbouet, C. Girard, and S. Tripathy, “Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation,” Nat. Mater. 3(9), 606–609 (2004).
[Crossref] [PubMed]

Palik, P.

P. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Peters, D. W.

D. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Pucci, A.

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of plasmonic scattering for an optimal enhancement of vibrational absorption in SEIRA with linear metallic antennas,” J. Phys. Chem. C 119(47), 26652–26662 (2015).
[Crossref]

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extend of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

F. Neubrech and A. Pucci, “Plasmonic enhancement of vibrational excitations in the infrared,” IEEE J. Sel. Topics Quantum Electron. 19(3), 4600809 (2013).
[Crossref]

D. Weber, P. Albella, P. Alonso-González, F. Neubrech, H. Gui, T. Nagao, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes,” Opt. Express 19(16), 15047–15061 (2011).
[Crossref] [PubMed]

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114(16), 7299–7301 (2010).
[Crossref]

Rahm, M.

Reinecke, T. L

J. D. Caldwell, L. Lucas, G. Vincenzo, V. Igor, T. L Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Saiki, K.

W. Gao, Y. Fujikawa, K. Saiki, and A. Koma, “Surface phonons of LiBr/Si(100) epitaxial layers by high resolution electron energy loss spectroscopy,” Solid State Commun. 87(11), 1013–1015 (1993).
[Crossref]

Senet, P.

P. Senet, P. Lambin, and A. Lucas, “Standing-wave optical phonons confined in ultrathin overlayers of ionic materials,” Phys. Rev. Lett. 74(4), 570–573 (1995).
[Crossref] [PubMed]

Shelton, D.

D. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Sinclair, M. B.

D. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Stewart, M. K.

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene–SiO2 interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Tauber, M. J.

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene–SiO2 interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Taubner, T.

J. M. Hoffmann, H. Janssen, D. N. Chigrin, and T. Taubner, “Enhanced infrared spectroscopy using small-gap antennas prepared with two-step evaporation nanosphere lithography,” Opt. Express 22(12), 14425–14432 (2014).
[Crossref] [PubMed]

T. Wang, P. Li, B. Hauer, D. N. Chigrin, and T. Taubner, “Optical properties of single infrared resonant circular microcavities for surface phonon polaritons,” Nano Lett. 13(11), 5051–5055 (2013).
[Crossref] [PubMed]

Thiemens, M.

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene–SiO2 interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Tilley, D.R.

M.G. Cottam and D.R. Tilley, Introduction to Surface and Superlattice Excitations (Cambridge University, 1989).
[Crossref]

Toma, A.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Törmä, P.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Tripathy, S.

R. Marty, A. Mlayah, A. Arbouet, C. Girard, and S. Tripathy, “Plasphonics: local hybridization of plasmons and phonons,” Opt. Express 21(4), 4551–4559 (2013).
[Crossref] [PubMed]

N. Ocelic, R. Hillenbrand, A. Arbouet, C. Girard, and S. Tripathy, “Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation,” Nat. Mater. 3(9), 606–609 (2004).
[Crossref] [PubMed]

Valmorra, F.

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide,” ACS Photonics 1(11), 1151–1155 (2014).
[Crossref]

Vincenzo, G.

J. D. Caldwell, L. Lucas, G. Vincenzo, V. Igor, T. L Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Vogelgesang, R.

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[Crossref] [PubMed]

Vogt, J.

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of plasmonic scattering for an optimal enhancement of vibrational absorption in SEIRA with linear metallic antennas,” J. Phys. Chem. C 119(47), 26652–26662 (2015).
[Crossref]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Wang, C.

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene–SiO2 interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Wang, H.

Y. Jia, H. Zhao, Q. Guo, X. Wang, H. Wang, and F. Xia, “Tunable plasmon-phonon polaritons in layered graphene-hexagonal boron nitride heterostructures,” ACS Photonics 2(7), 907–912 (2015).
[Crossref]

Wang, T.

T. Wang, P. Li, B. Hauer, D. N. Chigrin, and T. Taubner, “Optical properties of single infrared resonant circular microcavities for surface phonon polaritons,” Nano Lett. 13(11), 5051–5055 (2013).
[Crossref] [PubMed]

Wang, X.

Y. Jia, H. Zhao, Q. Guo, X. Wang, H. Wang, and F. Xia, “Tunable plasmon-phonon polaritons in layered graphene-hexagonal boron nitride heterostructures,” ACS Photonics 2(7), 907–912 (2015).
[Crossref]

Weber, D.

Weber, K.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: Effects of collective excitations on seira enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

Weis, P.

Weiss, T.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: Effects of collective excitations on seira enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

Wu, Y.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nature Photon. 7(5), 394–399 (2013).
[Crossref]

Xia, F.

Y. Jia, H. Zhao, Q. Guo, X. Wang, H. Wang, and F. Xia, “Tunable plasmon-phonon polaritons in layered graphene-hexagonal boron nitride heterostructures,” ACS Photonics 2(7), 907–912 (2015).
[Crossref]

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
[Crossref] [PubMed]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nature Photon. 7(5), 394–399 (2013).
[Crossref]

Yan, H.

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
[Crossref] [PubMed]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nature Photon. 7(5), 394–399 (2013).
[Crossref]

Zhang, L. M.

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene–SiO2 interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Zhao, H.

Y. Jia, H. Zhao, Q. Guo, X. Wang, H. Wang, and F. Xia, “Tunable plasmon-phonon polaritons in layered graphene-hexagonal boron nitride heterostructures,” ACS Photonics 2(7), 907–912 (2015).
[Crossref]

Zhao, Z.

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene–SiO2 interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Zhu, W.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nature Photon. 7(5), 394–399 (2013).
[Crossref]

ACS Nano (2)

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extend of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

ACS Photonics (3)

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: Effects of collective excitations on seira enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide,” ACS Photonics 1(11), 1151–1155 (2014).
[Crossref]

Y. Jia, H. Zhao, Q. Guo, X. Wang, H. Wang, and F. Xia, “Tunable plasmon-phonon polaritons in layered graphene-hexagonal boron nitride heterostructures,” ACS Photonics 2(7), 907–912 (2015).
[Crossref]

Appl. Phys. Lett. (1)

M. S. Anderson, “Enhanced infrared absorption with dielectric nanoparticles,” Appl. Phys. Lett. 83(14), 2964–2966 (2003).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

F. Neubrech and A. Pucci, “Plasmonic enhancement of vibrational excitations in the infrared,” IEEE J. Sel. Topics Quantum Electron. 19(3), 4600809 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (2)

F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna sensing of surface phonon polaritons,” J. Phys. Chem. C 114(16), 7299–7301 (2010).
[Crossref]

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of plasmonic scattering for an optimal enhancement of vibrational absorption in SEIRA with linear metallic antennas,” J. Phys. Chem. C 119(47), 26652–26662 (2015).
[Crossref]

Nano Lett. (4)

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
[Crossref] [PubMed]

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene–SiO2 interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

D. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

T. Wang, P. Li, B. Hauer, D. N. Chigrin, and T. Taubner, “Optical properties of single infrared resonant circular microcavities for surface phonon polaritons,” Nano Lett. 13(11), 5051–5055 (2013).
[Crossref] [PubMed]

Nanophotonics (1)

J. D. Caldwell, L. Lucas, G. Vincenzo, V. Igor, T. L Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Nat. Commun. (2)

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun. 4, 2154 (2013).
[Crossref] [PubMed]

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Ocelic, R. Hillenbrand, A. Arbouet, C. Girard, and S. Tripathy, “Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation,” Nat. Mater. 3(9), 606–609 (2004).
[Crossref] [PubMed]

Nature Photon. (1)

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nature Photon. 7(5), 394–399 (2013).
[Crossref]

Opt. Express (4)

Phys. Rev. (3)

D. Berreman, “Infrared absorption at longitudinal optic frequency in cubic crystal films,” Phys. Rev. 130(6), 2193–2198 (1963).
[Crossref]

K. L. Kliewer and R. Fuchs, “Optical modes of vibration in an ionic crystal slab including retardation. I. nonradiative region,” Phys. Rev. 144(2), 495–503 (1966).
[Crossref]

K. L. Kliewer and R. Fuchs, “Optical modes of vibration in an ionic crystal slab including retardation. II. radiative region,” Phys. Rev. 150(2), 573–588 (1966).
[Crossref]

Phys. Rev. Lett. (2)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

P. Senet, P. Lambin, and A. Lucas, “Standing-wave optical phonons confined in ultrathin overlayers of ionic materials,” Phys. Rev. Lett. 74(4), 570–573 (1995).
[Crossref] [PubMed]

PHYSICA B (1)

M. K. Gunde, “Vvibrational modes in amorphous silicon dioxide,” PHYSICA B 292(3–4), 286–295 (2000).
[Crossref]

Rep. Prog. Phys. (1)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Solid State Commun. (1)

W. Gao, Y. Fujikawa, K. Saiki, and A. Koma, “Surface phonons of LiBr/Si(100) epitaxial layers by high resolution electron energy loss spectroscopy,” Solid State Commun. 87(11), 1013–1015 (1993).
[Crossref]

Other (4)

H. Lüth, Solid Surfaces, Interfaces and Thin Films (Springer, 2010).
[Crossref]

P. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

M.G. Cottam and D.R. Tilley, Introduction to Surface and Superlattice Excitations (Cambridge University, 1989).
[Crossref]

D. Mirlin, “Surface Phonon Polaritons in Dielectrics and Semiconductors,” in Surface Polaritons Electromagnetic Waves at Surfaces and Interfaces (Elsevier, 1982).
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (1583 KB)      Video containing near-field and phase information for all frequencies.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Dielectric function and derived energy-loss functions of the phononic layer material (similar to SiO2 in the Si–O stretching range). (b) Sketch of the system under investigation. (c) Quasi static dispersion relations for planar SiO2 layer with different thickness t, as indicated, on top of the Si substrate and with air superstrate. The horizontal dashed lines mark the SPhP and IPhP frequency ωSPhP and ωIPhP of the SiO2 to air and of the interface to silicon, respectively. The wavevector k is parallel to the interface. Insets schematically depict the surface charge distributions characteristic for the surface modes that belong to the respective parts of dispersion relations.
Fig. 2
Fig. 2 Gold nanoantenna covered by a phononic layer: (a) Sketch of the investigated gold antenna with length l = 3200 nm and diameter d = 100 nm coated with a 30 nm thick phononic layer. (b) Simulated far-field resonance spectra (scattering (green), absorption (red), and extinction (blue) cross sections) of a bare gold antenna (upper panel) and an antenna covered with the phononic layer (lower panel). Due to the interaction of the plasmonic and the phononic excitation a transparency window opens in the spectra of the hybrid SiO2/antenna system. The corresponding near-field distributions normalized to the electric field amplitude of the incident wave in a cross-section around the antenna at the LO (TO) frequencies are shown in (c) and (d). The antennas’s cross section is represented by the grey area.
Fig. 3
Fig. 3 (a) Schematic drawing of a nanoantenna with length l placed on top of a SiO2 layer of thickness t. (b) Numerically calculated cross-sections (scattering (green), absorption (red), and extinction (blue)) of a nanoantenna (length l = 1850 nm, width and height w = h = 100 nm). The SiO2 layer thickness is 30 nm. (c) Simulated near-field distribution (amplitudes Ez and phase φz at the mirror plane) at the wavenumber 1064 cm−1 (TO), 1191 cm−1 (SPhP) and 1247 cm−1 (LO). The area inside the antenna is shown in dark grey.
Fig. 4
Fig. 4 (a) Extinction spectra (shifted) of nanoantennas (height h and width w are approx. 60 nm) with different length l (see legend) on top of a 8 nm thick SiO2 layer with a Si wafer beneath. The spectra are derived from relative normal transmittance measured with light polarized parallel to the antenna and the bare SiO2 layer on Si as reference. A schematic description of the system is shown in Fig. 3(a). Depending on the resonance wavenumber, a transparency window opens between the SPhP and LO frequencies (dashed lines). (b) Resonance positions of hybridized modes taken from (a) versus the wavevector k = π/l of the plasmonic excitation. (c) Shifted infrared extinction (parallel polarization) for antennas on SiO2 with increasing thickness t as given in the figure. The lengths l are resonantly matched to the TO and LO frequencies. (d) Minimum extinction of the spectral dip (transparency window) versus thickness fitted with a power function.
Fig. 5
Fig. 5 Scanning electron micrograph of the fabricated and measured gold nanorod arrays on top of a Si wafer with a thermally grown SiO2 layer of 8.1 nm thickness.
Fig. 6
Fig. 6 Resonance positions of measured hybridized modes for different SiO2 layer thicknesses versus the wavevector k = π/l of the plasmonic excitation. For the thinnest SiO2 layer an avoided crossing at the LO frequency (upper dashed grey line) is observed. For increasing layer thickness (increasing coupling strength) the splitting extends to the TO frequency, as indicated by the lower horizontal dashed lines.
Fig. 7
Fig. 7 (a) Simulated extinction cross-section (blue) of plasmonic antennas (l = 1.85ॖm) on top of a 30 nm thick SiO2 layer simulated with the dielctric function experimentally determined by Gunde et al. [23] compared to the measurement shown in red. (b) Energy loss functions derived from the dielectric function used for the simulations shown in (a).

Metrics