Abstract

We report novel microfiber long period gratings (MF-LPGs) characterized by higher-order diffraction, which are fabricated using an arc discharge method. It is shown that an 11-period MF-LPG can exhibit an extremely high resonant dip (>30 dB) and a low transmission loss (<1.0 dB). A series of grating samples with elongated periods, from 400 μm to 1000 μm, and different diffraction orders have been fabricated and studied in contrast to the previously reported counterparts. The proposed structures have high reproducibility, stability, flexibility, and low production costs. Moreover, the resonant wavelength has a large refractive index (RI) sensitivity (up to ~3762.31 nm/RI-unit around RI = 1.383) and a very low temperature coefficient (~3.09 pm/°C at 1401.3 nm) for a structure with a diameter of 9.6 μm. The theoretical analysis shows good agreement with the experimental results. Our study should be useful for future applications of MF-LPGs in micro-scale in-fiber devices and sensors.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
CO2 laser induced long period gratings in optical microfibers

Haifeng Xuan, Wei Jin, and Min Zhang
Opt. Express 17(24) 21882-21890 (2009)

Structural microfiber long-period gratings

Li-Peng Sun, Jie Li, Long Jin, and Bai-Ou Guan
Opt. Express 20(16) 18079-18084 (2012)

Automatic arc discharge technology for inscribing long period fiber gratings

Guolu Yin, Jian Tang, Changrui Liao, and Yiping Wang
Appl. Opt. 55(14) 3873-3878 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]
  2. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
    [Crossref]
  3. Y. P. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys. 108(8), 081101 (2010).
    [Crossref]
  4. G. Rego, A. Fernandez Fernandez, A. Gusarov, B. Brichard, F. Berghmans, J. L. Santos, and H. M. Salgado, “Effect of ionizing radiation on the properties of arc-induced long-period fiber gratings,” Appl. Opt. 44(29), 6258–6263 (2005).
    [Crossref] [PubMed]
  5. G. Yin, J. Tang, C. Liao, and Y. Wang, “Automatic arc discharge technology for inscribing long period fiber gratings,” Appl. Opt. 55(14), 3873–3878 (2016).
    [Crossref] [PubMed]
  6. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, “High-temperature stability of long-period fiber gratings produced using an electric arc,” J. Lightwave Technol. 19(10), 1574–1579 (2001).
    [Crossref]
  7. K. Morishita and Y. Miyake, “Fabrication and resonance wavelengths of long-period gratings written in a pure-silica photonic crystal fiber by the glass structure change,” J. Lightwave Technol. 22(2), 625–630 (2004).
    [Crossref]
  8. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [Crossref] [PubMed]
  9. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 1–19 (2010).
    [Crossref]
  10. L. P. Sun, J. Li, L. Jin, and B. O. Guan, “Structural microfiber long-period gratings,” Opt. Express 20(16), 18079–18084 (2012).
    [Crossref] [PubMed]
  11. X. Zhang, Y. Yu, C. Chen, C. Zhu, R. Yang, Z. Liu, J. Liang, Q. Chen, and H. Sun, “Point-by-point dip coated long-period gratings in microfibers,” IEEE Photonics Technol. Lett. 26(24), 2503–2506 (2014).
    [Crossref]
  12. A. Martínez-Gaytán, J. Soto-Olmos, L. Oropeza-Ramos, and J. Hernández-Cordero, “Fabrication Process for PDMS Polymer/Silica Long-Period Fiber Grating Sensors,” IEEE Photonics Technol. Lett. 27(20), 2150–2153 (2015).
    [Crossref]
  13. H. Xuan, W. Jin, and M. Zhang, “CO2 laser induced long period gratings in optical microfibers,” Opt. Express 17(24), 21882–21890 (2009).
    [Crossref] [PubMed]
  14. Y. Tan, L. P. Sun, L. Jin, J. Li, and B. O. Guan, “Microfiber Mach-Zehnder interferometer based on long period grating for sensing applications,” Opt. Express 21(1), 154–164 (2013).
    [Crossref] [PubMed]
  15. H. Xuan, W. Jin, and S. Liu, “Long-period gratings in wavelength-scale microfibers,” Opt. Lett. 35(1), 85–87 (2010).
    [Crossref] [PubMed]
  16. Z. Yu, L. Jin, L. Sun, J. Li, Y. Ran, and B. O. Guan, “Highly sensitive fiber taper interferometric hydrogen sensors,” IEEE Photonics J. 8(1), 1–9 (2016).
    [Crossref]
  17. X. W. Shu, L. Zhang, and I. Bennion, “Fabrication and characterisation of ultra-long-period fibre gratings,” Opt. Commun. 203(3–6), 277–281 (2002).
    [Crossref]
  18. J. C. Guo, Y. S. Yu, X. L. Zhang, C. Chen, R. Yang, C. Wang, R. Z. Yang, Q. D. Chen, and H. B. Sun, “Compact long-period fiber gratings with resonance at second-order diffraction,” IEEE Photonics Technol. Lett. 24(16), 1393–1395 (2012).
    [Crossref]
  19. B. Tai, Z. Wang, Y. Liu, J. Xu, B. Liu, H. Wei, and W. Tong, “High order resonances between core mode and cladding supermodes in long period fiber gratings inscribed in photonic bandgap fibers,” Opt. Express 18(15), 15361–15370 (2010).
    [Crossref] [PubMed]
  20. O. V. Ivanov and G. Rego, “Origin of coupling to antisymmetric modes in arc-induced long-period fiber gratings,” Opt. Express 15(21), 13936–13941 (2007).
    [Crossref] [PubMed]
  21. M. Koshiba and Y. Tsuji, “Curvillinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol. 18(5), 737–743 (2000).
    [Crossref]
  22. M. Bass, Handbook of Optics, 3rd ed. (McGraw-Hill, 2009).
  23. F. Dürr, G. Rego, P. V. S. Marques, S. L. Semjonov, E. M. Dianov, H. G. Limberger, and R. P. Salathé, “Tomographic stress profiling of arc-induced long-period fiber gratings,” J. Lightwave Technol. 23(11), 3947–3953 (2005).
    [Crossref]
  24. P. Wang, M. H. Jenkins, and T. K. Gaylord, “Arc-discharge effects on residual stress and refractive index in single-mode optical fibers,” Appl. Opt. 55(9), 2451–2456 (2016).
    [Crossref] [PubMed]
  25. K. F. Palmer and D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am. 64(8), 1107–1110 (1974).
    [Crossref]

2016 (3)

2015 (1)

A. Martínez-Gaytán, J. Soto-Olmos, L. Oropeza-Ramos, and J. Hernández-Cordero, “Fabrication Process for PDMS Polymer/Silica Long-Period Fiber Grating Sensors,” IEEE Photonics Technol. Lett. 27(20), 2150–2153 (2015).
[Crossref]

2014 (1)

X. Zhang, Y. Yu, C. Chen, C. Zhu, R. Yang, Z. Liu, J. Liang, Q. Chen, and H. Sun, “Point-by-point dip coated long-period gratings in microfibers,” IEEE Photonics Technol. Lett. 26(24), 2503–2506 (2014).
[Crossref]

2013 (1)

2012 (2)

L. P. Sun, J. Li, L. Jin, and B. O. Guan, “Structural microfiber long-period gratings,” Opt. Express 20(16), 18079–18084 (2012).
[Crossref] [PubMed]

J. C. Guo, Y. S. Yu, X. L. Zhang, C. Chen, R. Yang, C. Wang, R. Z. Yang, Q. D. Chen, and H. B. Sun, “Compact long-period fiber gratings with resonance at second-order diffraction,” IEEE Photonics Technol. Lett. 24(16), 1393–1395 (2012).
[Crossref]

2010 (4)

2009 (1)

2007 (1)

2005 (2)

2004 (1)

2003 (2)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

2002 (1)

X. W. Shu, L. Zhang, and I. Bennion, “Fabrication and characterisation of ultra-long-period fibre gratings,” Opt. Commun. 203(3–6), 277–281 (2002).
[Crossref]

2001 (1)

2000 (1)

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

1974 (1)

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Bennion, I.

X. W. Shu, L. Zhang, and I. Bennion, “Fabrication and characterisation of ultra-long-period fibre gratings,” Opt. Commun. 203(3–6), 277–281 (2002).
[Crossref]

Berghmans, F.

Brambilla, G.

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 1–19 (2010).
[Crossref]

Brichard, B.

Chen, C.

X. Zhang, Y. Yu, C. Chen, C. Zhu, R. Yang, Z. Liu, J. Liang, Q. Chen, and H. Sun, “Point-by-point dip coated long-period gratings in microfibers,” IEEE Photonics Technol. Lett. 26(24), 2503–2506 (2014).
[Crossref]

J. C. Guo, Y. S. Yu, X. L. Zhang, C. Chen, R. Yang, C. Wang, R. Z. Yang, Q. D. Chen, and H. B. Sun, “Compact long-period fiber gratings with resonance at second-order diffraction,” IEEE Photonics Technol. Lett. 24(16), 1393–1395 (2012).
[Crossref]

Chen, Q.

X. Zhang, Y. Yu, C. Chen, C. Zhu, R. Yang, Z. Liu, J. Liang, Q. Chen, and H. Sun, “Point-by-point dip coated long-period gratings in microfibers,” IEEE Photonics Technol. Lett. 26(24), 2503–2506 (2014).
[Crossref]

Chen, Q. D.

J. C. Guo, Y. S. Yu, X. L. Zhang, C. Chen, R. Yang, C. Wang, R. Z. Yang, Q. D. Chen, and H. B. Sun, “Compact long-period fiber gratings with resonance at second-order diffraction,” IEEE Photonics Technol. Lett. 24(16), 1393–1395 (2012).
[Crossref]

Dianov, E.

Dianov, E. M.

Dürr, F.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Fernandez Fernandez, A.

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Gaylord, T. K.

Guan, B. O.

Guo, J. C.

J. C. Guo, Y. S. Yu, X. L. Zhang, C. Chen, R. Yang, C. Wang, R. Z. Yang, Q. D. Chen, and H. B. Sun, “Compact long-period fiber gratings with resonance at second-order diffraction,” IEEE Photonics Technol. Lett. 24(16), 1393–1395 (2012).
[Crossref]

Gusarov, A.

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Hernández-Cordero, J.

A. Martínez-Gaytán, J. Soto-Olmos, L. Oropeza-Ramos, and J. Hernández-Cordero, “Fabrication Process for PDMS Polymer/Silica Long-Period Fiber Grating Sensors,” IEEE Photonics Technol. Lett. 27(20), 2150–2153 (2015).
[Crossref]

Ivanov, O. V.

James, S. W.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

Jenkins, M. H.

Jin, L.

Jin, W.

Koshiba, M.

Li, J.

Liang, J.

X. Zhang, Y. Yu, C. Chen, C. Zhu, R. Yang, Z. Liu, J. Liang, Q. Chen, and H. Sun, “Point-by-point dip coated long-period gratings in microfibers,” IEEE Photonics Technol. Lett. 26(24), 2503–2506 (2014).
[Crossref]

Liao, C.

Limberger, H. G.

Liu, B.

Liu, S.

Liu, Y.

Liu, Z.

X. Zhang, Y. Yu, C. Chen, C. Zhu, R. Yang, Z. Liu, J. Liang, Q. Chen, and H. Sun, “Point-by-point dip coated long-period gratings in microfibers,” IEEE Photonics Technol. Lett. 26(24), 2503–2506 (2014).
[Crossref]

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Marques, P. V. S.

Martínez-Gaytán, A.

A. Martínez-Gaytán, J. Soto-Olmos, L. Oropeza-Ramos, and J. Hernández-Cordero, “Fabrication Process for PDMS Polymer/Silica Long-Period Fiber Grating Sensors,” IEEE Photonics Technol. Lett. 27(20), 2150–2153 (2015).
[Crossref]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Miyake, Y.

Morishita, K.

Okhotnikov, O.

Oropeza-Ramos, L.

A. Martínez-Gaytán, J. Soto-Olmos, L. Oropeza-Ramos, and J. Hernández-Cordero, “Fabrication Process for PDMS Polymer/Silica Long-Period Fiber Grating Sensors,” IEEE Photonics Technol. Lett. 27(20), 2150–2153 (2015).
[Crossref]

Palmer, K. F.

Ran, Y.

Z. Yu, L. Jin, L. Sun, J. Li, Y. Ran, and B. O. Guan, “Highly sensitive fiber taper interferometric hydrogen sensors,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Rego, G.

Salathé, R. P.

Salgado, H. M.

Santos, J. L.

Semjonov, S. L.

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Shu, X. W.

X. W. Shu, L. Zhang, and I. Bennion, “Fabrication and characterisation of ultra-long-period fibre gratings,” Opt. Commun. 203(3–6), 277–281 (2002).
[Crossref]

Soto-Olmos, J.

A. Martínez-Gaytán, J. Soto-Olmos, L. Oropeza-Ramos, and J. Hernández-Cordero, “Fabrication Process for PDMS Polymer/Silica Long-Period Fiber Grating Sensors,” IEEE Photonics Technol. Lett. 27(20), 2150–2153 (2015).
[Crossref]

Sulimov, V.

Sun, H.

X. Zhang, Y. Yu, C. Chen, C. Zhu, R. Yang, Z. Liu, J. Liang, Q. Chen, and H. Sun, “Point-by-point dip coated long-period gratings in microfibers,” IEEE Photonics Technol. Lett. 26(24), 2503–2506 (2014).
[Crossref]

Sun, H. B.

J. C. Guo, Y. S. Yu, X. L. Zhang, C. Chen, R. Yang, C. Wang, R. Z. Yang, Q. D. Chen, and H. B. Sun, “Compact long-period fiber gratings with resonance at second-order diffraction,” IEEE Photonics Technol. Lett. 24(16), 1393–1395 (2012).
[Crossref]

Sun, L.

Z. Yu, L. Jin, L. Sun, J. Li, Y. Ran, and B. O. Guan, “Highly sensitive fiber taper interferometric hydrogen sensors,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Sun, L. P.

Tai, B.

Tan, Y.

Tang, J.

Tatam, R. P.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Tong, W.

Tsuji, Y.

Wang, C.

J. C. Guo, Y. S. Yu, X. L. Zhang, C. Chen, R. Yang, C. Wang, R. Z. Yang, Q. D. Chen, and H. B. Sun, “Compact long-period fiber gratings with resonance at second-order diffraction,” IEEE Photonics Technol. Lett. 24(16), 1393–1395 (2012).
[Crossref]

Wang, P.

Wang, Y.

Wang, Y. P.

Y. P. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys. 108(8), 081101 (2010).
[Crossref]

Wang, Z.

Wei, H.

Williams, D.

Xu, J.

Xuan, H.

Yang, R.

X. Zhang, Y. Yu, C. Chen, C. Zhu, R. Yang, Z. Liu, J. Liang, Q. Chen, and H. Sun, “Point-by-point dip coated long-period gratings in microfibers,” IEEE Photonics Technol. Lett. 26(24), 2503–2506 (2014).
[Crossref]

J. C. Guo, Y. S. Yu, X. L. Zhang, C. Chen, R. Yang, C. Wang, R. Z. Yang, Q. D. Chen, and H. B. Sun, “Compact long-period fiber gratings with resonance at second-order diffraction,” IEEE Photonics Technol. Lett. 24(16), 1393–1395 (2012).
[Crossref]

Yang, R. Z.

J. C. Guo, Y. S. Yu, X. L. Zhang, C. Chen, R. Yang, C. Wang, R. Z. Yang, Q. D. Chen, and H. B. Sun, “Compact long-period fiber gratings with resonance at second-order diffraction,” IEEE Photonics Technol. Lett. 24(16), 1393–1395 (2012).
[Crossref]

Yin, G.

Yu, Y.

X. Zhang, Y. Yu, C. Chen, C. Zhu, R. Yang, Z. Liu, J. Liang, Q. Chen, and H. Sun, “Point-by-point dip coated long-period gratings in microfibers,” IEEE Photonics Technol. Lett. 26(24), 2503–2506 (2014).
[Crossref]

Yu, Y. S.

J. C. Guo, Y. S. Yu, X. L. Zhang, C. Chen, R. Yang, C. Wang, R. Z. Yang, Q. D. Chen, and H. B. Sun, “Compact long-period fiber gratings with resonance at second-order diffraction,” IEEE Photonics Technol. Lett. 24(16), 1393–1395 (2012).
[Crossref]

Yu, Z.

Z. Yu, L. Jin, L. Sun, J. Li, Y. Ran, and B. O. Guan, “Highly sensitive fiber taper interferometric hydrogen sensors,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Zhang, L.

X. W. Shu, L. Zhang, and I. Bennion, “Fabrication and characterisation of ultra-long-period fibre gratings,” Opt. Commun. 203(3–6), 277–281 (2002).
[Crossref]

Zhang, M.

Zhang, X.

X. Zhang, Y. Yu, C. Chen, C. Zhu, R. Yang, Z. Liu, J. Liang, Q. Chen, and H. Sun, “Point-by-point dip coated long-period gratings in microfibers,” IEEE Photonics Technol. Lett. 26(24), 2503–2506 (2014).
[Crossref]

Zhang, X. L.

J. C. Guo, Y. S. Yu, X. L. Zhang, C. Chen, R. Yang, C. Wang, R. Z. Yang, Q. D. Chen, and H. B. Sun, “Compact long-period fiber gratings with resonance at second-order diffraction,” IEEE Photonics Technol. Lett. 24(16), 1393–1395 (2012).
[Crossref]

Zhu, C.

X. Zhang, Y. Yu, C. Chen, C. Zhu, R. Yang, Z. Liu, J. Liang, Q. Chen, and H. Sun, “Point-by-point dip coated long-period gratings in microfibers,” IEEE Photonics Technol. Lett. 26(24), 2503–2506 (2014).
[Crossref]

Appl. Opt. (3)

IEEE Photonics J. (1)

Z. Yu, L. Jin, L. Sun, J. Li, Y. Ran, and B. O. Guan, “Highly sensitive fiber taper interferometric hydrogen sensors,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (3)

X. Zhang, Y. Yu, C. Chen, C. Zhu, R. Yang, Z. Liu, J. Liang, Q. Chen, and H. Sun, “Point-by-point dip coated long-period gratings in microfibers,” IEEE Photonics Technol. Lett. 26(24), 2503–2506 (2014).
[Crossref]

A. Martínez-Gaytán, J. Soto-Olmos, L. Oropeza-Ramos, and J. Hernández-Cordero, “Fabrication Process for PDMS Polymer/Silica Long-Period Fiber Grating Sensors,” IEEE Photonics Technol. Lett. 27(20), 2150–2153 (2015).
[Crossref]

J. C. Guo, Y. S. Yu, X. L. Zhang, C. Chen, R. Yang, C. Wang, R. Z. Yang, Q. D. Chen, and H. B. Sun, “Compact long-period fiber gratings with resonance at second-order diffraction,” IEEE Photonics Technol. Lett. 24(16), 1393–1395 (2012).
[Crossref]

J. Appl. Phys. (1)

Y. P. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys. 108(8), 081101 (2010).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. (1)

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 1–19 (2010).
[Crossref]

J. Opt. Soc. Am. (1)

Meas. Sci. Technol. (1)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

X. W. Shu, L. Zhang, and I. Bennion, “Fabrication and characterisation of ultra-long-period fibre gratings,” Opt. Commun. 203(3–6), 277–281 (2002).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Other (1)

M. Bass, Handbook of Optics, 3rd ed. (McGraw-Hill, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic for fabricating MF-LPGs characterized by higher-order diffraction using an electric arc discharge method. (b) Microscopic image of an individual taper on the microfiber created by arc discharge. (c) Microscopic image of periodical tapers in an MF-LPG with period of Λ = 400 μm.
Fig. 2
Fig. 2 Evolution of the transmission spectrum of an MF-LPG with the increasing period number with Λ = 400 μm and q = 5.
Fig. 3
Fig. 3 (a) A series of the transmission spectra for the MF-LPGs at different grating periods. (b) Measured (points) and modeled (curves) resonant wavelengths as functions of the grating period in respect of different diffraction orders.
Fig. 4
Fig. 4 Measured (points) and modeled (curves) dip wavelength shifts as functions of external RI. Inset indicates the transmission spectra with respect to different RIs.
Fig. 5
Fig. 5 Modeled (curves) and measured (points) RI sensitivities as functions of the wavelength λ at d = 9.6 μm and the microfiber diameter d at λ = 1550 nm, respectively, around RI = 1.333. The coordinates of experimental data include: A (1527.13 nm, 1418.75 nm/RIU) for q = 5 and Λ = 400 μm, B (1470.20 nm, 1262.15 nm/RIU) for q = 7 and Λ = 600 μm, C (1404.46 nm, 1168.56 nm/RIU) for q = 6 and Λ = 500μm, D (1233.73nm, 847.69 nm/RIU) for q = 6 and Λ = 600 μm, and E (9.6 μm, 1418.75 nm/RIU) for q = 5 and Λ = 400 μm.
Fig. 6
Fig. 6 Measured wavelength shift of the arc-induced MF-LPG as a function of temperature.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λ= ( n eff1 n eff2 )Λ /q ,
κ 12 (z)= 1 4 { h 2 × e 1 z e 1 × h 2 z } z dA ,
S= dλ / dRI =( λ/Γ )×( Δn / RI ).
dλ dT = λΔn Γ ( α+ β si Δn Δn N si ),

Metrics