Abstract

We report on the green up-conversion and near-infrared (NIR) emission in Er3+, MgO co-doped nearly stoichiometric LiNbO3 waveguides fabricated by femtosecond laser writing. The waveguides with so-called Type I geometry by laser writing support nearly single-mode propagation of light at NIR wavelength of 1.55 μm. In addition, it has been found that the guidance is only along the vertical (i.e., TM) polarization, which is due to the laser-induced positive changes of extraordinary index in the guiding core. The green up-conversion at 550 nm and 528 nm, corresponding to the transitions of 4S3/24I15/2, 2H11/24I15/2, as well as the NIR luminescence emission at C-band centered at 1550 nm under 4I13/24I15/2 transition have been realized in the waveguides, respectively. Our results have shown that the intensities of the guided-wave green up-conversion and NIR emissions are higher than those obtained from the bulk, which may be owing to the enhanced intracavity optical intensities of the waveguide with respect to the bulk.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Second harmonic generation of femtosecond laser written depressed cladding waveguides in periodically poled MgO:LiTaO3 crystal

Lei Wang, Xintong Zhang, Lingqi Li, Qingming Lu, Carolina Romero, Javier R. Vázquez de Aldana, and Feng Chen
Opt. Express 27(3) 2101-2111 (2019)

Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric LiNbO3 crystal

Yuye Wang, Longhuang Tang, Degang Xu, Chao Yan, Yixin He, Jia Shi, Dexian Yan, Hongxiang Liu, Meitong Nie, Jiachen Feng, and Jianquan Yao
Opt. Express 25(8) 8926-8936 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. Arizmendi, “Photonic application of lithium niobate crystal,” Phys. Stat. Solidi A 201(2), 253–283 (2004).
    [Crossref]
  2. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
    [Crossref]
  3. D. L. Zhang, H. Zheng, and E. Y.-B. Pun, “Judd-Ofelt spectroscopic study of Mg/Er-codoped near-stoichiometric LiNbO3 crystals for integrated optics,” J. Mater. Res. 25(11), 2101–2110 (2010).
    [Crossref]
  4. Y. Qian, B. Wang, R. Wang, L. Xing, and Y. Xu, “Upconversion emission in near-stoichiometric LiNbO3:Er3+ crystal,” RSC Advances 3(32), 13507–13514 (2013).
    [Crossref]
  5. G. Malovichko, V. Grachev, S. Okulov, E. Kokanyan, F. Henecker, A. Hofstaetter, and O. Schirmer, “EPR of Nd3+ in congruent and nearly stoichiometric lithium niobate,” Phys. Status Solidi, B Basic Res. 243(2), 367 (2006).
    [Crossref]
  6. H. Hatano, K. Kitamura, and Y. Liu, “Growth and photorefractive properties of stoichiometric LiNbO3 and LiTaO3,” in Photorefractive Materials and Their Applications 2: Materials, P. Günter and J. P. Huignard eds. (Springer, 2007), pp. 127–164.
  7. T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
    [Crossref]
  8. F. Chen, Y. Tan, and A. Ródenas, “Ion implanted optical channel waveguides in Er3+/MgO co-doped near stoichiometric LiNbO3: a new candidate for active integrated photonic devices operating at 1.5 microm,” Opt. Express 16(20), 16209–16214 (2008).
    [Crossref] [PubMed]
  9. E. Samir, N. Shehata, M. Aldacher, and I. Kandas, “Parametric study of up-conversion efficiency in Er-doped lanthanide hosts under 780 nm/980 nm excitation wavelengths,” J. Electron. Mater. 45(6), 2732–2744 (2016).
    [Crossref]
  10. Y. L. Wang, L. H. Wang, Y. J. Zhao, and X. Y. Yuan, “Color-tunable up-conversion luminescence of Er3+/Yb3+ co-doped (K, Na)NbO3 ceramics,” Mater. Lett. 179, 210–213 (2016).
    [Crossref]
  11. A. Maaoui, F. Ben Slimen, M. Haouari, A. Bulou, B. Boulard, and H. Ben Ouada, “Upconversion and near infrared emission properties of a novel Er3+/Yb3+ codoped fluoro-tellurite glass,” J. Alloys Compd. 682, 115–123 (2016).
    [Crossref]
  12. J. G. Zhong, J. Jin, and K. Z. Wu, “Measurement of optically induced refractive index damage of lithium niobate doped with different concentration of MgO,” in 11th International Quantum Electronics Conference (IEEE, 1980), pp. 631–637.
  13. L. Sun, A. H. Li, F. Y. Guo, Q. Lu, Y. H. Xu, and L. C. Zhao, “Enhanced 1.5 μm emission and simultaneously suppressed green upconversion emission in Er:LiNbO3 crystals heavily codoped with MgO,” Appl. Phys. Lett. 91(7), 071914 (2007).
    [Crossref]
  14. J. H. Yao, B. X. Yan, Y. H. Chen, J. J. Xu, G. Y. Zhang, Y. F. Ruan, and W. R. Li, “Effect of vapor transport equilibration and Mg doped on the luminescence of Er:LiNbO3,” Opt. Mater. 27(3), 373–376 (2004).
    [Crossref]
  15. L. Q. Tang, L. J. Zhao, X. Z. Zhang, H. Yu, J. Meng, Q. Liang, J. J. Xu, and Y. F. Kong, “Luminescent enhancement in Mg- and Er-codoped LiNbO3 crystals,” Chin. Phys. Lett. 22(3), 588–600 (2005).
    [Crossref]
  16. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
    [Crossref]
  17. A. Péter, K. Polgar, L. Kovacs, and K. Lengyel, “Threshold concentration of MgO in near-stoichiometric LiNbO3 crystals,” J. Cryst. Growth 284(1–2), 149–155 (2005).
    [Crossref]
  18. R. V. Roussev, R. Route, M. Katz, D. Jundt, C. Kajiyama, and M. Fejer, “Vapor transport equilibrated lithium niobate resistant to photorefractive damage,” Proc. SPIE 57, 99–108 (2005).
    [Crossref]
  19. B. Herreros, G. Lifante, F. Cussó, J. A. Sanz, A. Kling, J. C. Soares, M. F. Da Silva, P. D. Townsend, and P. J. Chandler, “Photoluminescence and Rutherford backscattering spectrometry study of ion-implanted Er3+-doped LiNbO3 planar waveguides,” J. Phys. Condens. Matter 10(14), 3275–3283 (1998).
    [Crossref]
  20. H. L. Liu, Y. C. Jia, Y. Y. Ren, S. Akhmadaliev, S. Q. Zhou, and F. Chen, “Green up-conversion of swift C5+ ion irradiated planar waveguide in Er3+, MgO codoped nearly stoichiometric LiNbO3 crystal,” Nucl. Instrum. Methods Phys. Res. B 320, 22–25 (2014).
    [Crossref]
  21. D. L. Zhang, S. Y. Xu, P. R. Hua, D. Y. Yu, and E. Pun, “Emission and absorption cross sections of photorefractive-damage-resistant locally Er-Mg-doped near-stoichiometric Ti:Mg:Er:LiNbO3 strip waveguides,” IEEE J. Quantum Electron. 47(4), 517–525 (2011).
    [Crossref]
  22. F. Chen and J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  23. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
    [Crossref]
  24. T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-Infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).
    [Crossref]
  25. J. M. Lv, Y. Z. Cheng, W. H. Yuan, X. T. Hao, and F. Chen, “Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal,” Opt. Mater. Express 5(6), 1274–1280 (2015).
    [Crossref]
  26. J. Burghoff, S. Nolte, and A. Tunnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
    [Crossref]
  27. J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Solidi A 208(2), 276–283 (2011).
    [Crossref]
  28. L. Gui, B. X. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photonics Technol. Lett. 16(5), 1337–1339 (2004).
    [Crossref]
  29. H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in z-cut lithium niobate,” IEEE Photonics Technol. Lett. 19(12), 892–894 (2007).
    [Crossref]
  30. K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14(18), 3447–3458 (2014).
    [Crossref] [PubMed]
  31. R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19(6), 5698–5705 (2011).
    [Crossref] [PubMed]
  32. S. Gross and M. J. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications,” Nanophotonics 4(3), 332–352 (2015).
    [Crossref]
  33. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
    [Crossref]
  34. D. K. Sardar, K. L. Nash, R. M. Yow, J. B. Gruber, U. V. Valiev, and E. P. Kokanyan, “Absorption intensities and emission cross sections of Tb3+ (4f(8)) in TbAlO3,” J. Appl. Phys. 100(8), 083108 (2006).
    [Crossref]
  35. L. Sun, C. H. Yang, A. H. Li, Y. H. Xu, and L. C. Zhao, “In/Er-codoped LiNbO3 crystals with enhanced 1.5 μm emission and suppressed upconversion emission,” J. Appl. Phys. 105(4), 043512 (2009).
    [Crossref]
  36. F. Goutaland, Y. Ouerdane, A. Boukenter, and G. Monnom, “Visible emission processes in heavily doped Er/Yb silica optical fibers,” J. Alloys Compd. 275, 276–278 (1998).
    [Crossref]
  37. K. W. Kramer, H. U. Gudel, and R. N. Schwartz, “NIR to VIS upconversion in LaCl3: 1% Er3+ one- and two-color excitations around 1000 and 800 nm,” J. Alloys Compd. 275, 191–195 (1998).
  38. C. B. de Araujo, L. S. Menezes, G. S. Maciel, L. H. Acioli, A. S. L. Gomes, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Infrared-to-visible CW frequency upconversion in Er3+-doped fluoroindate glasses,” Appl. Phys. Lett. 68(5), 602–604 (1996).
    [Crossref]
  39. M. P. Hehlen, G. Frei, and H. U. Güdel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+,” Phys. Rev. B Condens. Matter 50(22), 16264–16273 (1994).
    [Crossref] [PubMed]
  40. C. Y. Chen, R. R. Petrin, D. C. Yeh, W. A. Sibley, and J. L. Adam, “Concentration-dependent energy-transfer processes in Er3+-and Tm3+-doped heavy-metal fluoride glass,” Opt. Lett. 14(9), 432–434 (1989).
    [Crossref] [PubMed]

2016 (3)

E. Samir, N. Shehata, M. Aldacher, and I. Kandas, “Parametric study of up-conversion efficiency in Er-doped lanthanide hosts under 780 nm/980 nm excitation wavelengths,” J. Electron. Mater. 45(6), 2732–2744 (2016).
[Crossref]

Y. L. Wang, L. H. Wang, Y. J. Zhao, and X. Y. Yuan, “Color-tunable up-conversion luminescence of Er3+/Yb3+ co-doped (K, Na)NbO3 ceramics,” Mater. Lett. 179, 210–213 (2016).
[Crossref]

A. Maaoui, F. Ben Slimen, M. Haouari, A. Bulou, B. Boulard, and H. Ben Ouada, “Upconversion and near infrared emission properties of a novel Er3+/Yb3+ codoped fluoro-tellurite glass,” J. Alloys Compd. 682, 115–123 (2016).
[Crossref]

2015 (3)

T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-Infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).
[Crossref]

J. M. Lv, Y. Z. Cheng, W. H. Yuan, X. T. Hao, and F. Chen, “Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal,” Opt. Mater. Express 5(6), 1274–1280 (2015).
[Crossref]

S. Gross and M. J. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications,” Nanophotonics 4(3), 332–352 (2015).
[Crossref]

2014 (3)

F. Chen and J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14(18), 3447–3458 (2014).
[Crossref] [PubMed]

H. L. Liu, Y. C. Jia, Y. Y. Ren, S. Akhmadaliev, S. Q. Zhou, and F. Chen, “Green up-conversion of swift C5+ ion irradiated planar waveguide in Er3+, MgO codoped nearly stoichiometric LiNbO3 crystal,” Nucl. Instrum. Methods Phys. Res. B 320, 22–25 (2014).
[Crossref]

2013 (1)

Y. Qian, B. Wang, R. Wang, L. Xing, and Y. Xu, “Upconversion emission in near-stoichiometric LiNbO3:Er3+ crystal,” RSC Advances 3(32), 13507–13514 (2013).
[Crossref]

2011 (3)

D. L. Zhang, S. Y. Xu, P. R. Hua, D. Y. Yu, and E. Pun, “Emission and absorption cross sections of photorefractive-damage-resistant locally Er-Mg-doped near-stoichiometric Ti:Mg:Er:LiNbO3 strip waveguides,” IEEE J. Quantum Electron. 47(4), 517–525 (2011).
[Crossref]

R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19(6), 5698–5705 (2011).
[Crossref] [PubMed]

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Solidi A 208(2), 276–283 (2011).
[Crossref]

2010 (1)

D. L. Zhang, H. Zheng, and E. Y.-B. Pun, “Judd-Ofelt spectroscopic study of Mg/Er-codoped near-stoichiometric LiNbO3 crystals for integrated optics,” J. Mater. Res. 25(11), 2101–2110 (2010).
[Crossref]

2009 (4)

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[Crossref]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

L. Sun, C. H. Yang, A. H. Li, Y. H. Xu, and L. C. Zhao, “In/Er-codoped LiNbO3 crystals with enhanced 1.5 μm emission and suppressed upconversion emission,” J. Appl. Phys. 105(4), 043512 (2009).
[Crossref]

2008 (1)

2007 (3)

L. Sun, A. H. Li, F. Y. Guo, Q. Lu, Y. H. Xu, and L. C. Zhao, “Enhanced 1.5 μm emission and simultaneously suppressed green upconversion emission in Er:LiNbO3 crystals heavily codoped with MgO,” Appl. Phys. Lett. 91(7), 071914 (2007).
[Crossref]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in z-cut lithium niobate,” IEEE Photonics Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

J. Burghoff, S. Nolte, and A. Tunnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

2006 (2)

D. K. Sardar, K. L. Nash, R. M. Yow, J. B. Gruber, U. V. Valiev, and E. P. Kokanyan, “Absorption intensities and emission cross sections of Tb3+ (4f(8)) in TbAlO3,” J. Appl. Phys. 100(8), 083108 (2006).
[Crossref]

G. Malovichko, V. Grachev, S. Okulov, E. Kokanyan, F. Henecker, A. Hofstaetter, and O. Schirmer, “EPR of Nd3+ in congruent and nearly stoichiometric lithium niobate,” Phys. Status Solidi, B Basic Res. 243(2), 367 (2006).
[Crossref]

2005 (3)

L. Q. Tang, L. J. Zhao, X. Z. Zhang, H. Yu, J. Meng, Q. Liang, J. J. Xu, and Y. F. Kong, “Luminescent enhancement in Mg- and Er-codoped LiNbO3 crystals,” Chin. Phys. Lett. 22(3), 588–600 (2005).
[Crossref]

A. Péter, K. Polgar, L. Kovacs, and K. Lengyel, “Threshold concentration of MgO in near-stoichiometric LiNbO3 crystals,” J. Cryst. Growth 284(1–2), 149–155 (2005).
[Crossref]

R. V. Roussev, R. Route, M. Katz, D. Jundt, C. Kajiyama, and M. Fejer, “Vapor transport equilibrated lithium niobate resistant to photorefractive damage,” Proc. SPIE 57, 99–108 (2005).
[Crossref]

2004 (3)

L. Arizmendi, “Photonic application of lithium niobate crystal,” Phys. Stat. Solidi A 201(2), 253–283 (2004).
[Crossref]

J. H. Yao, B. X. Yan, Y. H. Chen, J. J. Xu, G. Y. Zhang, Y. F. Ruan, and W. R. Li, “Effect of vapor transport equilibration and Mg doped on the luminescence of Er:LiNbO3,” Opt. Mater. 27(3), 373–376 (2004).
[Crossref]

L. Gui, B. X. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photonics Technol. Lett. 16(5), 1337–1339 (2004).
[Crossref]

2000 (1)

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

1999 (1)

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
[Crossref]

1998 (3)

B. Herreros, G. Lifante, F. Cussó, J. A. Sanz, A. Kling, J. C. Soares, M. F. Da Silva, P. D. Townsend, and P. J. Chandler, “Photoluminescence and Rutherford backscattering spectrometry study of ion-implanted Er3+-doped LiNbO3 planar waveguides,” J. Phys. Condens. Matter 10(14), 3275–3283 (1998).
[Crossref]

F. Goutaland, Y. Ouerdane, A. Boukenter, and G. Monnom, “Visible emission processes in heavily doped Er/Yb silica optical fibers,” J. Alloys Compd. 275, 276–278 (1998).
[Crossref]

K. W. Kramer, H. U. Gudel, and R. N. Schwartz, “NIR to VIS upconversion in LaCl3: 1% Er3+ one- and two-color excitations around 1000 and 800 nm,” J. Alloys Compd. 275, 191–195 (1998).

1996 (1)

C. B. de Araujo, L. S. Menezes, G. S. Maciel, L. H. Acioli, A. S. L. Gomes, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Infrared-to-visible CW frequency upconversion in Er3+-doped fluoroindate glasses,” Appl. Phys. Lett. 68(5), 602–604 (1996).
[Crossref]

1994 (1)

M. P. Hehlen, G. Frei, and H. U. Güdel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+,” Phys. Rev. B Condens. Matter 50(22), 16264–16273 (1994).
[Crossref] [PubMed]

1989 (1)

Acioli, L. H.

C. B. de Araujo, L. S. Menezes, G. S. Maciel, L. H. Acioli, A. S. L. Gomes, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Infrared-to-visible CW frequency upconversion in Er3+-doped fluoroindate glasses,” Appl. Phys. Lett. 68(5), 602–604 (1996).
[Crossref]

Adam, J. L.

Aegerter, M. A.

C. B. de Araujo, L. S. Menezes, G. S. Maciel, L. H. Acioli, A. S. L. Gomes, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Infrared-to-visible CW frequency upconversion in Er3+-doped fluoroindate glasses,” Appl. Phys. Lett. 68(5), 602–604 (1996).
[Crossref]

Akhmadaliev, S.

H. L. Liu, Y. C. Jia, Y. Y. Ren, S. Akhmadaliev, S. Q. Zhou, and F. Chen, “Green up-conversion of swift C5+ ion irradiated planar waveguide in Er3+, MgO codoped nearly stoichiometric LiNbO3 crystal,” Nucl. Instrum. Methods Phys. Res. B 320, 22–25 (2014).
[Crossref]

Aldacher, M.

E. Samir, N. Shehata, M. Aldacher, and I. Kandas, “Parametric study of up-conversion efficiency in Er-doped lanthanide hosts under 780 nm/980 nm excitation wavelengths,” J. Electron. Mater. 45(6), 2732–2744 (2016).
[Crossref]

Ams, M.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

Arizmendi, L.

L. Arizmendi, “Photonic application of lithium niobate crystal,” Phys. Stat. Solidi A 201(2), 253–283 (2004).
[Crossref]

Ben Ouada, H.

A. Maaoui, F. Ben Slimen, M. Haouari, A. Bulou, B. Boulard, and H. Ben Ouada, “Upconversion and near infrared emission properties of a novel Er3+/Yb3+ codoped fluoro-tellurite glass,” J. Alloys Compd. 682, 115–123 (2016).
[Crossref]

Ben Slimen, F.

A. Maaoui, F. Ben Slimen, M. Haouari, A. Bulou, B. Boulard, and H. Ben Ouada, “Upconversion and near infrared emission properties of a novel Er3+/Yb3+ codoped fluoro-tellurite glass,” J. Alloys Compd. 682, 115–123 (2016).
[Crossref]

Birks, T. A.

Bland-Hawthorn, J.

Bookey, H. T.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in z-cut lithium niobate,” IEEE Photonics Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

Boukenter, A.

F. Goutaland, Y. Ouerdane, A. Boukenter, and G. Monnom, “Visible emission processes in heavily doped Er/Yb silica optical fibers,” J. Alloys Compd. 275, 276–278 (1998).
[Crossref]

Boulard, B.

A. Maaoui, F. Ben Slimen, M. Haouari, A. Bulou, B. Boulard, and H. Ben Ouada, “Upconversion and near infrared emission properties of a novel Er3+/Yb3+ codoped fluoro-tellurite glass,” J. Alloys Compd. 682, 115–123 (2016).
[Crossref]

Bulou, A.

A. Maaoui, F. Ben Slimen, M. Haouari, A. Bulou, B. Boulard, and H. Ben Ouada, “Upconversion and near infrared emission properties of a novel Er3+/Yb3+ codoped fluoro-tellurite glass,” J. Alloys Compd. 682, 115–123 (2016).
[Crossref]

Burghoff, J.

J. Burghoff, S. Nolte, and A. Tunnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

Calmano, T.

T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-Infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).
[Crossref]

Cerullo, G.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in z-cut lithium niobate,” IEEE Photonics Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

Chandler, P. J.

B. Herreros, G. Lifante, F. Cussó, J. A. Sanz, A. Kling, J. C. Soares, M. F. Da Silva, P. D. Townsend, and P. J. Chandler, “Photoluminescence and Rutherford backscattering spectrometry study of ion-implanted Er3+-doped LiNbO3 planar waveguides,” J. Phys. Condens. Matter 10(14), 3275–3283 (1998).
[Crossref]

Chen, C. Y.

Chen, F.

J. M. Lv, Y. Z. Cheng, W. H. Yuan, X. T. Hao, and F. Chen, “Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal,” Opt. Mater. Express 5(6), 1274–1280 (2015).
[Crossref]

F. Chen and J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

H. L. Liu, Y. C. Jia, Y. Y. Ren, S. Akhmadaliev, S. Q. Zhou, and F. Chen, “Green up-conversion of swift C5+ ion irradiated planar waveguide in Er3+, MgO codoped nearly stoichiometric LiNbO3 crystal,” Nucl. Instrum. Methods Phys. Res. B 320, 22–25 (2014).
[Crossref]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[Crossref]

F. Chen, Y. Tan, and A. Ródenas, “Ion implanted optical channel waveguides in Er3+/MgO co-doped near stoichiometric LiNbO3: a new candidate for active integrated photonic devices operating at 1.5 microm,” Opt. Express 16(20), 16209–16214 (2008).
[Crossref] [PubMed]

Chen, Y. H.

J. H. Yao, B. X. Yan, Y. H. Chen, J. J. Xu, G. Y. Zhang, Y. F. Ruan, and W. R. Li, “Effect of vapor transport equilibration and Mg doped on the luminescence of Er:LiNbO3,” Opt. Mater. 27(3), 373–376 (2004).
[Crossref]

Cheng, Y.

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14(18), 3447–3458 (2014).
[Crossref] [PubMed]

Cheng, Y. Z.

Chiodo, N.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in z-cut lithium niobate,” IEEE Photonics Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

Chong, T. C.

L. Gui, B. X. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photonics Technol. Lett. 16(5), 1337–1339 (2004).
[Crossref]

Cussó, F.

B. Herreros, G. Lifante, F. Cussó, J. A. Sanz, A. Kling, J. C. Soares, M. F. Da Silva, P. D. Townsend, and P. J. Chandler, “Photoluminescence and Rutherford backscattering spectrometry study of ion-implanted Er3+-doped LiNbO3 planar waveguides,” J. Phys. Condens. Matter 10(14), 3275–3283 (1998).
[Crossref]

Da Silva, M. F.

B. Herreros, G. Lifante, F. Cussó, J. A. Sanz, A. Kling, J. C. Soares, M. F. Da Silva, P. D. Townsend, and P. J. Chandler, “Photoluminescence and Rutherford backscattering spectrometry study of ion-implanted Er3+-doped LiNbO3 planar waveguides,” J. Phys. Condens. Matter 10(14), 3275–3283 (1998).
[Crossref]

de Araujo, C. B.

C. B. de Araujo, L. S. Menezes, G. S. Maciel, L. H. Acioli, A. S. L. Gomes, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Infrared-to-visible CW frequency upconversion in Er3+-doped fluoroindate glasses,” Appl. Phys. Lett. 68(5), 602–604 (1996).
[Crossref]

Dekker, P.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

Dubs, C.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Solidi A 208(2), 276–283 (2011).
[Crossref]

Fejer, M.

R. V. Roussev, R. Route, M. Katz, D. Jundt, C. Kajiyama, and M. Fejer, “Vapor transport equilibrated lithium niobate resistant to photorefractive damage,” Proc. SPIE 57, 99–108 (2005).
[Crossref]

Florez, A.

C. B. de Araujo, L. S. Menezes, G. S. Maciel, L. H. Acioli, A. S. L. Gomes, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Infrared-to-visible CW frequency upconversion in Er3+-doped fluoroindate glasses,” Appl. Phys. Lett. 68(5), 602–604 (1996).
[Crossref]

Frei, G.

M. P. Hehlen, G. Frei, and H. U. Güdel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+,” Phys. Rev. B Condens. Matter 50(22), 16264–16273 (1994).
[Crossref] [PubMed]

Fujiwara, T.

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
[Crossref]

Furukawa, Y.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
[Crossref]

Gomes, A. S. L.

C. B. de Araujo, L. S. Menezes, G. S. Maciel, L. H. Acioli, A. S. L. Gomes, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Infrared-to-visible CW frequency upconversion in Er3+-doped fluoroindate glasses,” Appl. Phys. Lett. 68(5), 602–604 (1996).
[Crossref]

Goutaland, F.

F. Goutaland, Y. Ouerdane, A. Boukenter, and G. Monnom, “Visible emission processes in heavily doped Er/Yb silica optical fibers,” J. Alloys Compd. 275, 276–278 (1998).
[Crossref]

Grachev, V.

G. Malovichko, V. Grachev, S. Okulov, E. Kokanyan, F. Henecker, A. Hofstaetter, and O. Schirmer, “EPR of Nd3+ in congruent and nearly stoichiometric lithium niobate,” Phys. Status Solidi, B Basic Res. 243(2), 367 (2006).
[Crossref]

Gross, S.

S. Gross and M. J. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications,” Nanophotonics 4(3), 332–352 (2015).
[Crossref]

Gruber, J. B.

D. K. Sardar, K. L. Nash, R. M. Yow, J. B. Gruber, U. V. Valiev, and E. P. Kokanyan, “Absorption intensities and emission cross sections of Tb3+ (4f(8)) in TbAlO3,” J. Appl. Phys. 100(8), 083108 (2006).
[Crossref]

Gudel, H. U.

K. W. Kramer, H. U. Gudel, and R. N. Schwartz, “NIR to VIS upconversion in LaCl3: 1% Er3+ one- and two-color excitations around 1000 and 800 nm,” J. Alloys Compd. 275, 191–195 (1998).

Güdel, H. U.

M. P. Hehlen, G. Frei, and H. U. Güdel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+,” Phys. Rev. B Condens. Matter 50(22), 16264–16273 (1994).
[Crossref] [PubMed]

Gui, L.

L. Gui, B. X. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photonics Technol. Lett. 16(5), 1337–1339 (2004).
[Crossref]

Guo, F. Y.

L. Sun, A. H. Li, F. Y. Guo, Q. Lu, Y. H. Xu, and L. C. Zhao, “Enhanced 1.5 μm emission and simultaneously suppressed green upconversion emission in Er:LiNbO3 crystals heavily codoped with MgO,” Appl. Phys. Lett. 91(7), 071914 (2007).
[Crossref]

Hanada, Y.

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14(18), 3447–3458 (2014).
[Crossref] [PubMed]

Hao, X. T.

Haouari, M.

A. Maaoui, F. Ben Slimen, M. Haouari, A. Bulou, B. Boulard, and H. Ben Ouada, “Upconversion and near infrared emission properties of a novel Er3+/Yb3+ codoped fluoro-tellurite glass,” J. Alloys Compd. 682, 115–123 (2016).
[Crossref]

Hehlen, M. P.

M. P. Hehlen, G. Frei, and H. U. Güdel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+,” Phys. Rev. B Condens. Matter 50(22), 16264–16273 (1994).
[Crossref] [PubMed]

Heinrich, M.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Solidi A 208(2), 276–283 (2011).
[Crossref]

Henecker, F.

G. Malovichko, V. Grachev, S. Okulov, E. Kokanyan, F. Henecker, A. Hofstaetter, and O. Schirmer, “EPR of Nd3+ in congruent and nearly stoichiometric lithium niobate,” Phys. Status Solidi, B Basic Res. 243(2), 367 (2006).
[Crossref]

Herreros, B.

B. Herreros, G. Lifante, F. Cussó, J. A. Sanz, A. Kling, J. C. Soares, M. F. Da Silva, P. D. Townsend, and P. J. Chandler, “Photoluminescence and Rutherford backscattering spectrometry study of ion-implanted Er3+-doped LiNbO3 planar waveguides,” J. Phys. Condens. Matter 10(14), 3275–3283 (1998).
[Crossref]

Hilbert, V.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Solidi A 208(2), 276–283 (2011).
[Crossref]

Hofstaetter, A.

G. Malovichko, V. Grachev, S. Okulov, E. Kokanyan, F. Henecker, A. Hofstaetter, and O. Schirmer, “EPR of Nd3+ in congruent and nearly stoichiometric lithium niobate,” Phys. Status Solidi, B Basic Res. 243(2), 367 (2006).
[Crossref]

Hua, P. R.

D. L. Zhang, S. Y. Xu, P. R. Hua, D. Y. Yu, and E. Pun, “Emission and absorption cross sections of photorefractive-damage-resistant locally Er-Mg-doped near-stoichiometric Ti:Mg:Er:LiNbO3 strip waveguides,” IEEE J. Quantum Electron. 47(4), 517–525 (2011).
[Crossref]

Huber, G.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Ikushima, A. J.

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
[Crossref]

Jia, Y. C.

H. L. Liu, Y. C. Jia, Y. Y. Ren, S. Akhmadaliev, S. Q. Zhou, and F. Chen, “Green up-conversion of swift C5+ ion irradiated planar waveguide in Er3+, MgO codoped nearly stoichiometric LiNbO3 crystal,” Nucl. Instrum. Methods Phys. Res. B 320, 22–25 (2014).
[Crossref]

Jin, J.

J. G. Zhong, J. Jin, and K. Z. Wu, “Measurement of optically induced refractive index damage of lithium niobate doped with different concentration of MgO,” in 11th International Quantum Electronics Conference (IEEE, 1980), pp. 631–637.

Jundt, D.

R. V. Roussev, R. Route, M. Katz, D. Jundt, C. Kajiyama, and M. Fejer, “Vapor transport equilibrated lithium niobate resistant to photorefractive damage,” Proc. SPIE 57, 99–108 (2005).
[Crossref]

Kajiyama, C.

R. V. Roussev, R. Route, M. Katz, D. Jundt, C. Kajiyama, and M. Fejer, “Vapor transport equilibrated lithium niobate resistant to photorefractive damage,” Proc. SPIE 57, 99–108 (2005).
[Crossref]

Kandas, I.

E. Samir, N. Shehata, M. Aldacher, and I. Kandas, “Parametric study of up-conversion efficiency in Er-doped lanthanide hosts under 780 nm/980 nm excitation wavelengths,” J. Electron. Mater. 45(6), 2732–2744 (2016).
[Crossref]

Kar, A. K.

R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19(6), 5698–5705 (2011).
[Crossref] [PubMed]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in z-cut lithium niobate,” IEEE Photonics Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

Katz, M.

R. V. Roussev, R. Route, M. Katz, D. Jundt, C. Kajiyama, and M. Fejer, “Vapor transport equilibrated lithium niobate resistant to photorefractive damage,” Proc. SPIE 57, 99–108 (2005).
[Crossref]

Kitamura, K.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
[Crossref]

Kling, A.

B. Herreros, G. Lifante, F. Cussó, J. A. Sanz, A. Kling, J. C. Soares, M. F. Da Silva, P. D. Townsend, and P. J. Chandler, “Photoluminescence and Rutherford backscattering spectrometry study of ion-implanted Er3+-doped LiNbO3 planar waveguides,” J. Phys. Condens. Matter 10(14), 3275–3283 (1998).
[Crossref]

Kokanyan, E.

G. Malovichko, V. Grachev, S. Okulov, E. Kokanyan, F. Henecker, A. Hofstaetter, and O. Schirmer, “EPR of Nd3+ in congruent and nearly stoichiometric lithium niobate,” Phys. Status Solidi, B Basic Res. 243(2), 367 (2006).
[Crossref]

Kokanyan, E. P.

D. K. Sardar, K. L. Nash, R. M. Yow, J. B. Gruber, U. V. Valiev, and E. P. Kokanyan, “Absorption intensities and emission cross sections of Tb3+ (4f(8)) in TbAlO3,” J. Appl. Phys. 100(8), 083108 (2006).
[Crossref]

Kong, Y. F.

L. Q. Tang, L. J. Zhao, X. Z. Zhang, H. Yu, J. Meng, Q. Liang, J. J. Xu, and Y. F. Kong, “Luminescent enhancement in Mg- and Er-codoped LiNbO3 crystals,” Chin. Phys. Lett. 22(3), 588–600 (2005).
[Crossref]

Kovacs, L.

A. Péter, K. Polgar, L. Kovacs, and K. Lengyel, “Threshold concentration of MgO in near-stoichiometric LiNbO3 crystals,” J. Cryst. Growth 284(1–2), 149–155 (2005).
[Crossref]

Kramer, K. W.

K. W. Kramer, H. U. Gudel, and R. N. Schwartz, “NIR to VIS upconversion in LaCl3: 1% Er3+ one- and two-color excitations around 1000 and 800 nm,” J. Alloys Compd. 275, 191–195 (1998).

Lengyel, K.

A. Péter, K. Polgar, L. Kovacs, and K. Lengyel, “Threshold concentration of MgO in near-stoichiometric LiNbO3 crystals,” J. Cryst. Growth 284(1–2), 149–155 (2005).
[Crossref]

Leon-Saval, S. G.

Li, A. H.

L. Sun, C. H. Yang, A. H. Li, Y. H. Xu, and L. C. Zhao, “In/Er-codoped LiNbO3 crystals with enhanced 1.5 μm emission and suppressed upconversion emission,” J. Appl. Phys. 105(4), 043512 (2009).
[Crossref]

L. Sun, A. H. Li, F. Y. Guo, Q. Lu, Y. H. Xu, and L. C. Zhao, “Enhanced 1.5 μm emission and simultaneously suppressed green upconversion emission in Er:LiNbO3 crystals heavily codoped with MgO,” Appl. Phys. Lett. 91(7), 071914 (2007).
[Crossref]

Li, W. R.

J. H. Yao, B. X. Yan, Y. H. Chen, J. J. Xu, G. Y. Zhang, Y. F. Ruan, and W. R. Li, “Effect of vapor transport equilibration and Mg doped on the luminescence of Er:LiNbO3,” Opt. Mater. 27(3), 373–376 (2004).
[Crossref]

Liang, Q.

L. Q. Tang, L. J. Zhao, X. Z. Zhang, H. Yu, J. Meng, Q. Liang, J. J. Xu, and Y. F. Kong, “Luminescent enhancement in Mg- and Er-codoped LiNbO3 crystals,” Chin. Phys. Lett. 22(3), 588–600 (2005).
[Crossref]

Lifante, G.

B. Herreros, G. Lifante, F. Cussó, J. A. Sanz, A. Kling, J. C. Soares, M. F. Da Silva, P. D. Townsend, and P. J. Chandler, “Photoluminescence and Rutherford backscattering spectrometry study of ion-implanted Er3+-doped LiNbO3 planar waveguides,” J. Phys. Condens. Matter 10(14), 3275–3283 (1998).
[Crossref]

Liu, H. L.

H. L. Liu, Y. C. Jia, Y. Y. Ren, S. Akhmadaliev, S. Q. Zhou, and F. Chen, “Green up-conversion of swift C5+ ion irradiated planar waveguide in Er3+, MgO codoped nearly stoichiometric LiNbO3 crystal,” Nucl. Instrum. Methods Phys. Res. B 320, 22–25 (2014).
[Crossref]

Lu, Q.

L. Sun, A. H. Li, F. Y. Guo, Q. Lu, Y. H. Xu, and L. C. Zhao, “Enhanced 1.5 μm emission and simultaneously suppressed green upconversion emission in Er:LiNbO3 crystals heavily codoped with MgO,” Appl. Phys. Lett. 91(7), 071914 (2007).
[Crossref]

Lv, J. M.

Maaoui, A.

A. Maaoui, F. Ben Slimen, M. Haouari, A. Bulou, B. Boulard, and H. Ben Ouada, “Upconversion and near infrared emission properties of a novel Er3+/Yb3+ codoped fluoro-tellurite glass,” J. Alloys Compd. 682, 115–123 (2016).
[Crossref]

Maciel, G. S.

C. B. de Araujo, L. S. Menezes, G. S. Maciel, L. H. Acioli, A. S. L. Gomes, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Infrared-to-visible CW frequency upconversion in Er3+-doped fluoroindate glasses,” Appl. Phys. Lett. 68(5), 602–604 (1996).
[Crossref]

Malovichko, G.

G. Malovichko, V. Grachev, S. Okulov, E. Kokanyan, F. Henecker, A. Hofstaetter, and O. Schirmer, “EPR of Nd3+ in congruent and nearly stoichiometric lithium niobate,” Phys. Status Solidi, B Basic Res. 243(2), 367 (2006).
[Crossref]

Marshall, G. D.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

Menezes, L. S.

C. B. de Araujo, L. S. Menezes, G. S. Maciel, L. H. Acioli, A. S. L. Gomes, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Infrared-to-visible CW frequency upconversion in Er3+-doped fluoroindate glasses,” Appl. Phys. Lett. 68(5), 602–604 (1996).
[Crossref]

Meng, J.

L. Q. Tang, L. J. Zhao, X. Z. Zhang, H. Yu, J. Meng, Q. Liang, J. J. Xu, and Y. F. Kong, “Luminescent enhancement in Mg- and Er-codoped LiNbO3 crystals,” Chin. Phys. Lett. 22(3), 588–600 (2005).
[Crossref]

Messaddeq, Y.

C. B. de Araujo, L. S. Menezes, G. S. Maciel, L. H. Acioli, A. S. L. Gomes, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Infrared-to-visible CW frequency upconversion in Er3+-doped fluoroindate glasses,” Appl. Phys. Lett. 68(5), 602–604 (1996).
[Crossref]

Midorikawa, K.

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14(18), 3447–3458 (2014).
[Crossref] [PubMed]

Miyamoto, A.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

Monnom, G.

F. Goutaland, Y. Ouerdane, A. Boukenter, and G. Monnom, “Visible emission processes in heavily doped Er/Yb silica optical fibers,” J. Alloys Compd. 275, 276–278 (1998).
[Crossref]

Müller, S.

T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-Infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).
[Crossref]

Nash, K. L.

D. K. Sardar, K. L. Nash, R. M. Yow, J. B. Gruber, U. V. Valiev, and E. P. Kokanyan, “Absorption intensities and emission cross sections of Tb3+ (4f(8)) in TbAlO3,” J. Appl. Phys. 100(8), 083108 (2006).
[Crossref]

Nolte, S.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Solidi A 208(2), 276–283 (2011).
[Crossref]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

J. Burghoff, S. Nolte, and A. Tunnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

Ohama, M.

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
[Crossref]

Okulov, S.

G. Malovichko, V. Grachev, S. Okulov, E. Kokanyan, F. Henecker, A. Hofstaetter, and O. Schirmer, “EPR of Nd3+ in congruent and nearly stoichiometric lithium niobate,” Phys. Status Solidi, B Basic Res. 243(2), 367 (2006).
[Crossref]

Osellame, R.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in z-cut lithium niobate,” IEEE Photonics Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

Ouerdane, Y.

F. Goutaland, Y. Ouerdane, A. Boukenter, and G. Monnom, “Visible emission processes in heavily doped Er/Yb silica optical fibers,” J. Alloys Compd. 275, 276–278 (1998).
[Crossref]

Péter, A.

A. Péter, K. Polgar, L. Kovacs, and K. Lengyel, “Threshold concentration of MgO in near-stoichiometric LiNbO3 crystals,” J. Cryst. Growth 284(1–2), 149–155 (2005).
[Crossref]

Petermann, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Petrin, R. R.

Piper, J. A.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

Polgar, K.

A. Péter, K. Polgar, L. Kovacs, and K. Lengyel, “Threshold concentration of MgO in near-stoichiometric LiNbO3 crystals,” J. Cryst. Growth 284(1–2), 149–155 (2005).
[Crossref]

Psaila, N. D.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in z-cut lithium niobate,” IEEE Photonics Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

Pun, E.

D. L. Zhang, S. Y. Xu, P. R. Hua, D. Y. Yu, and E. Pun, “Emission and absorption cross sections of photorefractive-damage-resistant locally Er-Mg-doped near-stoichiometric Ti:Mg:Er:LiNbO3 strip waveguides,” IEEE J. Quantum Electron. 47(4), 517–525 (2011).
[Crossref]

Pun, E. Y.-B.

D. L. Zhang, H. Zheng, and E. Y.-B. Pun, “Judd-Ofelt spectroscopic study of Mg/Er-codoped near-stoichiometric LiNbO3 crystals for integrated optics,” J. Mater. Res. 25(11), 2101–2110 (2010).
[Crossref]

Qian, Y.

Y. Qian, B. Wang, R. Wang, L. Xing, and Y. Xu, “Upconversion emission in near-stoichiometric LiNbO3:Er3+ crystal,” RSC Advances 3(32), 13507–13514 (2013).
[Crossref]

Rademaker, K.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Solidi A 208(2), 276–283 (2011).
[Crossref]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Ren, Y. Y.

H. L. Liu, Y. C. Jia, Y. Y. Ren, S. Akhmadaliev, S. Q. Zhou, and F. Chen, “Green up-conversion of swift C5+ ion irradiated planar waveguide in Er3+, MgO codoped nearly stoichiometric LiNbO3 crystal,” Nucl. Instrum. Methods Phys. Res. B 320, 22–25 (2014).
[Crossref]

Riedel, R.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Solidi A 208(2), 276–283 (2011).
[Crossref]

Ringleb, S.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Solidi A 208(2), 276–283 (2011).
[Crossref]

Ródenas, A.

Roussev, R. V.

R. V. Roussev, R. Route, M. Katz, D. Jundt, C. Kajiyama, and M. Fejer, “Vapor transport equilibrated lithium niobate resistant to photorefractive damage,” Proc. SPIE 57, 99–108 (2005).
[Crossref]

Route, R.

R. V. Roussev, R. Route, M. Katz, D. Jundt, C. Kajiyama, and M. Fejer, “Vapor transport equilibrated lithium niobate resistant to photorefractive damage,” Proc. SPIE 57, 99–108 (2005).
[Crossref]

Ruan, Y. F.

J. H. Yao, B. X. Yan, Y. H. Chen, J. J. Xu, G. Y. Zhang, Y. F. Ruan, and W. R. Li, “Effect of vapor transport equilibration and Mg doped on the luminescence of Er:LiNbO3,” Opt. Mater. 27(3), 373–376 (2004).
[Crossref]

Ruske, J.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Solidi A 208(2), 276–283 (2011).
[Crossref]

Samir, E.

E. Samir, N. Shehata, M. Aldacher, and I. Kandas, “Parametric study of up-conversion efficiency in Er-doped lanthanide hosts under 780 nm/980 nm excitation wavelengths,” J. Electron. Mater. 45(6), 2732–2744 (2016).
[Crossref]

Sanz, J. A.

B. Herreros, G. Lifante, F. Cussó, J. A. Sanz, A. Kling, J. C. Soares, M. F. Da Silva, P. D. Townsend, and P. J. Chandler, “Photoluminescence and Rutherford backscattering spectrometry study of ion-implanted Er3+-doped LiNbO3 planar waveguides,” J. Phys. Condens. Matter 10(14), 3275–3283 (1998).
[Crossref]

Sardar, D. K.

D. K. Sardar, K. L. Nash, R. M. Yow, J. B. Gruber, U. V. Valiev, and E. P. Kokanyan, “Absorption intensities and emission cross sections of Tb3+ (4f(8)) in TbAlO3,” J. Appl. Phys. 100(8), 083108 (2006).
[Crossref]

Schirmer, O.

G. Malovichko, V. Grachev, S. Okulov, E. Kokanyan, F. Henecker, A. Hofstaetter, and O. Schirmer, “EPR of Nd3+ in congruent and nearly stoichiometric lithium niobate,” Phys. Status Solidi, B Basic Res. 243(2), 367 (2006).
[Crossref]

Schwartz, R. N.

K. W. Kramer, H. U. Gudel, and R. N. Schwartz, “NIR to VIS upconversion in LaCl3: 1% Er3+ one- and two-color excitations around 1000 and 800 nm,” J. Alloys Compd. 275, 191–195 (1998).

Shehata, N.

E. Samir, N. Shehata, M. Aldacher, and I. Kandas, “Parametric study of up-conversion efficiency in Er-doped lanthanide hosts under 780 nm/980 nm excitation wavelengths,” J. Electron. Mater. 45(6), 2732–2744 (2016).
[Crossref]

Sibley, W. A.

Siebenmorgen, J.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Soares, J. C.

B. Herreros, G. Lifante, F. Cussó, J. A. Sanz, A. Kling, J. C. Soares, M. F. Da Silva, P. D. Townsend, and P. J. Chandler, “Photoluminescence and Rutherford backscattering spectrometry study of ion-implanted Er3+-doped LiNbO3 planar waveguides,” J. Phys. Condens. Matter 10(14), 3275–3283 (1998).
[Crossref]

Suda, N.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

Sugioka, K.

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14(18), 3447–3458 (2014).
[Crossref] [PubMed]

Sun, L.

L. Sun, C. H. Yang, A. H. Li, Y. H. Xu, and L. C. Zhao, “In/Er-codoped LiNbO3 crystals with enhanced 1.5 μm emission and suppressed upconversion emission,” J. Appl. Phys. 105(4), 043512 (2009).
[Crossref]

L. Sun, A. H. Li, F. Y. Guo, Q. Lu, Y. H. Xu, and L. C. Zhao, “Enhanced 1.5 μm emission and simultaneously suppressed green upconversion emission in Er:LiNbO3 crystals heavily codoped with MgO,” Appl. Phys. Lett. 91(7), 071914 (2007).
[Crossref]

Takahashi, M.

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
[Crossref]

Takekawa, S.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

Tan, Y.

Tang, L. Q.

L. Q. Tang, L. J. Zhao, X. Z. Zhang, H. Yu, J. Meng, Q. Liang, J. J. Xu, and Y. F. Kong, “Luminescent enhancement in Mg- and Er-codoped LiNbO3 crystals,” Chin. Phys. Lett. 22(3), 588–600 (2005).
[Crossref]

Terao, M.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

Thomas, J.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Solidi A 208(2), 276–283 (2011).
[Crossref]

Thomson, R. R.

R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19(6), 5698–5705 (2011).
[Crossref] [PubMed]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in z-cut lithium niobate,” IEEE Photonics Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

Townsend, P. D.

B. Herreros, G. Lifante, F. Cussó, J. A. Sanz, A. Kling, J. C. Soares, M. F. Da Silva, P. D. Townsend, and P. J. Chandler, “Photoluminescence and Rutherford backscattering spectrometry study of ion-implanted Er3+-doped LiNbO3 planar waveguides,” J. Phys. Condens. Matter 10(14), 3275–3283 (1998).
[Crossref]

Tunnermann, A.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

J. Burghoff, S. Nolte, and A. Tunnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

Tünnermann, A.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Solidi A 208(2), 276–283 (2011).
[Crossref]

Valiev, U. V.

D. K. Sardar, K. L. Nash, R. M. Yow, J. B. Gruber, U. V. Valiev, and E. P. Kokanyan, “Absorption intensities and emission cross sections of Tb3+ (4f(8)) in TbAlO3,” J. Appl. Phys. 100(8), 083108 (2006).
[Crossref]

Vazquez de Aldana, J. R.

F. Chen and J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Wang, B.

Y. Qian, B. Wang, R. Wang, L. Xing, and Y. Xu, “Upconversion emission in near-stoichiometric LiNbO3:Er3+ crystal,” RSC Advances 3(32), 13507–13514 (2013).
[Crossref]

Wang, L. H.

Y. L. Wang, L. H. Wang, Y. J. Zhao, and X. Y. Yuan, “Color-tunable up-conversion luminescence of Er3+/Yb3+ co-doped (K, Na)NbO3 ceramics,” Mater. Lett. 179, 210–213 (2016).
[Crossref]

Wang, R.

Y. Qian, B. Wang, R. Wang, L. Xing, and Y. Xu, “Upconversion emission in near-stoichiometric LiNbO3:Er3+ crystal,” RSC Advances 3(32), 13507–13514 (2013).
[Crossref]

Wang, Y. L.

Y. L. Wang, L. H. Wang, Y. J. Zhao, and X. Y. Yuan, “Color-tunable up-conversion luminescence of Er3+/Yb3+ co-doped (K, Na)NbO3 ceramics,” Mater. Lett. 179, 210–213 (2016).
[Crossref]

Wang, Z.

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14(18), 3447–3458 (2014).
[Crossref] [PubMed]

Withford, M. J.

S. Gross and M. J. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications,” Nanophotonics 4(3), 332–352 (2015).
[Crossref]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

Wu, D.

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14(18), 3447–3458 (2014).
[Crossref] [PubMed]

Wu, K. Z.

J. G. Zhong, J. Jin, and K. Z. Wu, “Measurement of optically induced refractive index damage of lithium niobate doped with different concentration of MgO,” in 11th International Quantum Electronics Conference (IEEE, 1980), pp. 631–637.

Xing, L.

Y. Qian, B. Wang, R. Wang, L. Xing, and Y. Xu, “Upconversion emission in near-stoichiometric LiNbO3:Er3+ crystal,” RSC Advances 3(32), 13507–13514 (2013).
[Crossref]

Xu, B. X.

L. Gui, B. X. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photonics Technol. Lett. 16(5), 1337–1339 (2004).
[Crossref]

Xu, J.

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14(18), 3447–3458 (2014).
[Crossref] [PubMed]

Xu, J. J.

L. Q. Tang, L. J. Zhao, X. Z. Zhang, H. Yu, J. Meng, Q. Liang, J. J. Xu, and Y. F. Kong, “Luminescent enhancement in Mg- and Er-codoped LiNbO3 crystals,” Chin. Phys. Lett. 22(3), 588–600 (2005).
[Crossref]

J. H. Yao, B. X. Yan, Y. H. Chen, J. J. Xu, G. Y. Zhang, Y. F. Ruan, and W. R. Li, “Effect of vapor transport equilibration and Mg doped on the luminescence of Er:LiNbO3,” Opt. Mater. 27(3), 373–376 (2004).
[Crossref]

Xu, S. Y.

D. L. Zhang, S. Y. Xu, P. R. Hua, D. Y. Yu, and E. Pun, “Emission and absorption cross sections of photorefractive-damage-resistant locally Er-Mg-doped near-stoichiometric Ti:Mg:Er:LiNbO3 strip waveguides,” IEEE J. Quantum Electron. 47(4), 517–525 (2011).
[Crossref]

Xu, Y.

Y. Qian, B. Wang, R. Wang, L. Xing, and Y. Xu, “Upconversion emission in near-stoichiometric LiNbO3:Er3+ crystal,” RSC Advances 3(32), 13507–13514 (2013).
[Crossref]

Xu, Y. H.

L. Sun, C. H. Yang, A. H. Li, Y. H. Xu, and L. C. Zhao, “In/Er-codoped LiNbO3 crystals with enhanced 1.5 μm emission and suppressed upconversion emission,” J. Appl. Phys. 105(4), 043512 (2009).
[Crossref]

L. Sun, A. H. Li, F. Y. Guo, Q. Lu, Y. H. Xu, and L. C. Zhao, “Enhanced 1.5 μm emission and simultaneously suppressed green upconversion emission in Er:LiNbO3 crystals heavily codoped with MgO,” Appl. Phys. Lett. 91(7), 071914 (2007).
[Crossref]

Yan, B. X.

J. H. Yao, B. X. Yan, Y. H. Chen, J. J. Xu, G. Y. Zhang, Y. F. Ruan, and W. R. Li, “Effect of vapor transport equilibration and Mg doped on the luminescence of Er:LiNbO3,” Opt. Mater. 27(3), 373–376 (2004).
[Crossref]

Yang, C. H.

L. Sun, C. H. Yang, A. H. Li, Y. H. Xu, and L. C. Zhao, “In/Er-codoped LiNbO3 crystals with enhanced 1.5 μm emission and suppressed upconversion emission,” J. Appl. Phys. 105(4), 043512 (2009).
[Crossref]

Yao, J. H.

J. H. Yao, B. X. Yan, Y. H. Chen, J. J. Xu, G. Y. Zhang, Y. F. Ruan, and W. R. Li, “Effect of vapor transport equilibration and Mg doped on the luminescence of Er:LiNbO3,” Opt. Mater. 27(3), 373–376 (2004).
[Crossref]

Yeh, D. C.

Yow, R. M.

D. K. Sardar, K. L. Nash, R. M. Yow, J. B. Gruber, U. V. Valiev, and E. P. Kokanyan, “Absorption intensities and emission cross sections of Tb3+ (4f(8)) in TbAlO3,” J. Appl. Phys. 100(8), 083108 (2006).
[Crossref]

Yu, D. Y.

D. L. Zhang, S. Y. Xu, P. R. Hua, D. Y. Yu, and E. Pun, “Emission and absorption cross sections of photorefractive-damage-resistant locally Er-Mg-doped near-stoichiometric Ti:Mg:Er:LiNbO3 strip waveguides,” IEEE J. Quantum Electron. 47(4), 517–525 (2011).
[Crossref]

Yu, H.

L. Q. Tang, L. J. Zhao, X. Z. Zhang, H. Yu, J. Meng, Q. Liang, J. J. Xu, and Y. F. Kong, “Luminescent enhancement in Mg- and Er-codoped LiNbO3 crystals,” Chin. Phys. Lett. 22(3), 588–600 (2005).
[Crossref]

Yuan, W. H.

Yuan, X. Y.

Y. L. Wang, L. H. Wang, Y. J. Zhao, and X. Y. Yuan, “Color-tunable up-conversion luminescence of Er3+/Yb3+ co-doped (K, Na)NbO3 ceramics,” Mater. Lett. 179, 210–213 (2016).
[Crossref]

Zeil, P.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Solidi A 208(2), 276–283 (2011).
[Crossref]

Zhang, D. L.

D. L. Zhang, S. Y. Xu, P. R. Hua, D. Y. Yu, and E. Pun, “Emission and absorption cross sections of photorefractive-damage-resistant locally Er-Mg-doped near-stoichiometric Ti:Mg:Er:LiNbO3 strip waveguides,” IEEE J. Quantum Electron. 47(4), 517–525 (2011).
[Crossref]

D. L. Zhang, H. Zheng, and E. Y.-B. Pun, “Judd-Ofelt spectroscopic study of Mg/Er-codoped near-stoichiometric LiNbO3 crystals for integrated optics,” J. Mater. Res. 25(11), 2101–2110 (2010).
[Crossref]

Zhang, G. Y.

J. H. Yao, B. X. Yan, Y. H. Chen, J. J. Xu, G. Y. Zhang, Y. F. Ruan, and W. R. Li, “Effect of vapor transport equilibration and Mg doped on the luminescence of Er:LiNbO3,” Opt. Mater. 27(3), 373–376 (2004).
[Crossref]

Zhang, X. Z.

L. Q. Tang, L. J. Zhao, X. Z. Zhang, H. Yu, J. Meng, Q. Liang, J. J. Xu, and Y. F. Kong, “Luminescent enhancement in Mg- and Er-codoped LiNbO3 crystals,” Chin. Phys. Lett. 22(3), 588–600 (2005).
[Crossref]

Zhao, L. C.

L. Sun, C. H. Yang, A. H. Li, Y. H. Xu, and L. C. Zhao, “In/Er-codoped LiNbO3 crystals with enhanced 1.5 μm emission and suppressed upconversion emission,” J. Appl. Phys. 105(4), 043512 (2009).
[Crossref]

L. Sun, A. H. Li, F. Y. Guo, Q. Lu, Y. H. Xu, and L. C. Zhao, “Enhanced 1.5 μm emission and simultaneously suppressed green upconversion emission in Er:LiNbO3 crystals heavily codoped with MgO,” Appl. Phys. Lett. 91(7), 071914 (2007).
[Crossref]

Zhao, L. J.

L. Q. Tang, L. J. Zhao, X. Z. Zhang, H. Yu, J. Meng, Q. Liang, J. J. Xu, and Y. F. Kong, “Luminescent enhancement in Mg- and Er-codoped LiNbO3 crystals,” Chin. Phys. Lett. 22(3), 588–600 (2005).
[Crossref]

Zhao, Y. J.

Y. L. Wang, L. H. Wang, Y. J. Zhao, and X. Y. Yuan, “Color-tunable up-conversion luminescence of Er3+/Yb3+ co-doped (K, Na)NbO3 ceramics,” Mater. Lett. 179, 210–213 (2016).
[Crossref]

Zheng, H.

D. L. Zhang, H. Zheng, and E. Y.-B. Pun, “Judd-Ofelt spectroscopic study of Mg/Er-codoped near-stoichiometric LiNbO3 crystals for integrated optics,” J. Mater. Res. 25(11), 2101–2110 (2010).
[Crossref]

Zhong, J. G.

J. G. Zhong, J. Jin, and K. Z. Wu, “Measurement of optically induced refractive index damage of lithium niobate doped with different concentration of MgO,” in 11th International Quantum Electronics Conference (IEEE, 1980), pp. 631–637.

Zhou, S. Q.

H. L. Liu, Y. C. Jia, Y. Y. Ren, S. Akhmadaliev, S. Q. Zhou, and F. Chen, “Green up-conversion of swift C5+ ion irradiated planar waveguide in Er3+, MgO codoped nearly stoichiometric LiNbO3 crystal,” Nucl. Instrum. Methods Phys. Res. B 320, 22–25 (2014).
[Crossref]

Appl. Phys. B (1)

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Appl. Phys. Lett. (3)

C. B. de Araujo, L. S. Menezes, G. S. Maciel, L. H. Acioli, A. S. L. Gomes, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Infrared-to-visible CW frequency upconversion in Er3+-doped fluoroindate glasses,” Appl. Phys. Lett. 68(5), 602–604 (1996).
[Crossref]

L. Sun, A. H. Li, F. Y. Guo, Q. Lu, Y. H. Xu, and L. C. Zhao, “Enhanced 1.5 μm emission and simultaneously suppressed green upconversion emission in Er:LiNbO3 crystals heavily codoped with MgO,” Appl. Phys. Lett. 91(7), 071914 (2007).
[Crossref]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

J. Burghoff, S. Nolte, and A. Tunnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

Chin. Phys. Lett. (1)

L. Q. Tang, L. J. Zhao, X. Z. Zhang, H. Yu, J. Meng, Q. Liang, J. J. Xu, and Y. F. Kong, “Luminescent enhancement in Mg- and Er-codoped LiNbO3 crystals,” Chin. Phys. Lett. 22(3), 588–600 (2005).
[Crossref]

Electron. Lett. (1)

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
[Crossref]

IEEE J. Quantum Electron. (1)

D. L. Zhang, S. Y. Xu, P. R. Hua, D. Y. Yu, and E. Pun, “Emission and absorption cross sections of photorefractive-damage-resistant locally Er-Mg-doped near-stoichiometric Ti:Mg:Er:LiNbO3 strip waveguides,” IEEE J. Quantum Electron. 47(4), 517–525 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-Infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (2)

L. Gui, B. X. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photonics Technol. Lett. 16(5), 1337–1339 (2004).
[Crossref]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in z-cut lithium niobate,” IEEE Photonics Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

J. Alloys Compd. (3)

F. Goutaland, Y. Ouerdane, A. Boukenter, and G. Monnom, “Visible emission processes in heavily doped Er/Yb silica optical fibers,” J. Alloys Compd. 275, 276–278 (1998).
[Crossref]

K. W. Kramer, H. U. Gudel, and R. N. Schwartz, “NIR to VIS upconversion in LaCl3: 1% Er3+ one- and two-color excitations around 1000 and 800 nm,” J. Alloys Compd. 275, 191–195 (1998).

A. Maaoui, F. Ben Slimen, M. Haouari, A. Bulou, B. Boulard, and H. Ben Ouada, “Upconversion and near infrared emission properties of a novel Er3+/Yb3+ codoped fluoro-tellurite glass,” J. Alloys Compd. 682, 115–123 (2016).
[Crossref]

J. Appl. Phys. (3)

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[Crossref]

D. K. Sardar, K. L. Nash, R. M. Yow, J. B. Gruber, U. V. Valiev, and E. P. Kokanyan, “Absorption intensities and emission cross sections of Tb3+ (4f(8)) in TbAlO3,” J. Appl. Phys. 100(8), 083108 (2006).
[Crossref]

L. Sun, C. H. Yang, A. H. Li, Y. H. Xu, and L. C. Zhao, “In/Er-codoped LiNbO3 crystals with enhanced 1.5 μm emission and suppressed upconversion emission,” J. Appl. Phys. 105(4), 043512 (2009).
[Crossref]

J. Cryst. Growth (1)

A. Péter, K. Polgar, L. Kovacs, and K. Lengyel, “Threshold concentration of MgO in near-stoichiometric LiNbO3 crystals,” J. Cryst. Growth 284(1–2), 149–155 (2005).
[Crossref]

J. Electron. Mater. (1)

E. Samir, N. Shehata, M. Aldacher, and I. Kandas, “Parametric study of up-conversion efficiency in Er-doped lanthanide hosts under 780 nm/980 nm excitation wavelengths,” J. Electron. Mater. 45(6), 2732–2744 (2016).
[Crossref]

J. Mater. Res. (1)

D. L. Zhang, H. Zheng, and E. Y.-B. Pun, “Judd-Ofelt spectroscopic study of Mg/Er-codoped near-stoichiometric LiNbO3 crystals for integrated optics,” J. Mater. Res. 25(11), 2101–2110 (2010).
[Crossref]

J. Phys. Condens. Matter (1)

B. Herreros, G. Lifante, F. Cussó, J. A. Sanz, A. Kling, J. C. Soares, M. F. Da Silva, P. D. Townsend, and P. J. Chandler, “Photoluminescence and Rutherford backscattering spectrometry study of ion-implanted Er3+-doped LiNbO3 planar waveguides,” J. Phys. Condens. Matter 10(14), 3275–3283 (1998).
[Crossref]

Lab Chip (1)

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14(18), 3447–3458 (2014).
[Crossref] [PubMed]

Laser Photonics Rev. (2)

F. Chen and J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

Mater. Lett. (1)

Y. L. Wang, L. H. Wang, Y. J. Zhao, and X. Y. Yuan, “Color-tunable up-conversion luminescence of Er3+/Yb3+ co-doped (K, Na)NbO3 ceramics,” Mater. Lett. 179, 210–213 (2016).
[Crossref]

Nanophotonics (1)

S. Gross and M. J. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications,” Nanophotonics 4(3), 332–352 (2015).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (1)

H. L. Liu, Y. C. Jia, Y. Y. Ren, S. Akhmadaliev, S. Q. Zhou, and F. Chen, “Green up-conversion of swift C5+ ion irradiated planar waveguide in Er3+, MgO codoped nearly stoichiometric LiNbO3 crystal,” Nucl. Instrum. Methods Phys. Res. B 320, 22–25 (2014).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (1)

J. H. Yao, B. X. Yan, Y. H. Chen, J. J. Xu, G. Y. Zhang, Y. F. Ruan, and W. R. Li, “Effect of vapor transport equilibration and Mg doped on the luminescence of Er:LiNbO3,” Opt. Mater. 27(3), 373–376 (2004).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. B Condens. Matter (1)

M. P. Hehlen, G. Frei, and H. U. Güdel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+,” Phys. Rev. B Condens. Matter 50(22), 16264–16273 (1994).
[Crossref] [PubMed]

Phys. Stat. Solidi A (2)

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Solidi A 208(2), 276–283 (2011).
[Crossref]

L. Arizmendi, “Photonic application of lithium niobate crystal,” Phys. Stat. Solidi A 201(2), 253–283 (2004).
[Crossref]

Phys. Status Solidi, B Basic Res. (1)

G. Malovichko, V. Grachev, S. Okulov, E. Kokanyan, F. Henecker, A. Hofstaetter, and O. Schirmer, “EPR of Nd3+ in congruent and nearly stoichiometric lithium niobate,” Phys. Status Solidi, B Basic Res. 243(2), 367 (2006).
[Crossref]

Proc. SPIE (1)

R. V. Roussev, R. Route, M. Katz, D. Jundt, C. Kajiyama, and M. Fejer, “Vapor transport equilibrated lithium niobate resistant to photorefractive damage,” Proc. SPIE 57, 99–108 (2005).
[Crossref]

RSC Advances (1)

Y. Qian, B. Wang, R. Wang, L. Xing, and Y. Xu, “Upconversion emission in near-stoichiometric LiNbO3:Er3+ crystal,” RSC Advances 3(32), 13507–13514 (2013).
[Crossref]

Other (2)

J. G. Zhong, J. Jin, and K. Z. Wu, “Measurement of optically induced refractive index damage of lithium niobate doped with different concentration of MgO,” in 11th International Quantum Electronics Conference (IEEE, 1980), pp. 631–637.

H. Hatano, K. Kitamura, and Y. Liu, “Growth and photorefractive properties of stoichiometric LiNbO3 and LiTaO3,” in Photorefractive Materials and Their Applications 2: Materials, P. Günter and J. P. Huignard eds. (Springer, 2007), pp. 127–164.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The schematic plot of the end-face coupling system using a laser source at 1064 nm/1550 nm
Fig. 2
Fig. 2 The microscopic images of the cross section (left) and measured near-field intensity distributions at 1064 nm (middle) and 1550 nm (right) of the Type I waveguide WG1 and WG2 along TM polarization. The dashed lines indicate the spatial locations of laser-induced tracks.
Fig. 3
Fig. 3 The polar plots of the measured output power as function of output light polarization at transverse cross section for WG1 (black squares) and WG2 (red circles) at 1064 nm with the input light power of 100 mW. The solid lines are the corresponding fits of the experimental data.
Fig. 4
Fig. 4 The top-view of the photographs of green up-conversion emission in the waveguides WG1 (a) and WG2 (c) and the bulk (e) of Er3+:MgO:NSLN crystal.
Fig. 5
Fig. 5 Emission spectra of green up-conversion (a) and near infrared (b) in the waveguides WG1 (black line) and WG2 (red line) and the bulk (blue line) of Er3+:MgO:NSLN crystal.
Fig. 6
Fig. 6 Pump power dependence of green up-conversion emission in the waveguides WG1 (black dots) and WG2 (red dots) of Er3+:MgO:NSLN crystal.
Fig. 7
Fig. 7 Diagram of the green up-conversion emission under 980 nm excitation

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ n e sin 2 Θ m 2 n
A ( J J ' ) ( n 2 + 2 ) 2 9 n S e d + n S m d
τ J = 1 J ' A ( J J ' )
I U C I I R m

Metrics