Abstract

We demonstrate a novel technique for normal-incident absorption in intersubband infrared detectors by taking advantage of light scattering from the side-walls of a wet-etched mesa. We fabricate ‘spiral’ and ‘hairpin’ shaped quantum cascade detector at a peak wavelength of 6.6 μm, and compare their performance with a standard rectangular mesa. We achieve a peak responsivity of 6 mA/W for the spiral and 12 mA/W for the hairpin detectors at normal incidence, comparable to the 8.8 mA/W obtained for the mesa at 45 degree incidence. We obtain a background limited detectivity of about 3×1010cmHz/W for the spiral and hairpin detectors at 80 K, compared to 3×108cmHz/W for the standard mesa. This method to achieve normal incidence absorption is wavelength independent, and does not involve complicated fabrication procedures, paving the way for widespread use of intersubband detectors in sensor applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
First demonstration of plasmonic GaN quantum cascade detectors with enhanced efficiency at normal incidence

Asaf Pesach, Salam Sakr, Etienne Giraud, Ofir Sorias, Lior Gal, Maria Tchernycheva, Meir Orenstein, Nicolas Grandjean, Francois H. Julien, and Gad Bahir
Opt. Express 22(17) 21069-21078 (2014)

4.3 μm quantum cascade detector in pixel configuration

A. Harrer, B. Schwarz, S. Schuler, P. Reininger, A. Wirthmüller, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, M. Rothermund, H. Oppermann, W. Schrenk, and G. Strasser
Opt. Express 24(15) 17041-17049 (2016)

High-efficiency normal-incidence vertical p-i-n photodetectors on a germanium-on-insulator platform

Yiding Lin, Kwang Hong Lee, Shuyu Bao, Xin Guo, Hong Wang, Jurgen Michel, and Chuan Seng Tan
Photon. Res. 5(6) 702-709 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors (Springer, 2007).
  2. A. Harrer, B. Schwarz, S. Schuler, P. Reininger, A. Wirthmüller, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, M. Rothermund, H. Oppermann, W. Schrenk, and G. Strasser, “4.3 μm quantum cascade detector in pixel configuration,” Opt. Express 24(15), 17041–17049 (2016).
    [Crossref] [PubMed]
  3. A. P. Ravikumar, J. De Jesus, M. C. Tamargo, and C. F. Gmachl, “High performance, room temperature, broadband II–VI quantum cascade detector,” Appl. Phys. Lett. 107(14), 141105 (2015).
    [Crossref]
  4. A. P. Ravikumar, T. A. Garcia, J. De Jesus, M. C. Tamargo, and C. F. Gmachl, “High detectivity short wavelength II–VI quantum cascade detector,” Appl. Phys. Lett. 105(6), 061113 (2014).
    [Crossref]
  5. P. Reininger, B. Schwarz, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “Diagonal transition quantum cascade detector,” Appl. Phys. Lett. 105, 091108 (2014).
    [Crossref]
  6. M. Z. Tidrow, K. K. Choi, A. J. DeAnni, W. H. Chang, and S. P. Svensson, “Grating coupled multicolor quantum well infrared photodetector,” Appl. Phys. Lett. 67(13), 1800–1802 (1995).
    [Crossref]
  7. Y. S. Larry and S. S. Li, “A metal grating coupled bound-to-miniband transition GaAs multiquantum well/superlattice infrared detector,” Appl. Phys. Lett. 59(11), 1332–1334 (1991).
    [Crossref]
  8. P. Bois, E. Costard, X. Marcadet, and E. Herniou, “Development of quantum well infrared photodetectors in France,” Infrared Phys. Technol. 42(3), 291–300 (2001).
    [Crossref]
  9. T. R. Schimert, S. L. Barnes, A. J. Brouns, F. C. Case, P. Mitra, and L. T. Claiborne, “Enhanced quantum well infrared photodetector with novel multiple quantum well grating structure,” Appl. Phys. Lett. 68(20), 2846–2848 (1996).
    [Crossref]
  10. J. Y. Andersson and L. Lundqvist, “Grating-coupled quantum-well infrared detectors: theory and performance,” J. Appl. Phys. 71(7), 3600–3610 (1992).
    [Crossref]
  11. E. Dupont, “Optimization of lamellar gratings for quantum-well infrared photodetectors,” J. Appl. Phys. 88(5), 2687–2692 (2000).
    [Crossref]
  12. L. Li, D. Xiong, J. Wen, N. Li, and Z. Zhu, “A surface plasmonic coupled mid-long-infrared two-color quantum cascade detector,” Infrared Phys. Technol. 79, 45–49 (2016).
    [Crossref]
  13. A. Pesach, S. Sakr, E. Giraud, O. Sorias, L. Gal, M. Tchernycheva, M. Orenstein, N. Grandjean, F. H. Julien, and G. Bahir, “First demonstration of plasmonic GaN quantum cascade detectors with enhanced efficiency at normal incidence,” Opt. Express 22(17), 21069 (2014).
    [PubMed]
  14. A. Harrer, B. Schwarz, R. Gansch, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, W. Schrenk, and G. Strasser, “Plasmonic lens enhanced mid-infrared quantum cascade detector,” Appl. Phys. Lett. 105, 171112 (2014).
    [Crossref]
  15. W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
    [Crossref]
  16. S. Zhai, J. Liu, F. Liu, and Z. Wang, “A normal incident quantum cascade detector enhanced by surface plasmons,” Appl. Phys. Lett. 100(18), 181104 (2012).
    [Crossref]
  17. S. D. Gunapala, B. F. Levine, D. Ritter, R. Hamm, and M. B. Panish, “InGaAs/InP hole intersubband normal incidence quantum well infrared photodetector,” J. Appl. Phys. 71(5), 2458–2460 (1992).
    [Crossref]
  18. B. F. Levine, S. D. Gunapala, J. M. Kuo, S. S. Pei, and S. Hui, “Normal incidence hole intersubband absorption long wavelength GaAs/AlxGa1− xAs quantum well infrared photodetectors,” Appl. Phys. Lett. 59(15), 1864–1866 (1991).
    [Crossref]
  19. S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011).
    [Crossref]
  20. X. Wang, S. Zhai, N. Zhuo, J. Liu, F. Liu, S. Liu, and Z. Wang, “Quantum dot quantum cascade infrared photodetector,” Appl. Phys. Lett. 104, 171108 (2014).
    [Crossref]
  21. C. J. Chen, K. K. Choi, M. Z. Tidrow, and D. C. Tsui, “Corrugated quantum well infrared photodetectors for normal incident light coupling,” Appl. Phys. Lett. 68(11), 1446–1448 (1996).
    [Crossref]
  22. K. K. Choi, D. P. Forrai, D. W. Endres, and J. Sun, “Corrugated quantum-well infrared photodetector focal plane arrays,” IEEE J. Quantum Electron. 45(10), 1255–1264 (2009).
    [Crossref]
  23. C. J. Chen, K. K. Choi, L. Rokhinson, W. H. Chang, and D. C. Tsui, “A characterization technique for quantum well infrared photodetectors,” Appl. Phys. Lett. 75(20), 3210–3212 (1999).
    [Crossref]
  24. C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B 50(12), 8663–8674 (1994).
    [Crossref]

2016 (2)

2015 (1)

A. P. Ravikumar, J. De Jesus, M. C. Tamargo, and C. F. Gmachl, “High performance, room temperature, broadband II–VI quantum cascade detector,” Appl. Phys. Lett. 107(14), 141105 (2015).
[Crossref]

2014 (5)

A. P. Ravikumar, T. A. Garcia, J. De Jesus, M. C. Tamargo, and C. F. Gmachl, “High detectivity short wavelength II–VI quantum cascade detector,” Appl. Phys. Lett. 105(6), 061113 (2014).
[Crossref]

P. Reininger, B. Schwarz, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “Diagonal transition quantum cascade detector,” Appl. Phys. Lett. 105, 091108 (2014).
[Crossref]

A. Harrer, B. Schwarz, R. Gansch, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, W. Schrenk, and G. Strasser, “Plasmonic lens enhanced mid-infrared quantum cascade detector,” Appl. Phys. Lett. 105, 171112 (2014).
[Crossref]

X. Wang, S. Zhai, N. Zhuo, J. Liu, F. Liu, S. Liu, and Z. Wang, “Quantum dot quantum cascade infrared photodetector,” Appl. Phys. Lett. 104, 171108 (2014).
[Crossref]

A. Pesach, S. Sakr, E. Giraud, O. Sorias, L. Gal, M. Tchernycheva, M. Orenstein, N. Grandjean, F. H. Julien, and G. Bahir, “First demonstration of plasmonic GaN quantum cascade detectors with enhanced efficiency at normal incidence,” Opt. Express 22(17), 21069 (2014).
[PubMed]

2012 (1)

S. Zhai, J. Liu, F. Liu, and Z. Wang, “A normal incident quantum cascade detector enhanced by surface plasmons,” Appl. Phys. Lett. 100(18), 181104 (2012).
[Crossref]

2011 (1)

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011).
[Crossref]

2010 (1)

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[Crossref]

2009 (1)

K. K. Choi, D. P. Forrai, D. W. Endres, and J. Sun, “Corrugated quantum-well infrared photodetector focal plane arrays,” IEEE J. Quantum Electron. 45(10), 1255–1264 (2009).
[Crossref]

2001 (1)

P. Bois, E. Costard, X. Marcadet, and E. Herniou, “Development of quantum well infrared photodetectors in France,” Infrared Phys. Technol. 42(3), 291–300 (2001).
[Crossref]

2000 (1)

E. Dupont, “Optimization of lamellar gratings for quantum-well infrared photodetectors,” J. Appl. Phys. 88(5), 2687–2692 (2000).
[Crossref]

1999 (1)

C. J. Chen, K. K. Choi, L. Rokhinson, W. H. Chang, and D. C. Tsui, “A characterization technique for quantum well infrared photodetectors,” Appl. Phys. Lett. 75(20), 3210–3212 (1999).
[Crossref]

1996 (2)

C. J. Chen, K. K. Choi, M. Z. Tidrow, and D. C. Tsui, “Corrugated quantum well infrared photodetectors for normal incident light coupling,” Appl. Phys. Lett. 68(11), 1446–1448 (1996).
[Crossref]

T. R. Schimert, S. L. Barnes, A. J. Brouns, F. C. Case, P. Mitra, and L. T. Claiborne, “Enhanced quantum well infrared photodetector with novel multiple quantum well grating structure,” Appl. Phys. Lett. 68(20), 2846–2848 (1996).
[Crossref]

1995 (1)

M. Z. Tidrow, K. K. Choi, A. J. DeAnni, W. H. Chang, and S. P. Svensson, “Grating coupled multicolor quantum well infrared photodetector,” Appl. Phys. Lett. 67(13), 1800–1802 (1995).
[Crossref]

1994 (1)

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B 50(12), 8663–8674 (1994).
[Crossref]

1992 (2)

S. D. Gunapala, B. F. Levine, D. Ritter, R. Hamm, and M. B. Panish, “InGaAs/InP hole intersubband normal incidence quantum well infrared photodetector,” J. Appl. Phys. 71(5), 2458–2460 (1992).
[Crossref]

J. Y. Andersson and L. Lundqvist, “Grating-coupled quantum-well infrared detectors: theory and performance,” J. Appl. Phys. 71(7), 3600–3610 (1992).
[Crossref]

1991 (2)

Y. S. Larry and S. S. Li, “A metal grating coupled bound-to-miniband transition GaAs multiquantum well/superlattice infrared detector,” Appl. Phys. Lett. 59(11), 1332–1334 (1991).
[Crossref]

B. F. Levine, S. D. Gunapala, J. M. Kuo, S. S. Pei, and S. Hui, “Normal incidence hole intersubband absorption long wavelength GaAs/AlxGa1− xAs quantum well infrared photodetectors,” Appl. Phys. Lett. 59(15), 1864–1866 (1991).
[Crossref]

Andersson, J. Y.

J. Y. Andersson and L. Lundqvist, “Grating-coupled quantum-well infrared detectors: theory and performance,” J. Appl. Phys. 71(7), 3600–3610 (1992).
[Crossref]

Andrews, A. M.

A. Harrer, B. Schwarz, S. Schuler, P. Reininger, A. Wirthmüller, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, M. Rothermund, H. Oppermann, W. Schrenk, and G. Strasser, “4.3 μm quantum cascade detector in pixel configuration,” Opt. Express 24(15), 17041–17049 (2016).
[Crossref] [PubMed]

A. Harrer, B. Schwarz, R. Gansch, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, W. Schrenk, and G. Strasser, “Plasmonic lens enhanced mid-infrared quantum cascade detector,” Appl. Phys. Lett. 105, 171112 (2014).
[Crossref]

P. Reininger, B. Schwarz, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “Diagonal transition quantum cascade detector,” Appl. Phys. Lett. 105, 091108 (2014).
[Crossref]

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011).
[Crossref]

Bahir, G.

Barnes, S. L.

T. R. Schimert, S. L. Barnes, A. J. Brouns, F. C. Case, P. Mitra, and L. T. Claiborne, “Enhanced quantum well infrared photodetector with novel multiple quantum well grating structure,” Appl. Phys. Lett. 68(20), 2846–2848 (1996).
[Crossref]

Baumgartner, O.

P. Reininger, B. Schwarz, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “Diagonal transition quantum cascade detector,” Appl. Phys. Lett. 105, 091108 (2014).
[Crossref]

Bois, P.

P. Bois, E. Costard, X. Marcadet, and E. Herniou, “Development of quantum well infrared photodetectors in France,” Infrared Phys. Technol. 42(3), 291–300 (2001).
[Crossref]

Bonakdar, A.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[Crossref]

Brouns, A. J.

T. R. Schimert, S. L. Barnes, A. J. Brouns, F. C. Case, P. Mitra, and L. T. Claiborne, “Enhanced quantum well infrared photodetector with novel multiple quantum well grating structure,” Appl. Phys. Lett. 68(20), 2846–2848 (1996).
[Crossref]

Capasso, F.

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B 50(12), 8663–8674 (1994).
[Crossref]

Case, F. C.

T. R. Schimert, S. L. Barnes, A. J. Brouns, F. C. Case, P. Mitra, and L. T. Claiborne, “Enhanced quantum well infrared photodetector with novel multiple quantum well grating structure,” Appl. Phys. Lett. 68(20), 2846–2848 (1996).
[Crossref]

Chang, W. H.

C. J. Chen, K. K. Choi, L. Rokhinson, W. H. Chang, and D. C. Tsui, “A characterization technique for quantum well infrared photodetectors,” Appl. Phys. Lett. 75(20), 3210–3212 (1999).
[Crossref]

M. Z. Tidrow, K. K. Choi, A. J. DeAnni, W. H. Chang, and S. P. Svensson, “Grating coupled multicolor quantum well infrared photodetector,” Appl. Phys. Lett. 67(13), 1800–1802 (1995).
[Crossref]

Chen, C. J.

C. J. Chen, K. K. Choi, L. Rokhinson, W. H. Chang, and D. C. Tsui, “A characterization technique for quantum well infrared photodetectors,” Appl. Phys. Lett. 75(20), 3210–3212 (1999).
[Crossref]

C. J. Chen, K. K. Choi, M. Z. Tidrow, and D. C. Tsui, “Corrugated quantum well infrared photodetectors for normal incident light coupling,” Appl. Phys. Lett. 68(11), 1446–1448 (1996).
[Crossref]

Choi, K. K.

K. K. Choi, D. P. Forrai, D. W. Endres, and J. Sun, “Corrugated quantum-well infrared photodetector focal plane arrays,” IEEE J. Quantum Electron. 45(10), 1255–1264 (2009).
[Crossref]

C. J. Chen, K. K. Choi, L. Rokhinson, W. H. Chang, and D. C. Tsui, “A characterization technique for quantum well infrared photodetectors,” Appl. Phys. Lett. 75(20), 3210–3212 (1999).
[Crossref]

C. J. Chen, K. K. Choi, M. Z. Tidrow, and D. C. Tsui, “Corrugated quantum well infrared photodetectors for normal incident light coupling,” Appl. Phys. Lett. 68(11), 1446–1448 (1996).
[Crossref]

M. Z. Tidrow, K. K. Choi, A. J. DeAnni, W. H. Chang, and S. P. Svensson, “Grating coupled multicolor quantum well infrared photodetector,” Appl. Phys. Lett. 67(13), 1800–1802 (1995).
[Crossref]

Claiborne, L. T.

T. R. Schimert, S. L. Barnes, A. J. Brouns, F. C. Case, P. Mitra, and L. T. Claiborne, “Enhanced quantum well infrared photodetector with novel multiple quantum well grating structure,” Appl. Phys. Lett. 68(20), 2846–2848 (1996).
[Crossref]

Cole, G. D.

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011).
[Crossref]

Costard, E.

P. Bois, E. Costard, X. Marcadet, and E. Herniou, “Development of quantum well infrared photodetectors in France,” Infrared Phys. Technol. 42(3), 291–300 (2001).
[Crossref]

De Jesus, J.

A. P. Ravikumar, J. De Jesus, M. C. Tamargo, and C. F. Gmachl, “High performance, room temperature, broadband II–VI quantum cascade detector,” Appl. Phys. Lett. 107(14), 141105 (2015).
[Crossref]

A. P. Ravikumar, T. A. Garcia, J. De Jesus, M. C. Tamargo, and C. F. Gmachl, “High detectivity short wavelength II–VI quantum cascade detector,” Appl. Phys. Lett. 105(6), 061113 (2014).
[Crossref]

DeAnni, A. J.

M. Z. Tidrow, K. K. Choi, A. J. DeAnni, W. H. Chang, and S. P. Svensson, “Grating coupled multicolor quantum well infrared photodetector,” Appl. Phys. Lett. 67(13), 1800–1802 (1995).
[Crossref]

Detz, H.

A. Harrer, B. Schwarz, S. Schuler, P. Reininger, A. Wirthmüller, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, M. Rothermund, H. Oppermann, W. Schrenk, and G. Strasser, “4.3 μm quantum cascade detector in pixel configuration,” Opt. Express 24(15), 17041–17049 (2016).
[Crossref] [PubMed]

A. Harrer, B. Schwarz, R. Gansch, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, W. Schrenk, and G. Strasser, “Plasmonic lens enhanced mid-infrared quantum cascade detector,” Appl. Phys. Lett. 105, 171112 (2014).
[Crossref]

P. Reininger, B. Schwarz, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “Diagonal transition quantum cascade detector,” Appl. Phys. Lett. 105, 091108 (2014).
[Crossref]

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011).
[Crossref]

Dupont, E.

E. Dupont, “Optimization of lamellar gratings for quantum-well infrared photodetectors,” J. Appl. Phys. 88(5), 2687–2692 (2000).
[Crossref]

Endres, D. W.

K. K. Choi, D. P. Forrai, D. W. Endres, and J. Sun, “Corrugated quantum-well infrared photodetector focal plane arrays,” IEEE J. Quantum Electron. 45(10), 1255–1264 (2009).
[Crossref]

Faist, J.

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B 50(12), 8663–8674 (1994).
[Crossref]

Forrai, D. P.

K. K. Choi, D. P. Forrai, D. W. Endres, and J. Sun, “Corrugated quantum-well infrared photodetector focal plane arrays,” IEEE J. Quantum Electron. 45(10), 1255–1264 (2009).
[Crossref]

Gal, L.

Gansch, R.

A. Harrer, B. Schwarz, R. Gansch, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, W. Schrenk, and G. Strasser, “Plasmonic lens enhanced mid-infrared quantum cascade detector,” Appl. Phys. Lett. 105, 171112 (2014).
[Crossref]

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011).
[Crossref]

Garcia, T. A.

A. P. Ravikumar, T. A. Garcia, J. De Jesus, M. C. Tamargo, and C. F. Gmachl, “High detectivity short wavelength II–VI quantum cascade detector,” Appl. Phys. Lett. 105(6), 061113 (2014).
[Crossref]

Giraud, E.

Gmachl, C. F.

A. P. Ravikumar, J. De Jesus, M. C. Tamargo, and C. F. Gmachl, “High performance, room temperature, broadband II–VI quantum cascade detector,” Appl. Phys. Lett. 107(14), 141105 (2015).
[Crossref]

A. P. Ravikumar, T. A. Garcia, J. De Jesus, M. C. Tamargo, and C. F. Gmachl, “High detectivity short wavelength II–VI quantum cascade detector,” Appl. Phys. Lett. 105(6), 061113 (2014).
[Crossref]

Grandjean, N.

Gunapala, S. D.

S. D. Gunapala, B. F. Levine, D. Ritter, R. Hamm, and M. B. Panish, “InGaAs/InP hole intersubband normal incidence quantum well infrared photodetector,” J. Appl. Phys. 71(5), 2458–2460 (1992).
[Crossref]

B. F. Levine, S. D. Gunapala, J. M. Kuo, S. S. Pei, and S. Hui, “Normal incidence hole intersubband absorption long wavelength GaAs/AlxGa1− xAs quantum well infrared photodetectors,” Appl. Phys. Lett. 59(15), 1864–1866 (1991).
[Crossref]

Hamm, R.

S. D. Gunapala, B. F. Levine, D. Ritter, R. Hamm, and M. B. Panish, “InGaAs/InP hole intersubband normal incidence quantum well infrared photodetector,” J. Appl. Phys. 71(5), 2458–2460 (1992).
[Crossref]

Harrer, A.

A. Harrer, B. Schwarz, S. Schuler, P. Reininger, A. Wirthmüller, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, M. Rothermund, H. Oppermann, W. Schrenk, and G. Strasser, “4.3 μm quantum cascade detector in pixel configuration,” Opt. Express 24(15), 17041–17049 (2016).
[Crossref] [PubMed]

A. Harrer, B. Schwarz, R. Gansch, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, W. Schrenk, and G. Strasser, “Plasmonic lens enhanced mid-infrared quantum cascade detector,” Appl. Phys. Lett. 105, 171112 (2014).
[Crossref]

Herniou, E.

P. Bois, E. Costard, X. Marcadet, and E. Herniou, “Development of quantum well infrared photodetectors in France,” Infrared Phys. Technol. 42(3), 291–300 (2001).
[Crossref]

Hui, S.

B. F. Levine, S. D. Gunapala, J. M. Kuo, S. S. Pei, and S. Hui, “Normal incidence hole intersubband absorption long wavelength GaAs/AlxGa1− xAs quantum well infrared photodetectors,” Appl. Phys. Lett. 59(15), 1864–1866 (1991).
[Crossref]

Julien, F. H.

Kalchmair, S.

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011).
[Crossref]

Klang, P.

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011).
[Crossref]

Kosina, H.

P. Reininger, B. Schwarz, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “Diagonal transition quantum cascade detector,” Appl. Phys. Lett. 105, 091108 (2014).
[Crossref]

Kuo, J. M.

B. F. Levine, S. D. Gunapala, J. M. Kuo, S. S. Pei, and S. Hui, “Normal incidence hole intersubband absorption long wavelength GaAs/AlxGa1− xAs quantum well infrared photodetectors,” Appl. Phys. Lett. 59(15), 1864–1866 (1991).
[Crossref]

Larry, Y. S.

Y. S. Larry and S. S. Li, “A metal grating coupled bound-to-miniband transition GaAs multiquantum well/superlattice infrared detector,” Appl. Phys. Lett. 59(11), 1332–1334 (1991).
[Crossref]

Levine, B. F.

S. D. Gunapala, B. F. Levine, D. Ritter, R. Hamm, and M. B. Panish, “InGaAs/InP hole intersubband normal incidence quantum well infrared photodetector,” J. Appl. Phys. 71(5), 2458–2460 (1992).
[Crossref]

B. F. Levine, S. D. Gunapala, J. M. Kuo, S. S. Pei, and S. Hui, “Normal incidence hole intersubband absorption long wavelength GaAs/AlxGa1− xAs quantum well infrared photodetectors,” Appl. Phys. Lett. 59(15), 1864–1866 (1991).
[Crossref]

Li, L.

L. Li, D. Xiong, J. Wen, N. Li, and Z. Zhu, “A surface plasmonic coupled mid-long-infrared two-color quantum cascade detector,” Infrared Phys. Technol. 79, 45–49 (2016).
[Crossref]

Li, N.

L. Li, D. Xiong, J. Wen, N. Li, and Z. Zhu, “A surface plasmonic coupled mid-long-infrared two-color quantum cascade detector,” Infrared Phys. Technol. 79, 45–49 (2016).
[Crossref]

Li, S. S.

Y. S. Larry and S. S. Li, “A metal grating coupled bound-to-miniband transition GaAs multiquantum well/superlattice infrared detector,” Appl. Phys. Lett. 59(11), 1332–1334 (1991).
[Crossref]

Liu, F.

X. Wang, S. Zhai, N. Zhuo, J. Liu, F. Liu, S. Liu, and Z. Wang, “Quantum dot quantum cascade infrared photodetector,” Appl. Phys. Lett. 104, 171108 (2014).
[Crossref]

S. Zhai, J. Liu, F. Liu, and Z. Wang, “A normal incident quantum cascade detector enhanced by surface plasmons,” Appl. Phys. Lett. 100(18), 181104 (2012).
[Crossref]

Liu, H. C.

H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors (Springer, 2007).

Liu, J.

X. Wang, S. Zhai, N. Zhuo, J. Liu, F. Liu, S. Liu, and Z. Wang, “Quantum dot quantum cascade infrared photodetector,” Appl. Phys. Lett. 104, 171108 (2014).
[Crossref]

S. Zhai, J. Liu, F. Liu, and Z. Wang, “A normal incident quantum cascade detector enhanced by surface plasmons,” Appl. Phys. Lett. 100(18), 181104 (2012).
[Crossref]

Liu, S.

X. Wang, S. Zhai, N. Zhuo, J. Liu, F. Liu, S. Liu, and Z. Wang, “Quantum dot quantum cascade infrared photodetector,” Appl. Phys. Lett. 104, 171108 (2014).
[Crossref]

Lundqvist, L.

J. Y. Andersson and L. Lundqvist, “Grating-coupled quantum-well infrared detectors: theory and performance,” J. Appl. Phys. 71(7), 3600–3610 (1992).
[Crossref]

MacFarland, D.

A. Harrer, B. Schwarz, S. Schuler, P. Reininger, A. Wirthmüller, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, M. Rothermund, H. Oppermann, W. Schrenk, and G. Strasser, “4.3 μm quantum cascade detector in pixel configuration,” Opt. Express 24(15), 17041–17049 (2016).
[Crossref] [PubMed]

P. Reininger, B. Schwarz, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “Diagonal transition quantum cascade detector,” Appl. Phys. Lett. 105, 091108 (2014).
[Crossref]

Marcadet, X.

P. Bois, E. Costard, X. Marcadet, and E. Herniou, “Development of quantum well infrared photodetectors in France,” Infrared Phys. Technol. 42(3), 291–300 (2001).
[Crossref]

Mitra, P.

T. R. Schimert, S. L. Barnes, A. J. Brouns, F. C. Case, P. Mitra, and L. T. Claiborne, “Enhanced quantum well infrared photodetector with novel multiple quantum well grating structure,” Appl. Phys. Lett. 68(20), 2846–2848 (1996).
[Crossref]

Mohseni, H.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[Crossref]

Nobile, M.

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011).
[Crossref]

Oppermann, H.

Orenstein, M.

Ostermaier, C.

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011).
[Crossref]

Panish, M. B.

S. D. Gunapala, B. F. Levine, D. Ritter, R. Hamm, and M. B. Panish, “InGaAs/InP hole intersubband normal incidence quantum well infrared photodetector,” J. Appl. Phys. 71(5), 2458–2460 (1992).
[Crossref]

Pei, S. S.

B. F. Levine, S. D. Gunapala, J. M. Kuo, S. S. Pei, and S. Hui, “Normal incidence hole intersubband absorption long wavelength GaAs/AlxGa1− xAs quantum well infrared photodetectors,” Appl. Phys. Lett. 59(15), 1864–1866 (1991).
[Crossref]

Pesach, A.

Ravikumar, A. P.

A. P. Ravikumar, J. De Jesus, M. C. Tamargo, and C. F. Gmachl, “High performance, room temperature, broadband II–VI quantum cascade detector,” Appl. Phys. Lett. 107(14), 141105 (2015).
[Crossref]

A. P. Ravikumar, T. A. Garcia, J. De Jesus, M. C. Tamargo, and C. F. Gmachl, “High detectivity short wavelength II–VI quantum cascade detector,” Appl. Phys. Lett. 105(6), 061113 (2014).
[Crossref]

Reininger, P.

A. Harrer, B. Schwarz, S. Schuler, P. Reininger, A. Wirthmüller, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, M. Rothermund, H. Oppermann, W. Schrenk, and G. Strasser, “4.3 μm quantum cascade detector in pixel configuration,” Opt. Express 24(15), 17041–17049 (2016).
[Crossref] [PubMed]

A. Harrer, B. Schwarz, R. Gansch, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, W. Schrenk, and G. Strasser, “Plasmonic lens enhanced mid-infrared quantum cascade detector,” Appl. Phys. Lett. 105, 171112 (2014).
[Crossref]

P. Reininger, B. Schwarz, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “Diagonal transition quantum cascade detector,” Appl. Phys. Lett. 105, 091108 (2014).
[Crossref]

Ritter, D.

S. D. Gunapala, B. F. Levine, D. Ritter, R. Hamm, and M. B. Panish, “InGaAs/InP hole intersubband normal incidence quantum well infrared photodetector,” J. Appl. Phys. 71(5), 2458–2460 (1992).
[Crossref]

Rokhinson, L.

C. J. Chen, K. K. Choi, L. Rokhinson, W. H. Chang, and D. C. Tsui, “A characterization technique for quantum well infrared photodetectors,” Appl. Phys. Lett. 75(20), 3210–3212 (1999).
[Crossref]

Rothermund, M.

Sakr, S.

Scandolo, S.

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B 50(12), 8663–8674 (1994).
[Crossref]

Schimert, T. R.

T. R. Schimert, S. L. Barnes, A. J. Brouns, F. C. Case, P. Mitra, and L. T. Claiborne, “Enhanced quantum well infrared photodetector with novel multiple quantum well grating structure,” Appl. Phys. Lett. 68(20), 2846–2848 (1996).
[Crossref]

Schneider, H.

H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors (Springer, 2007).

Schrenk, W.

A. Harrer, B. Schwarz, S. Schuler, P. Reininger, A. Wirthmüller, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, M. Rothermund, H. Oppermann, W. Schrenk, and G. Strasser, “4.3 μm quantum cascade detector in pixel configuration,” Opt. Express 24(15), 17041–17049 (2016).
[Crossref] [PubMed]

A. Harrer, B. Schwarz, R. Gansch, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, W. Schrenk, and G. Strasser, “Plasmonic lens enhanced mid-infrared quantum cascade detector,” Appl. Phys. Lett. 105, 171112 (2014).
[Crossref]

P. Reininger, B. Schwarz, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “Diagonal transition quantum cascade detector,” Appl. Phys. Lett. 105, 091108 (2014).
[Crossref]

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011).
[Crossref]

Schuler, S.

Schwarz, B.

A. Harrer, B. Schwarz, S. Schuler, P. Reininger, A. Wirthmüller, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, M. Rothermund, H. Oppermann, W. Schrenk, and G. Strasser, “4.3 μm quantum cascade detector in pixel configuration,” Opt. Express 24(15), 17041–17049 (2016).
[Crossref] [PubMed]

A. Harrer, B. Schwarz, R. Gansch, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, W. Schrenk, and G. Strasser, “Plasmonic lens enhanced mid-infrared quantum cascade detector,” Appl. Phys. Lett. 105, 171112 (2014).
[Crossref]

P. Reininger, B. Schwarz, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “Diagonal transition quantum cascade detector,” Appl. Phys. Lett. 105, 091108 (2014).
[Crossref]

Sirtori, C.

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B 50(12), 8663–8674 (1994).
[Crossref]

Sorias, O.

Strasser, G.

A. Harrer, B. Schwarz, S. Schuler, P. Reininger, A. Wirthmüller, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, M. Rothermund, H. Oppermann, W. Schrenk, and G. Strasser, “4.3 μm quantum cascade detector in pixel configuration,” Opt. Express 24(15), 17041–17049 (2016).
[Crossref] [PubMed]

A. Harrer, B. Schwarz, R. Gansch, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, W. Schrenk, and G. Strasser, “Plasmonic lens enhanced mid-infrared quantum cascade detector,” Appl. Phys. Lett. 105, 171112 (2014).
[Crossref]

P. Reininger, B. Schwarz, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “Diagonal transition quantum cascade detector,” Appl. Phys. Lett. 105, 091108 (2014).
[Crossref]

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011).
[Crossref]

Sun, J.

K. K. Choi, D. P. Forrai, D. W. Endres, and J. Sun, “Corrugated quantum-well infrared photodetector focal plane arrays,” IEEE J. Quantum Electron. 45(10), 1255–1264 (2009).
[Crossref]

Svensson, S. P.

M. Z. Tidrow, K. K. Choi, A. J. DeAnni, W. H. Chang, and S. P. Svensson, “Grating coupled multicolor quantum well infrared photodetector,” Appl. Phys. Lett. 67(13), 1800–1802 (1995).
[Crossref]

Tamargo, M. C.

A. P. Ravikumar, J. De Jesus, M. C. Tamargo, and C. F. Gmachl, “High performance, room temperature, broadband II–VI quantum cascade detector,” Appl. Phys. Lett. 107(14), 141105 (2015).
[Crossref]

A. P. Ravikumar, T. A. Garcia, J. De Jesus, M. C. Tamargo, and C. F. Gmachl, “High detectivity short wavelength II–VI quantum cascade detector,” Appl. Phys. Lett. 105(6), 061113 (2014).
[Crossref]

Tchernycheva, M.

Tidrow, M. Z.

C. J. Chen, K. K. Choi, M. Z. Tidrow, and D. C. Tsui, “Corrugated quantum well infrared photodetectors for normal incident light coupling,” Appl. Phys. Lett. 68(11), 1446–1448 (1996).
[Crossref]

M. Z. Tidrow, K. K. Choi, A. J. DeAnni, W. H. Chang, and S. P. Svensson, “Grating coupled multicolor quantum well infrared photodetector,” Appl. Phys. Lett. 67(13), 1800–1802 (1995).
[Crossref]

Tsui, D. C.

C. J. Chen, K. K. Choi, L. Rokhinson, W. H. Chang, and D. C. Tsui, “A characterization technique for quantum well infrared photodetectors,” Appl. Phys. Lett. 75(20), 3210–3212 (1999).
[Crossref]

C. J. Chen, K. K. Choi, M. Z. Tidrow, and D. C. Tsui, “Corrugated quantum well infrared photodetectors for normal incident light coupling,” Appl. Phys. Lett. 68(11), 1446–1448 (1996).
[Crossref]

Wang, X.

X. Wang, S. Zhai, N. Zhuo, J. Liu, F. Liu, S. Liu, and Z. Wang, “Quantum dot quantum cascade infrared photodetector,” Appl. Phys. Lett. 104, 171108 (2014).
[Crossref]

Wang, Z.

X. Wang, S. Zhai, N. Zhuo, J. Liu, F. Liu, S. Liu, and Z. Wang, “Quantum dot quantum cascade infrared photodetector,” Appl. Phys. Lett. 104, 171108 (2014).
[Crossref]

S. Zhai, J. Liu, F. Liu, and Z. Wang, “A normal incident quantum cascade detector enhanced by surface plasmons,” Appl. Phys. Lett. 100(18), 181104 (2012).
[Crossref]

Wen, J.

L. Li, D. Xiong, J. Wen, N. Li, and Z. Zhu, “A surface plasmonic coupled mid-long-infrared two-color quantum cascade detector,” Infrared Phys. Technol. 79, 45–49 (2016).
[Crossref]

Wirthmüller, A.

Wu, W.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[Crossref]

Xiong, D.

L. Li, D. Xiong, J. Wen, N. Li, and Z. Zhu, “A surface plasmonic coupled mid-long-infrared two-color quantum cascade detector,” Infrared Phys. Technol. 79, 45–49 (2016).
[Crossref]

Zederbauer, T.

A. Harrer, B. Schwarz, S. Schuler, P. Reininger, A. Wirthmüller, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, M. Rothermund, H. Oppermann, W. Schrenk, and G. Strasser, “4.3 μm quantum cascade detector in pixel configuration,” Opt. Express 24(15), 17041–17049 (2016).
[Crossref] [PubMed]

A. Harrer, B. Schwarz, R. Gansch, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, W. Schrenk, and G. Strasser, “Plasmonic lens enhanced mid-infrared quantum cascade detector,” Appl. Phys. Lett. 105, 171112 (2014).
[Crossref]

P. Reininger, B. Schwarz, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “Diagonal transition quantum cascade detector,” Appl. Phys. Lett. 105, 091108 (2014).
[Crossref]

Zhai, S.

X. Wang, S. Zhai, N. Zhuo, J. Liu, F. Liu, S. Liu, and Z. Wang, “Quantum dot quantum cascade infrared photodetector,” Appl. Phys. Lett. 104, 171108 (2014).
[Crossref]

S. Zhai, J. Liu, F. Liu, and Z. Wang, “A normal incident quantum cascade detector enhanced by surface plasmons,” Appl. Phys. Lett. 100(18), 181104 (2012).
[Crossref]

Zhu, Z.

L. Li, D. Xiong, J. Wen, N. Li, and Z. Zhu, “A surface plasmonic coupled mid-long-infrared two-color quantum cascade detector,” Infrared Phys. Technol. 79, 45–49 (2016).
[Crossref]

Zhuo, N.

X. Wang, S. Zhai, N. Zhuo, J. Liu, F. Liu, S. Liu, and Z. Wang, “Quantum dot quantum cascade infrared photodetector,” Appl. Phys. Lett. 104, 171108 (2014).
[Crossref]

Appl. Phys. Lett. (14)

A. P. Ravikumar, J. De Jesus, M. C. Tamargo, and C. F. Gmachl, “High performance, room temperature, broadband II–VI quantum cascade detector,” Appl. Phys. Lett. 107(14), 141105 (2015).
[Crossref]

A. P. Ravikumar, T. A. Garcia, J. De Jesus, M. C. Tamargo, and C. F. Gmachl, “High detectivity short wavelength II–VI quantum cascade detector,” Appl. Phys. Lett. 105(6), 061113 (2014).
[Crossref]

P. Reininger, B. Schwarz, H. Detz, D. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “Diagonal transition quantum cascade detector,” Appl. Phys. Lett. 105, 091108 (2014).
[Crossref]

M. Z. Tidrow, K. K. Choi, A. J. DeAnni, W. H. Chang, and S. P. Svensson, “Grating coupled multicolor quantum well infrared photodetector,” Appl. Phys. Lett. 67(13), 1800–1802 (1995).
[Crossref]

Y. S. Larry and S. S. Li, “A metal grating coupled bound-to-miniband transition GaAs multiquantum well/superlattice infrared detector,” Appl. Phys. Lett. 59(11), 1332–1334 (1991).
[Crossref]

A. Harrer, B. Schwarz, R. Gansch, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, W. Schrenk, and G. Strasser, “Plasmonic lens enhanced mid-infrared quantum cascade detector,” Appl. Phys. Lett. 105, 171112 (2014).
[Crossref]

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[Crossref]

S. Zhai, J. Liu, F. Liu, and Z. Wang, “A normal incident quantum cascade detector enhanced by surface plasmons,” Appl. Phys. Lett. 100(18), 181104 (2012).
[Crossref]

B. F. Levine, S. D. Gunapala, J. M. Kuo, S. S. Pei, and S. Hui, “Normal incidence hole intersubband absorption long wavelength GaAs/AlxGa1− xAs quantum well infrared photodetectors,” Appl. Phys. Lett. 59(15), 1864–1866 (1991).
[Crossref]

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011).
[Crossref]

X. Wang, S. Zhai, N. Zhuo, J. Liu, F. Liu, S. Liu, and Z. Wang, “Quantum dot quantum cascade infrared photodetector,” Appl. Phys. Lett. 104, 171108 (2014).
[Crossref]

C. J. Chen, K. K. Choi, M. Z. Tidrow, and D. C. Tsui, “Corrugated quantum well infrared photodetectors for normal incident light coupling,” Appl. Phys. Lett. 68(11), 1446–1448 (1996).
[Crossref]

T. R. Schimert, S. L. Barnes, A. J. Brouns, F. C. Case, P. Mitra, and L. T. Claiborne, “Enhanced quantum well infrared photodetector with novel multiple quantum well grating structure,” Appl. Phys. Lett. 68(20), 2846–2848 (1996).
[Crossref]

C. J. Chen, K. K. Choi, L. Rokhinson, W. H. Chang, and D. C. Tsui, “A characterization technique for quantum well infrared photodetectors,” Appl. Phys. Lett. 75(20), 3210–3212 (1999).
[Crossref]

IEEE J. Quantum Electron. (1)

K. K. Choi, D. P. Forrai, D. W. Endres, and J. Sun, “Corrugated quantum-well infrared photodetector focal plane arrays,” IEEE J. Quantum Electron. 45(10), 1255–1264 (2009).
[Crossref]

Infrared Phys. Technol. (2)

P. Bois, E. Costard, X. Marcadet, and E. Herniou, “Development of quantum well infrared photodetectors in France,” Infrared Phys. Technol. 42(3), 291–300 (2001).
[Crossref]

L. Li, D. Xiong, J. Wen, N. Li, and Z. Zhu, “A surface plasmonic coupled mid-long-infrared two-color quantum cascade detector,” Infrared Phys. Technol. 79, 45–49 (2016).
[Crossref]

J. Appl. Phys. (3)

S. D. Gunapala, B. F. Levine, D. Ritter, R. Hamm, and M. B. Panish, “InGaAs/InP hole intersubband normal incidence quantum well infrared photodetector,” J. Appl. Phys. 71(5), 2458–2460 (1992).
[Crossref]

J. Y. Andersson and L. Lundqvist, “Grating-coupled quantum-well infrared detectors: theory and performance,” J. Appl. Phys. 71(7), 3600–3610 (1992).
[Crossref]

E. Dupont, “Optimization of lamellar gratings for quantum-well infrared photodetectors,” J. Appl. Phys. 88(5), 2687–2692 (2000).
[Crossref]

Opt. Express (2)

Phys. Rev. B (1)

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B 50(12), 8663–8674 (1994).
[Crossref]

Other (1)

H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) One period of the conduction band of the detector used in this study. The layer thickness, in Angstroms, from the widest well on the left, are, 72/50/26/25/28/27/34/27/41/27/52. The In0.47Ga0.53As wells are in regular font, while the In0.52Al0.48As barriers are in bold font, with the underlined layers Silicon doped to 1 × 1018 cm−3. (b) Temperature dependent spectral photocurrent characteristics of the mesa. We obtain a peak wavenumber of 1578 cm−1 with a width (in Energy) of only 7% at 80 K. We also obtain a peak responsivity of 8.8 mA/W. (inset) Arrhenius plot of the device differential resistance, showing an expected activation energy of 177 meV.

Fig. 2
Fig. 2

(a) Schematic ray-diagram representation of light scattering in the wet-etched sidewalls of a QCD, with the active region shaded in gray (b) The slope of the sidewalls has been modeled as a quadrant of an ellipse, with a trench width of ‘a’, and (c) calculated absorption efficiency of the structures as a function of the trench width, with the green dotted line representing the absorption efficiency of a mesa device at 45 degree incidence.

Fig. 3
Fig. 3

Optical and Scanning Electron Microscope (SEM) images of the fabricated spirals and hairpin detectors. Moving clockwise from the top left, the scale bars represent dimensions of 200 μm, 200 μm, 50 μm, and 50 μm, respectively. The total electrical area of the spirals and waves are very similar to that of the mesa device, about 1.6 × 10−3 cm2.

Fig. 4
Fig. 4

Arrhenius plots of the device differential resistance of the spirals (red circles) and hairpins (black squares) at zero bias. In both cases, we extract an activation energy of about 178 meV. Compared to standard mesa devices, we obtain 3 orders of magnitude larger device differential resistance at low temperatures because of the increased in-plane resistance. The inset shows the temperature dependent device I–V charactersitics of the hairpin detector; the dotted line represents the 300 K background photocurrent measured at a device temperature of 80 K.

Fig. 5
Fig. 5

Normal incident spectral photocurrent measurements of (a) spiral detectors, and (b) hairpin detectors, taken from 80 K to 180 K. In both cases, we see peak emission at 1528 cm−1 and a FWHM of about 110 cm−1, corresponding to a narrow width of only about 7 %. This width matches the one measured with the mesa devices. The figure also shows two values of responsivity for the detectors - the left axis corresponds to a responsivity measured with a Ge-NDF, while the right axis corresponds to responsivity without the filter.

Fig. 6
Fig. 6

Johnson noise limited detectivity ( D J *) of the hairpin (red squares), spiral (blue circles), and mesa (gray triangles) detectors as a function of temperature. These values are calculated using the responsivity taken with the Ge filter, and therefore represent a lower bound on D J *.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I t ( 1 ) = I o π 0 π / 2 ( 1 R θ ) ( sin θ n ) 2 d θ
I t ( 2 ) = I o π 0 π / 2 R θ ( 1 R θ ) ( sin θ n ) 2 d θ

Metrics