Abstract

A new Brillouin optical time-domain analysis (BOTDA) technique for acquiring the full Brillouin gain spectrum (BGS) at high speed is proposed and demonstrated. The method employs a frequency swept microwave source for the generation of the probe wave, so that the entire BOTDA measurement is taken within the duration of the frequency sweep itself. By properly setting the duration of the sweep, the repetition rate of the pump pulses and the number of averages, truly distributed and dynamic measurements of the BGS are possible using a set-up at a fraction of the cost and complexity of the previously reported fast-BOTDA methods.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fast Brillouin optical time domain analysis for dynamic sensing

Yair Peled, Avi Motil, and Moshe Tur
Opt. Express 20(8) 8584-8591 (2012)

Single-measurement digital optical frequency comb based phase-detection Brillouin optical time domain analyzer

Chao Jin, Liang Wang, Yuli Chen, Nan Guo, Wenghong Chung, Hoyin Au, Zhaohui Li, Hwa-Yaw Tam, and Chao Lu
Opt. Express 25(8) 9213-9224 (2017)

Mitigating the effects of the gain-dependence of the Brillouin line-shape on dynamic BOTDA sensing methods

Avi Motil, Roy Davidi, Raanan Hadar, and Moshe Tur
Opt. Express 25(19) 22206-22218 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20(8), 8584–8591 (2012).
    [Crossref] [PubMed]
  2. R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009).
    [Crossref] [PubMed]
  3. Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
    [Crossref] [PubMed]
  4. A. Minardo, E. Catalano, and L. Zeni, “Practical limitations of the slope assisted BOTDA method in dynamic strain sensing,” Proc. SPIE 9916, 99162I (2016).
    [Crossref]
  5. M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
    [Crossref] [PubMed]
  6. I. Sovran, A. Motil, and M. Tur, “Frequency-scanning BOTDA with ultimately fast acquisition speed,” IEEE Photonics Technol. Lett. 27(13), 1426–1429 (2015).
    [Crossref]
  7. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
    [Crossref] [PubMed]
  8. R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
    [Crossref]
  9. A. Lopez-Gil, A. Dominguez-Lopez, S. Martin-Lopez, and M. Gonzalez-Herraez, “Simple method for the elimination of polarization noise in BOTDA using balanced detection and orthogonal probe sidebands,” J. Lightwave Technol. 33(12), 2605–2610 (2015).
    [Crossref]
  10. J. Urricelqui, F. Lopez-Fernandino, M. Sagues, and A. Loayssa, “Polarization diversity scheme for BOTDA sensors based on a double orthogonal pump interaction,” J. Lightwave Technol. 33(12), 2633–2638 (2015).
    [Crossref]
  11. A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution,” J. Lightwave Technol. 25(1), 381–386 (2007).
    [Crossref]
  12. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [Crossref] [PubMed]
  13. S. M. Foaleng, M. Tur, J. C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using Brillouin echoes,” J. Lightwave Technol. 28(20), 2993–3003 (2010).
    [Crossref]

2016 (2)

A. Minardo, E. Catalano, and L. Zeni, “Practical limitations of the slope assisted BOTDA method in dynamic strain sensing,” Proc. SPIE 9916, 99162I (2016).
[Crossref]

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

2015 (4)

I. Sovran, A. Motil, and M. Tur, “Frequency-scanning BOTDA with ultimately fast acquisition speed,” IEEE Photonics Technol. Lett. 27(13), 1426–1429 (2015).
[Crossref]

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

A. Lopez-Gil, A. Dominguez-Lopez, S. Martin-Lopez, and M. Gonzalez-Herraez, “Simple method for the elimination of polarization noise in BOTDA using balanced detection and orthogonal probe sidebands,” J. Lightwave Technol. 33(12), 2605–2610 (2015).
[Crossref]

J. Urricelqui, F. Lopez-Fernandino, M. Sagues, and A. Loayssa, “Polarization diversity scheme for BOTDA sensors based on a double orthogonal pump interaction,” J. Lightwave Technol. 33(12), 2633–2638 (2015).
[Crossref]

2013 (1)

2012 (1)

2011 (1)

2010 (1)

2009 (1)

2008 (1)

2007 (1)

Bao, X.

Bernini, R.

Beugnot, J. C.

Brown, A. W.

Brown, K.

Catalano, E.

A. Minardo, E. Catalano, and L. Zeni, “Practical limitations of the slope assisted BOTDA method in dynamic strain sensing,” Proc. SPIE 9916, 99162I (2016).
[Crossref]

Chen, L.

Colpitts, B. G.

Dominguez-Lopez, A.

Foaleng, S. M.

Gonzalez-Herraez, M.

Li, W.

Li, Y.

Loayssa, A.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

J. Urricelqui, F. Lopez-Fernandino, M. Sagues, and A. Loayssa, “Polarization diversity scheme for BOTDA sensors based on a double orthogonal pump interaction,” J. Lightwave Technol. 33(12), 2633–2638 (2015).
[Crossref]

Lopez-Fernandino, F.

Lopez-Gil, A.

López-Higuera, J. M.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

Martin-Lopez, S.

Minardo, A.

A. Minardo, E. Catalano, and L. Zeni, “Practical limitations of the slope assisted BOTDA method in dynamic strain sensing,” Proc. SPIE 9916, 99162I (2016).
[Crossref]

R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009).
[Crossref] [PubMed]

Mirapeix, J.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

Motil, A.

Peled, Y.

Ramírez, J. A.

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

Ruiz-Lombera, R.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

Sagues, M.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

J. Urricelqui, F. Lopez-Fernandino, M. Sagues, and A. Loayssa, “Polarization diversity scheme for BOTDA sensors based on a double orthogonal pump interaction,” J. Lightwave Technol. 33(12), 2633–2638 (2015).
[Crossref]

Soto, M. A.

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref] [PubMed]

Sovran, I.

I. Sovran, A. Motil, and M. Tur, “Frequency-scanning BOTDA with ultimately fast acquisition speed,” IEEE Photonics Technol. Lett. 27(13), 1426–1429 (2015).
[Crossref]

Thevenaz, L.

Thévenaz, L.

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref] [PubMed]

Tur, M.

Urricelqui, J.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

J. Urricelqui, F. Lopez-Fernandino, M. Sagues, and A. Loayssa, “Polarization diversity scheme for BOTDA sensors based on a double orthogonal pump interaction,” J. Lightwave Technol. 33(12), 2633–2638 (2015).
[Crossref]

Yaron, L.

Zeni, L.

A. Minardo, E. Catalano, and L. Zeni, “Practical limitations of the slope assisted BOTDA method in dynamic strain sensing,” Proc. SPIE 9916, 99162I (2016).
[Crossref]

R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009).
[Crossref] [PubMed]

IEEE Photonics J. (1)

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

I. Sovran, A. Motil, and M. Tur, “Frequency-scanning BOTDA with ultimately fast acquisition speed,” IEEE Photonics Technol. Lett. 27(13), 1426–1429 (2015).
[Crossref]

J. Lightwave Technol. (4)

Nat. Commun. (1)

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Proc. SPIE (1)

A. Minardo, E. Catalano, and L. Zeni, “Practical limitations of the slope assisted BOTDA method in dynamic strain sensing,” Proc. SPIE 9916, 99162I (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic illustration of the sweep-BOTDA method: the BOTDA waveforms are acquired during the frequency sweep of the microwave source.
Fig. 2
Fig. 2 Experimental setup used for sweep-BOTDA measurements: IM: electro-optic modulator, EDFA: Erbium-doped fiber amplifier, PS: polarization scrambler, PD: photodiode, FBG: fiber Bragg grating.
Fig. 3
Fig. 3 (a) Brillouin gain map acquired by using a microwave source sweeping from 10550 MHz to 11000 MHz, in a sweep time of 33 ms; (b) BFS reconstruction obtained by processing the data shown in (a), or the data acquired using a conventional (frequency stepped) BOTDA.
Fig. 4
Fig. 4 BFS error as a function on frequency step and number of averages, as calculated from a set of 200 consecutive measurements using the conventional BOTDA method (circles) or the sweep-BOTDA method (squares). The solid lines are the square root fitting functions.
Fig. 5
Fig. 5 BGS acquired at a generic position of the 100-m long fiber, using the conventional BOTDA, or the sweep-BOTDA at various sweep rates. In all cases, sweep-BOTDA measurements were taken with a frequency step δ=5 MHz .
Fig. 6
Fig. 6 Dynamic strain acquired along the vibrating cantilever (blue line) or over a static position (red line), as determined from the peaks of Lorentzian fits to the BGSs of each time slot.
Fig. 7
Fig. 7 Dynamic strain acquired along the vibrating cantilever using the SA-BOTDA method (blue line) compared to the one acquired using the sweep-BOTDA method (red line). The solid black curve is the fitting curve. The inset shows the FFT of the acquired strain temporal waveforms (blue line = SA-BOTDA, red line = sweep-BOTDA).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S sweep =δ× f rep × 1 N av ,

Metrics