Abstract

The video streaming, data transmission, and remote control in underwater call for high speed (Gbps) communication link with a long channel length (~10 meters). We present a compact and low power consumption underwater wireless optical communication (UWOC) system utilizing a 450-nm laser diode (LD) and a Si avalanche photodetector. With the LD operating at a driving current of 80 mA with an optical power of 51.3 mW, we demonstrated a high-speed UWOC link offering a data rate up to 2 Gbps over a 12-meter-long, and 1.5 Gbps over a record 20-meter-long underwater channel. The measured bit-error rate (BER) are 2.8 × 10−5, and 3.0 × 10−3, respectively, which pass well the forward error correction (FEC) criterion.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation

Xiaoyan Liu, Suyu Yi, Xiaolin Zhou, Zhilai Fang, Zhi-Jun Qiu, Laigui Hu, Chunxiao Cong, Lirong Zheng, Ran Liu, and Pengfei Tian
Opt. Express 25(22) 27937-27947 (2017)

2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode

Hassan Makine Oubei, Changping Li, Ki-Hong Park, Tien Khee Ng, Mohamed-Slim Alouini, and Boon S. Ooi
Opt. Express 23(16) 20743-20748 (2015)

71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation

Xiaobin Sun, Zhenyu Zhang, Anas Chaaban, Tien Khee Ng, Chao Shen, Rui Chen, Jianchang Yan, Haiding Sun, Xiaohang Li, Junxi Wang, Jinmin Li, Mohamed-Slim Alouini, and Boon S. Ooi
Opt. Express 25(19) 23267-23274 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access 4, 1518–1547 (2016).
    [Crossref]
  2. M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surveys. Tuts. 16(4), 2231–2258 (2014).
    [Crossref]
  3. S. Arnon, “Underwater optical wireless communication network,” Opt. Eng. 49(1), 015001 (2010).
    [Crossref]
  4. A. S. Fletcher, S. A. Hamilton, and J. D. Moores, “Undersea laser communication with narrow beams,” IEEE Commun. Mag. 53(11), 49–55 (2015).
    [Crossref]
  5. M. Doniec, C. Detweiler, I. Vasilescu, M. Chitre, M. Hoffmann-Kuhnt, and D. Rus, “AquaOptical: a lightweight device for high-rate long-range underwater point-to-point communication,” Mar. Technol. Soc. J. 44(4), 55–65 (2010).
    [Crossref]
  6. P. Lacovara, “High-bandwidth underwater communications,” Mar. Technol. Soc. J. 42(1), 93–102 (2008).
    [Crossref]
  7. J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
    [Crossref]
  8. K. Nakamura, I. Mizukoshi, and M. Hanawa, “Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel,” Opt. Express 23(2), 1558–1566 (2015).
    [Crossref] [PubMed]
  9. J. Baghdady, K. Miller, K. Morgan, M. Byrd, S. Osler, R. Ragusa, W. Li, B. M. Cochenour, and E. G. Johnson, “Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing,” Opt. Express 24(9), 9794–9805 (2016).
    [Crossref] [PubMed]
  10. H. M. Oubei, J. R. Duran, B. Janjua, H. Y. Wang, C. T. Tsai, Y. C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
    [Crossref] [PubMed]
  11. H. M. Oubei, J. R. Duráan, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T. K. Ng, H.-C. Kuo, J.-H. He, M.-S. Alouini, G.-R. Lin, and B. S. Ooi, “Wireless optical transmission of 450 nm, 3.2 Gbit/s 16-QAM-OFDM signals over 6.6 m underwater channel,” in Conference on Lasers and Electro-Optics, pp. SW1F.1 (2016).
    [Crossref]
  12. H. M. Oubei, C. Li, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Express 23(16), 20743–20748 (2015).
    [Crossref] [PubMed]
  13. F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47(2), 277–283 (2008).
    [Crossref] [PubMed]
  14. J. Xu, Y. Song, X. Yu, A. Lin, M. Kong, J. Han, and N. Deng, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Express 24(8), 8097–8109 (2016).
    [Crossref] [PubMed]
  15. A. Lin, W. Lu, J. Xu, H. Song, F. Qu, J. Han, X. Gu, and J. Leng, “Underwater wireless optical communication using a directly modulated semiconductor laser,” in OCEANS 2015 - Genova, pp. 1–4 (2015).
  16. D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Express 23(2), 1627–1637 (2015).
    [Crossref] [PubMed]
  17. C. Lee, C. Shen, H. M. Oubei, M. Cantore, B. Janjua, T. K. Ng, R. M. Farrell, M. M. El-Desouki, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system,” Opt. Express 23(23), 29779–29787 (2015).
    [Crossref] [PubMed]
  18. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997).
    [Crossref] [PubMed]
  19. C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Express 23(12), 16232–16237 (2015).
    [Crossref] [PubMed]
  20. C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Channel modeling for underwater optical communication,” in 2011 IEEE Globecom Workshops (2011), pp. 833–837.

2016 (4)

2015 (7)

A. S. Fletcher, S. A. Hamilton, and J. D. Moores, “Undersea laser communication with narrow beams,” IEEE Commun. Mag. 53(11), 49–55 (2015).
[Crossref]

K. Nakamura, I. Mizukoshi, and M. Hanawa, “Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel,” Opt. Express 23(2), 1558–1566 (2015).
[Crossref] [PubMed]

D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Express 23(2), 1627–1637 (2015).
[Crossref] [PubMed]

C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Express 23(12), 16232–16237 (2015).
[Crossref] [PubMed]

H. M. Oubei, C. Li, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Express 23(16), 20743–20748 (2015).
[Crossref] [PubMed]

H. M. Oubei, J. R. Duran, B. Janjua, H. Y. Wang, C. T. Tsai, Y. C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
[Crossref] [PubMed]

C. Lee, C. Shen, H. M. Oubei, M. Cantore, B. Janjua, T. K. Ng, R. M. Farrell, M. M. El-Desouki, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system,” Opt. Express 23(23), 29779–29787 (2015).
[Crossref] [PubMed]

2014 (1)

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surveys. Tuts. 16(4), 2231–2258 (2014).
[Crossref]

2010 (2)

S. Arnon, “Underwater optical wireless communication network,” Opt. Eng. 49(1), 015001 (2010).
[Crossref]

M. Doniec, C. Detweiler, I. Vasilescu, M. Chitre, M. Hoffmann-Kuhnt, and D. Rus, “AquaOptical: a lightweight device for high-rate long-range underwater point-to-point communication,” Mar. Technol. Soc. J. 44(4), 55–65 (2010).
[Crossref]

2008 (2)

P. Lacovara, “High-bandwidth underwater communications,” Mar. Technol. Soc. J. 42(1), 93–102 (2008).
[Crossref]

F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47(2), 277–283 (2008).
[Crossref] [PubMed]

1997 (1)

Alouini, M. S.

Alouini, M.-S.

H. M. Oubei, C. Li, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Express 23(16), 20743–20748 (2015).
[Crossref] [PubMed]

H. M. Oubei, J. R. Duráan, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T. K. Ng, H.-C. Kuo, J.-H. He, M.-S. Alouini, G.-R. Lin, and B. S. Ooi, “Wireless optical transmission of 450 nm, 3.2 Gbit/s 16-QAM-OFDM signals over 6.6 m underwater channel,” in Conference on Lasers and Electro-Optics, pp. SW1F.1 (2016).
[Crossref]

Arnon, S.

S. Arnon, “Underwater optical wireless communication network,” Opt. Eng. 49(1), 015001 (2010).
[Crossref]

Baghdady, J.

Bourennane, S.

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Channel modeling for underwater optical communication,” in 2011 IEEE Globecom Workshops (2011), pp. 833–837.

Bowers, J. E.

Byrd, M.

Cantore, M.

Chi, Y. C.

Chi, Y.-C.

H. M. Oubei, J. R. Duráan, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T. K. Ng, H.-C. Kuo, J.-H. He, M.-S. Alouini, G.-R. Lin, and B. S. Ooi, “Wireless optical transmission of 450 nm, 3.2 Gbit/s 16-QAM-OFDM signals over 6.6 m underwater channel,” in Conference on Lasers and Electro-Optics, pp. SW1F.1 (2016).
[Crossref]

Chitre, M.

M. Doniec, C. Detweiler, I. Vasilescu, M. Chitre, M. Hoffmann-Kuhnt, and D. Rus, “AquaOptical: a lightweight device for high-rate long-range underwater point-to-point communication,” Mar. Technol. Soc. J. 44(4), 55–65 (2010).
[Crossref]

Cochenour, B. M.

DenBaars, S. P.

Deng, N.

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

J. Xu, Y. Song, X. Yu, A. Lin, M. Kong, J. Han, and N. Deng, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Express 24(8), 8097–8109 (2016).
[Crossref] [PubMed]

Detweiler, C.

M. Doniec, C. Detweiler, I. Vasilescu, M. Chitre, M. Hoffmann-Kuhnt, and D. Rus, “AquaOptical: a lightweight device for high-rate long-range underwater point-to-point communication,” Mar. Technol. Soc. J. 44(4), 55–65 (2010).
[Crossref]

Doniec, M.

M. Doniec, C. Detweiler, I. Vasilescu, M. Chitre, M. Hoffmann-Kuhnt, and D. Rus, “AquaOptical: a lightweight device for high-rate long-range underwater point-to-point communication,” Mar. Technol. Soc. J. 44(4), 55–65 (2010).
[Crossref]

Duráan, J. R.

H. M. Oubei, J. R. Duráan, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T. K. Ng, H.-C. Kuo, J.-H. He, M.-S. Alouini, G.-R. Lin, and B. S. Ooi, “Wireless optical transmission of 450 nm, 3.2 Gbit/s 16-QAM-OFDM signals over 6.6 m underwater channel,” in Conference on Lasers and Electro-Optics, pp. SW1F.1 (2016).
[Crossref]

Duran, J. R.

El-Desouki, M. M.

Farrell, R. M.

Fletcher, A. S.

A. S. Fletcher, S. A. Hamilton, and J. D. Moores, “Undersea laser communication with narrow beams,” IEEE Commun. Mag. 53(11), 49–55 (2015).
[Crossref]

Fry, E. S.

Gabriel, C.

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Channel modeling for underwater optical communication,” in 2011 IEEE Globecom Workshops (2011), pp. 833–837.

Haas, H.

Hamilton, S. A.

A. S. Fletcher, S. A. Hamilton, and J. D. Moores, “Undersea laser communication with narrow beams,” IEEE Commun. Mag. 53(11), 49–55 (2015).
[Crossref]

Han, J.

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

J. Xu, Y. Song, X. Yu, A. Lin, M. Kong, J. Han, and N. Deng, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Express 24(8), 8097–8109 (2016).
[Crossref] [PubMed]

Hanawa, M.

Hanson, F.

He, J. H.

He, J.-H.

H. M. Oubei, J. R. Duráan, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T. K. Ng, H.-C. Kuo, J.-H. He, M.-S. Alouini, G.-R. Lin, and B. S. Ooi, “Wireless optical transmission of 450 nm, 3.2 Gbit/s 16-QAM-OFDM signals over 6.6 m underwater channel,” in Conference on Lasers and Electro-Optics, pp. SW1F.1 (2016).
[Crossref]

Hoffmann-Kuhnt, M.

M. Doniec, C. Detweiler, I. Vasilescu, M. Chitre, M. Hoffmann-Kuhnt, and D. Rus, “AquaOptical: a lightweight device for high-rate long-range underwater point-to-point communication,” Mar. Technol. Soc. J. 44(4), 55–65 (2010).
[Crossref]

Janjua, B.

Johnson, E. G.

Kaddoum, G.

H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access 4, 1518–1547 (2016).
[Crossref]

Kaushal, H.

H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access 4, 1518–1547 (2016).
[Crossref]

Khalighi, M. A.

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surveys. Tuts. 16(4), 2231–2258 (2014).
[Crossref]

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Channel modeling for underwater optical communication,” in 2011 IEEE Globecom Workshops (2011), pp. 833–837.

Kong, M.

Kong, M. W.

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

Kuo, H. C.

Kuo, H.-C.

H. M. Oubei, J. R. Duráan, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T. K. Ng, H.-C. Kuo, J.-H. He, M.-S. Alouini, G.-R. Lin, and B. S. Ooi, “Wireless optical transmission of 450 nm, 3.2 Gbit/s 16-QAM-OFDM signals over 6.6 m underwater channel,” in Conference on Lasers and Electro-Optics, pp. SW1F.1 (2016).
[Crossref]

Lacovara, P.

P. Lacovara, “High-bandwidth underwater communications,” Mar. Technol. Soc. J. 42(1), 93–102 (2008).
[Crossref]

Lee, C.

Leon, P.

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Channel modeling for underwater optical communication,” in 2011 IEEE Globecom Workshops (2011), pp. 833–837.

Li, C.

Li, W.

Lin, A.

Lin, A. B.

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

Lin, G. R.

Lin, G.-R.

H. M. Oubei, J. R. Duráan, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T. K. Ng, H.-C. Kuo, J.-H. He, M.-S. Alouini, G.-R. Lin, and B. S. Ooi, “Wireless optical transmission of 450 nm, 3.2 Gbit/s 16-QAM-OFDM signals over 6.6 m underwater channel,” in Conference on Lasers and Electro-Optics, pp. SW1F.1 (2016).
[Crossref]

Margalith, T.

Miller, K.

Mizukoshi, I.

Moores, J. D.

A. S. Fletcher, S. A. Hamilton, and J. D. Moores, “Undersea laser communication with narrow beams,” IEEE Commun. Mag. 53(11), 49–55 (2015).
[Crossref]

Morgan, K.

Nakamura, K.

Nakamura, S.

Ng, T. K.

Oh, S. H.

Ooi, B. S.

Osler, S.

Oubei, H. M.

Park, K.-H.

Pope, R. M.

Qu, F. Z.

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

Radic, S.

Ragusa, R.

Rigaud, V.

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Channel modeling for underwater optical communication,” in 2011 IEEE Globecom Workshops (2011), pp. 833–837.

Rus, D.

M. Doniec, C. Detweiler, I. Vasilescu, M. Chitre, M. Hoffmann-Kuhnt, and D. Rus, “AquaOptical: a lightweight device for high-rate long-range underwater point-to-point communication,” Mar. Technol. Soc. J. 44(4), 55–65 (2010).
[Crossref]

Shen, C.

Song, Y.

Song, Y. H.

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

Speck, J. S.

Tsai, C. T.

Tsai, C.-T.

H. M. Oubei, J. R. Duráan, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T. K. Ng, H.-C. Kuo, J.-H. He, M.-S. Alouini, G.-R. Lin, and B. S. Ooi, “Wireless optical transmission of 450 nm, 3.2 Gbit/s 16-QAM-OFDM signals over 6.6 m underwater channel,” in Conference on Lasers and Electro-Optics, pp. SW1F.1 (2016).
[Crossref]

Tsonev, D.

Uysal, M.

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surveys. Tuts. 16(4), 2231–2258 (2014).
[Crossref]

Vasilescu, I.

M. Doniec, C. Detweiler, I. Vasilescu, M. Chitre, M. Hoffmann-Kuhnt, and D. Rus, “AquaOptical: a lightweight device for high-rate long-range underwater point-to-point communication,” Mar. Technol. Soc. J. 44(4), 55–65 (2010).
[Crossref]

Videv, S.

Wang, H. Y.

Wang, H.-Y.

H. M. Oubei, J. R. Duráan, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T. K. Ng, H.-C. Kuo, J.-H. He, M.-S. Alouini, G.-R. Lin, and B. S. Ooi, “Wireless optical transmission of 450 nm, 3.2 Gbit/s 16-QAM-OFDM signals over 6.6 m underwater channel,” in Conference on Lasers and Electro-Optics, pp. SW1F.1 (2016).
[Crossref]

Xu, J.

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

J. Xu, Y. Song, X. Yu, A. Lin, M. Kong, J. Han, and N. Deng, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Express 24(8), 8097–8109 (2016).
[Crossref] [PubMed]

Yu, X.

Yu, X. Y.

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

Zhang, C.

Appl. Opt. (2)

IEEE Access (1)

H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access 4, 1518–1547 (2016).
[Crossref]

IEEE Commun. Mag. (1)

A. S. Fletcher, S. A. Hamilton, and J. D. Moores, “Undersea laser communication with narrow beams,” IEEE Commun. Mag. 53(11), 49–55 (2015).
[Crossref]

IEEE Commun. Surveys. Tuts. (1)

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surveys. Tuts. 16(4), 2231–2258 (2014).
[Crossref]

Mar. Technol. Soc. J. (2)

M. Doniec, C. Detweiler, I. Vasilescu, M. Chitre, M. Hoffmann-Kuhnt, and D. Rus, “AquaOptical: a lightweight device for high-rate long-range underwater point-to-point communication,” Mar. Technol. Soc. J. 44(4), 55–65 (2010).
[Crossref]

P. Lacovara, “High-bandwidth underwater communications,” Mar. Technol. Soc. J. 42(1), 93–102 (2008).
[Crossref]

Opt. Commun. (1)

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

Opt. Eng. (1)

S. Arnon, “Underwater optical wireless communication network,” Opt. Eng. 49(1), 015001 (2010).
[Crossref]

Opt. Express (8)

J. Xu, Y. Song, X. Yu, A. Lin, M. Kong, J. Han, and N. Deng, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Express 24(8), 8097–8109 (2016).
[Crossref] [PubMed]

C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Express 23(12), 16232–16237 (2015).
[Crossref] [PubMed]

D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Express 23(2), 1627–1637 (2015).
[Crossref] [PubMed]

C. Lee, C. Shen, H. M. Oubei, M. Cantore, B. Janjua, T. K. Ng, R. M. Farrell, M. M. El-Desouki, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system,” Opt. Express 23(23), 29779–29787 (2015).
[Crossref] [PubMed]

K. Nakamura, I. Mizukoshi, and M. Hanawa, “Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel,” Opt. Express 23(2), 1558–1566 (2015).
[Crossref] [PubMed]

J. Baghdady, K. Miller, K. Morgan, M. Byrd, S. Osler, R. Ragusa, W. Li, B. M. Cochenour, and E. G. Johnson, “Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing,” Opt. Express 24(9), 9794–9805 (2016).
[Crossref] [PubMed]

H. M. Oubei, J. R. Duran, B. Janjua, H. Y. Wang, C. T. Tsai, Y. C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
[Crossref] [PubMed]

H. M. Oubei, C. Li, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Express 23(16), 20743–20748 (2015).
[Crossref] [PubMed]

Other (3)

H. M. Oubei, J. R. Duráan, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T. K. Ng, H.-C. Kuo, J.-H. He, M.-S. Alouini, G.-R. Lin, and B. S. Ooi, “Wireless optical transmission of 450 nm, 3.2 Gbit/s 16-QAM-OFDM signals over 6.6 m underwater channel,” in Conference on Lasers and Electro-Optics, pp. SW1F.1 (2016).
[Crossref]

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Channel modeling for underwater optical communication,” in 2011 IEEE Globecom Workshops (2011), pp. 833–837.

A. Lin, W. Lu, J. Xu, H. Song, F. Qu, J. Han, X. Gu, and J. Leng, “Underwater wireless optical communication using a directly modulated semiconductor laser,” in OCEANS 2015 - Genova, pp. 1–4 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Illustration of human activities underwater demanding long-distance, high transmission speed, and large data rate wireless communications.
Fig. 2
Fig. 2 Schematic of the experimental setup for laser based underwater optical wireless communications measurements. The setup consists of a Keysight N4903B J-BERT high-performance serial bit-error-rate tester with pattern generator, a Keysight 86100C digital communications analyzer (DCA), a laser diode (LD) and an avalanche photodetector (APD).
Fig. 3
Fig. 3 Transmission spectrum of the water sample measured using UV-Vis spectrophotometer.
Fig. 4
Fig. 4 (a) Voltage vs. current and optical power vs. current characteristics of the laser diode at room temperature. (b) Optical spectra of the laser diode under increasing injection currents showing a peak emission at ~449 nm.
Fig. 5
Fig. 5 (a) Small signal frequency response of the system at different bias currents. The dashed line indicates the −3 dB bandwidth, which is approximately 1 GHz. (b) The measured bit-error rate (BER) of OOK modulation by varying the operating current to optimize the LD performance. (c) Optimization of BER at different peak-to-peak voltages from the pattern generator. The optimum current of 80 mA was chosen for driving the laser diode.
Fig. 6
Fig. 6 (a)~(b): Measured BER vs. received optical power at 1 Gbps, 1.5 Gbps, and 2 Gbps after (a) a 9-meter and (b) a 12-meter transmission in underwater. The FEC limit BER of 3. 8 × 10−3 is labeled. (c)~(f): The measured eye diagrams for OOK modulation at (c) 1 Gbps over a 9-meter, (d) 1 Gbps over a 12-meter, (c) 2 Gbps over a 9-meter, and (d) 2 Gbps over a 12-meter underwater communication link.
Fig. 7
Fig. 7 (a) Captured photo of the experimental setup for the 20-meter laser based underwater optical wireless communication link. (b) Measured BER vs. data rate for the 20-meter underwater transmission. Inset: The eye diagrams of OOK modulation at 1 Gbps and 1.5 Gbps, respectively.

Tables (1)

Tables Icon

Table 1 Comparison of UWOC Systems Configurations and Performance

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I= I 0 e cx
c= 1 129 ln I 9m I 12m = 0.085( m 1 )

Metrics