Abstract

We present the light-controlled hierarchical mechanical properties of optically patterned azobenzene thin films through a nanoindentation study. In this study, we inscribed holographic surface relief grating (SRG) of azopolymers by two-beam coupling-based light interference lithography. The resultant morphological profile of azopolymers was monitored by atomic force microscope (AFM), followed by the nanoindentation study. From the load-displacement curve of the indentation procedure, photomechanical changes of the azopolymers along grating patterns were evaluated in terms of hardness and modulus at the crest and trough of the SRG, respectively. The results revealed that the surface height as well as the mechanical properties was modulated according to the light interference pattern.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photoinduced surface patterning of azobenzene-containing supramolecular dendrons, dendrimers and dendronized polymers

Jaana Vapaavuori, Arri Priimagi, Antti J. Soininen, Nadia Canilho, Edis Kasëmi, Janne Ruokolainen, Matti Kaivola, and Olli Ikkala
Opt. Mater. Express 3(6) 711-722 (2013)

Surface-relief formation in azo-polyelectrolyte layers with a protective polymer coating

Francesca Frascella, Angelo Angelini, Serena Ricciardi, Fabrizio Pirri, and Emiliano Descrovi
Opt. Mater. Express 6(2) 444-450 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci., B, Polym. Phys. 52(3), 163–182 (2014).
    [Crossref]
  2. S. Kawata and Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100(5), 1777–1788 (2000).
    [Crossref] [PubMed]
  3. D. Gindre, A. Boeglin, A. Fort, L. Mager, and K. D. Dorkenoo, “Rewritable optical data storage in azobenzene copolymers,” Opt. Express 14(21), 9896–9901 (2006).
    [Crossref] [PubMed]
  4. J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
    [Crossref]
  5. R. J. Stockermans and P. L. Rochon, “Narrow-band resonant grating waveguide filters constructed with azobenzene polymers,” Appl. Opt. 38(17), 3714–3719 (1999).
    [Crossref] [PubMed]
  6. J. M. Harrison, D. Goldbaum, T. C. Corkery, C. J. Barrett, and R. R. Chromik, “Nanoindentation studies to separate thermal and optical effects in photo-softening of azo polymers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(5), 995–1003 (2015).
    [Crossref]
  7. P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
    [Crossref] [PubMed]
  8. O. M. Tanchak and C. Barrett, “Light-induced reversible volume changes in thin films of azo polymers: the photomechanical effect,” Macromolecules 38(25), 10566–10570 (2005).
    [Crossref]
  9. L. Sorelli, F. Fabbri, J. Frech-Baronet, A. D. Vu, M. Fafard, T. Gacoin, K. Lahlil, L. Martinelli, Y. Lassailly, and J. Peretti, “A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11055–11065 (2015).
    [Crossref]
  10. J. Vapaavuori, Z. Mahimwalla, R. R. Chromik, M. Kaivola, A. Priimagi, and C. J. Barrett, “Nanoindentation study of light-induced softening of supramolecular and covalently functionalized azo polymers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(16), 2806–2810 (2013).
    [Crossref]
  11. C. J. Barrett, J. I. Mamiya, K. G. Yager, and T. Ikeda, “Photo-mechanical effects in azobenzene-containing soft materials,” Soft Matter 3(10), 1249–1261 (2007).
    [Crossref]
  12. P. U. Veer, U. Pietsch, and A. D. Mueller, “Alteration of the mechanical properties of azopolymer film in the process of surface relief grating formation,” Appl. Phys. Lett. 94(23), 231911 (2009).
    [Crossref]
  13. B. Stiller, T. Geue, K. Morawetz, and M. Saphiannikova, “Optical patterning in azobenzene polymer films,” J. Microsc. 219(Pt 3), 109–114 (2005).
    [Crossref] [PubMed]
  14. W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res. 19(01), 3–20 (2004).
    [Crossref]

2015 (2)

J. M. Harrison, D. Goldbaum, T. C. Corkery, C. J. Barrett, and R. R. Chromik, “Nanoindentation studies to separate thermal and optical effects in photo-softening of azo polymers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(5), 995–1003 (2015).
[Crossref]

L. Sorelli, F. Fabbri, J. Frech-Baronet, A. D. Vu, M. Fafard, T. Gacoin, K. Lahlil, L. Martinelli, Y. Lassailly, and J. Peretti, “A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11055–11065 (2015).
[Crossref]

2014 (1)

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci., B, Polym. Phys. 52(3), 163–182 (2014).
[Crossref]

2013 (1)

J. Vapaavuori, Z. Mahimwalla, R. R. Chromik, M. Kaivola, A. Priimagi, and C. J. Barrett, “Nanoindentation study of light-induced softening of supramolecular and covalently functionalized azo polymers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(16), 2806–2810 (2013).
[Crossref]

2009 (1)

P. U. Veer, U. Pietsch, and A. D. Mueller, “Alteration of the mechanical properties of azopolymer film in the process of surface relief grating formation,” Appl. Phys. Lett. 94(23), 231911 (2009).
[Crossref]

2007 (1)

C. J. Barrett, J. I. Mamiya, K. G. Yager, and T. Ikeda, “Photo-mechanical effects in azobenzene-containing soft materials,” Soft Matter 3(10), 1249–1261 (2007).
[Crossref]

2006 (1)

2005 (3)

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

B. Stiller, T. Geue, K. Morawetz, and M. Saphiannikova, “Optical patterning in azobenzene polymer films,” J. Microsc. 219(Pt 3), 109–114 (2005).
[Crossref] [PubMed]

O. M. Tanchak and C. Barrett, “Light-induced reversible volume changes in thin films of azo polymers: the photomechanical effect,” Macromolecules 38(25), 10566–10570 (2005).
[Crossref]

2004 (1)

W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res. 19(01), 3–20 (2004).
[Crossref]

2003 (1)

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[Crossref]

2000 (1)

S. Kawata and Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100(5), 1777–1788 (2000).
[Crossref] [PubMed]

1999 (1)

Barrett, C.

O. M. Tanchak and C. Barrett, “Light-induced reversible volume changes in thin films of azo polymers: the photomechanical effect,” Macromolecules 38(25), 10566–10570 (2005).
[Crossref]

Barrett, C. J.

J. M. Harrison, D. Goldbaum, T. C. Corkery, C. J. Barrett, and R. R. Chromik, “Nanoindentation studies to separate thermal and optical effects in photo-softening of azo polymers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(5), 995–1003 (2015).
[Crossref]

J. Vapaavuori, Z. Mahimwalla, R. R. Chromik, M. Kaivola, A. Priimagi, and C. J. Barrett, “Nanoindentation study of light-induced softening of supramolecular and covalently functionalized azo polymers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(16), 2806–2810 (2013).
[Crossref]

C. J. Barrett, J. I. Mamiya, K. G. Yager, and T. Ikeda, “Photo-mechanical effects in azobenzene-containing soft materials,” Soft Matter 3(10), 1249–1261 (2007).
[Crossref]

Boeglin, A.

Brehmer, L.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Chromik, R. R.

J. M. Harrison, D. Goldbaum, T. C. Corkery, C. J. Barrett, and R. R. Chromik, “Nanoindentation studies to separate thermal and optical effects in photo-softening of azo polymers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(5), 995–1003 (2015).
[Crossref]

J. Vapaavuori, Z. Mahimwalla, R. R. Chromik, M. Kaivola, A. Priimagi, and C. J. Barrett, “Nanoindentation study of light-induced softening of supramolecular and covalently functionalized azo polymers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(16), 2806–2810 (2013).
[Crossref]

Corkery, T. C.

J. M. Harrison, D. Goldbaum, T. C. Corkery, C. J. Barrett, and R. R. Chromik, “Nanoindentation studies to separate thermal and optical effects in photo-softening of azo polymers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(5), 995–1003 (2015).
[Crossref]

Dorkenoo, K. D.

Fabbri, F.

L. Sorelli, F. Fabbri, J. Frech-Baronet, A. D. Vu, M. Fafard, T. Gacoin, K. Lahlil, L. Martinelli, Y. Lassailly, and J. Peretti, “A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11055–11065 (2015).
[Crossref]

Fafard, M.

L. Sorelli, F. Fabbri, J. Frech-Baronet, A. D. Vu, M. Fafard, T. Gacoin, K. Lahlil, L. Martinelli, Y. Lassailly, and J. Peretti, “A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11055–11065 (2015).
[Crossref]

Fort, A.

Frech-Baronet, J.

L. Sorelli, F. Fabbri, J. Frech-Baronet, A. D. Vu, M. Fafard, T. Gacoin, K. Lahlil, L. Martinelli, Y. Lassailly, and J. Peretti, “A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11055–11065 (2015).
[Crossref]

Gacoin, T.

L. Sorelli, F. Fabbri, J. Frech-Baronet, A. D. Vu, M. Fafard, T. Gacoin, K. Lahlil, L. Martinelli, Y. Lassailly, and J. Peretti, “A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11055–11065 (2015).
[Crossref]

Geue, T.

B. Stiller, T. Geue, K. Morawetz, and M. Saphiannikova, “Optical patterning in azobenzene polymer films,” J. Microsc. 219(Pt 3), 109–114 (2005).
[Crossref] [PubMed]

Giersig, M.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Gindre, D.

Goldbaum, D.

J. M. Harrison, D. Goldbaum, T. C. Corkery, C. J. Barrett, and R. R. Chromik, “Nanoindentation studies to separate thermal and optical effects in photo-softening of azo polymers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(5), 995–1003 (2015).
[Crossref]

Harrison, J. M.

J. M. Harrison, D. Goldbaum, T. C. Corkery, C. J. Barrett, and R. R. Chromik, “Nanoindentation studies to separate thermal and optical effects in photo-softening of azo polymers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(5), 995–1003 (2015).
[Crossref]

Ikeda, T.

C. J. Barrett, J. I. Mamiya, K. G. Yager, and T. Ikeda, “Photo-mechanical effects in azobenzene-containing soft materials,” Soft Matter 3(10), 1249–1261 (2007).
[Crossref]

Kaivola, M.

J. Vapaavuori, Z. Mahimwalla, R. R. Chromik, M. Kaivola, A. Priimagi, and C. J. Barrett, “Nanoindentation study of light-induced softening of supramolecular and covalently functionalized azo polymers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(16), 2806–2810 (2013).
[Crossref]

Kang, J. W.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[Crossref]

Karageorgiev, P.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Kawata, S.

S. Kawata and Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100(5), 1777–1788 (2000).
[Crossref] [PubMed]

Kawata, Y.

S. Kawata and Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100(5), 1777–1788 (2000).
[Crossref] [PubMed]

Kim, D. Y.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[Crossref]

Kim, J. J.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[Crossref]

Kim, J. P.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[Crossref]

Kim, M. J.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[Crossref]

Lahlil, K.

L. Sorelli, F. Fabbri, J. Frech-Baronet, A. D. Vu, M. Fafard, T. Gacoin, K. Lahlil, L. Martinelli, Y. Lassailly, and J. Peretti, “A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11055–11065 (2015).
[Crossref]

Lassailly, Y.

L. Sorelli, F. Fabbri, J. Frech-Baronet, A. D. Vu, M. Fafard, T. Gacoin, K. Lahlil, L. Martinelli, Y. Lassailly, and J. Peretti, “A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11055–11065 (2015).
[Crossref]

Lee, J. S.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[Crossref]

Mager, L.

Mahimwalla, Z.

J. Vapaavuori, Z. Mahimwalla, R. R. Chromik, M. Kaivola, A. Priimagi, and C. J. Barrett, “Nanoindentation study of light-induced softening of supramolecular and covalently functionalized azo polymers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(16), 2806–2810 (2013).
[Crossref]

Mamiya, J. I.

C. J. Barrett, J. I. Mamiya, K. G. Yager, and T. Ikeda, “Photo-mechanical effects in azobenzene-containing soft materials,” Soft Matter 3(10), 1249–1261 (2007).
[Crossref]

Martinelli, L.

L. Sorelli, F. Fabbri, J. Frech-Baronet, A. D. Vu, M. Fafard, T. Gacoin, K. Lahlil, L. Martinelli, Y. Lassailly, and J. Peretti, “A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11055–11065 (2015).
[Crossref]

Morawetz, K.

B. Stiller, T. Geue, K. Morawetz, and M. Saphiannikova, “Optical patterning in azobenzene polymer films,” J. Microsc. 219(Pt 3), 109–114 (2005).
[Crossref] [PubMed]

Mueller, A. D.

P. U. Veer, U. Pietsch, and A. D. Mueller, “Alteration of the mechanical properties of azopolymer film in the process of surface relief grating formation,” Appl. Phys. Lett. 94(23), 231911 (2009).
[Crossref]

Neher, D.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Oliver, W. C.

W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res. 19(01), 3–20 (2004).
[Crossref]

Peretti, J.

L. Sorelli, F. Fabbri, J. Frech-Baronet, A. D. Vu, M. Fafard, T. Gacoin, K. Lahlil, L. Martinelli, Y. Lassailly, and J. Peretti, “A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11055–11065 (2015).
[Crossref]

Pharr, G. M.

W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res. 19(01), 3–20 (2004).
[Crossref]

Pietsch, U.

P. U. Veer, U. Pietsch, and A. D. Mueller, “Alteration of the mechanical properties of azopolymer film in the process of surface relief grating formation,” Appl. Phys. Lett. 94(23), 231911 (2009).
[Crossref]

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Priimagi, A.

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci., B, Polym. Phys. 52(3), 163–182 (2014).
[Crossref]

J. Vapaavuori, Z. Mahimwalla, R. R. Chromik, M. Kaivola, A. Priimagi, and C. J. Barrett, “Nanoindentation study of light-induced softening of supramolecular and covalently functionalized azo polymers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(16), 2806–2810 (2013).
[Crossref]

Rochon, P. L.

Saphiannikova, M.

B. Stiller, T. Geue, K. Morawetz, and M. Saphiannikova, “Optical patterning in azobenzene polymer films,” J. Microsc. 219(Pt 3), 109–114 (2005).
[Crossref] [PubMed]

Schulz, B.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Shevchenko, A.

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci., B, Polym. Phys. 52(3), 163–182 (2014).
[Crossref]

Sorelli, L.

L. Sorelli, F. Fabbri, J. Frech-Baronet, A. D. Vu, M. Fafard, T. Gacoin, K. Lahlil, L. Martinelli, Y. Lassailly, and J. Peretti, “A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11055–11065 (2015).
[Crossref]

Stiller, B.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

B. Stiller, T. Geue, K. Morawetz, and M. Saphiannikova, “Optical patterning in azobenzene polymer films,” J. Microsc. 219(Pt 3), 109–114 (2005).
[Crossref] [PubMed]

Stockermans, R. J.

Tanchak, O. M.

O. M. Tanchak and C. Barrett, “Light-induced reversible volume changes in thin films of azo polymers: the photomechanical effect,” Macromolecules 38(25), 10566–10570 (2005).
[Crossref]

Vapaavuori, J.

J. Vapaavuori, Z. Mahimwalla, R. R. Chromik, M. Kaivola, A. Priimagi, and C. J. Barrett, “Nanoindentation study of light-induced softening of supramolecular and covalently functionalized azo polymers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(16), 2806–2810 (2013).
[Crossref]

Veer, P. U.

P. U. Veer, U. Pietsch, and A. D. Mueller, “Alteration of the mechanical properties of azopolymer film in the process of surface relief grating formation,” Appl. Phys. Lett. 94(23), 231911 (2009).
[Crossref]

Vu, A. D.

L. Sorelli, F. Fabbri, J. Frech-Baronet, A. D. Vu, M. Fafard, T. Gacoin, K. Lahlil, L. Martinelli, Y. Lassailly, and J. Peretti, “A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11055–11065 (2015).
[Crossref]

Yager, K. G.

C. J. Barrett, J. I. Mamiya, K. G. Yager, and T. Ikeda, “Photo-mechanical effects in azobenzene-containing soft materials,” Soft Matter 3(10), 1249–1261 (2007).
[Crossref]

Yoo, S. J.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[Crossref]

P. U. Veer, U. Pietsch, and A. D. Mueller, “Alteration of the mechanical properties of azopolymer film in the process of surface relief grating formation,” Appl. Phys. Lett. 94(23), 231911 (2009).
[Crossref]

Chem. Rev. (1)

S. Kawata and Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100(5), 1777–1788 (2000).
[Crossref] [PubMed]

J. Mater. Chem. C Mater. Opt. Electron. Devices (3)

J. M. Harrison, D. Goldbaum, T. C. Corkery, C. J. Barrett, and R. R. Chromik, “Nanoindentation studies to separate thermal and optical effects in photo-softening of azo polymers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(5), 995–1003 (2015).
[Crossref]

L. Sorelli, F. Fabbri, J. Frech-Baronet, A. D. Vu, M. Fafard, T. Gacoin, K. Lahlil, L. Martinelli, Y. Lassailly, and J. Peretti, “A closer look at the light-induced changes in the mechanical properties of azobenzene-containing polymers by statistical nanoindentation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(42), 11055–11065 (2015).
[Crossref]

J. Vapaavuori, Z. Mahimwalla, R. R. Chromik, M. Kaivola, A. Priimagi, and C. J. Barrett, “Nanoindentation study of light-induced softening of supramolecular and covalently functionalized azo polymers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(16), 2806–2810 (2013).
[Crossref]

J. Mater. Res. (1)

W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res. 19(01), 3–20 (2004).
[Crossref]

J. Microsc. (1)

B. Stiller, T. Geue, K. Morawetz, and M. Saphiannikova, “Optical patterning in azobenzene polymer films,” J. Microsc. 219(Pt 3), 109–114 (2005).
[Crossref] [PubMed]

J. Polym. Sci., B, Polym. Phys. (1)

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci., B, Polym. Phys. 52(3), 163–182 (2014).
[Crossref]

Macromolecules (1)

O. M. Tanchak and C. Barrett, “Light-induced reversible volume changes in thin films of azo polymers: the photomechanical effect,” Macromolecules 38(25), 10566–10570 (2005).
[Crossref]

Nat. Mater. (1)

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Opt. Express (1)

Soft Matter (1)

C. J. Barrett, J. I. Mamiya, K. G. Yager, and T. Ikeda, “Photo-mechanical effects in azobenzene-containing soft materials,” Soft Matter 3(10), 1249–1261 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Chemical structure of Poly (Disperse Red 1 methacrylate) (PDR1) and (b) UV-Visible absorption spectrum of PDR1
Fig. 2
Fig. 2 Schematic presentation of the holographic optical apparatus for fabricating surface relief grating (PBS: polarizing beam splitter, HWP: half wave plate, POL: polarizer, PD: photo detector).
Fig. 3
Fig. 3 (a) Scanning electron microscope image of the indentation tip (PPP-NCHR) and geometrical definitions for evaluating tip coefficients (b) Schematic presentation of the indentation curve of load-displacement and (c) surface profile behavior before/after indentation (hmax: maximum penetration depth, hc: contact depth, hf: final depth, hr: residual depth, S: stiffness, Pmax: maximum load, Ac: projected contact area).
Fig. 4
Fig. 4 (a) The schematic presentation of the indentation process for a bare and laser irradiated PDR1 sample. Each indentation point refers to a random point of PDR1 without laser irradiation, peak and valley of SRG (marked as 1, 2 and 3, respectively) (b) The obtained load versus displacement curves from indentation experiments, (c) The calculated contact depth variation with different indentation points and (d) The modulation height with the corresponding contact depth profile.
Fig. 5
Fig. 5 (a-f) AFM images of PDR1 with different exposure doses from 0 to 1200 s and (g-l) their corresponding FFT results. (m) Growth behavior of the modulation height profile with respect to exposure the dose and (l) mean modulation height and diffraction efficiency as a function of the exposure dose.
Fig. 6
Fig. 6 (a) Contact depth, (b) hardness and (c) reduced Young’s modulus curves at peak and valley position of SRG with respect to exposure dose. (d) Schematic illustration of photo-expansion effect on mechanical property change. (1) Before LIP irradiation. Trans-form of azobenzene components are predominantly exists in azopolymers due to its structural thermal stability (2) during LIP irradiation. Photoisomerization from trans- to cis-form vigorously occur at the crest of LIP whereas transformation rather weakly occur at trough of LIP due to light intensity dependency of photoisomerization (3) After LIP irradiation. With the mass transfer along the light intensity gradient, newly formed free volume through the photo-expansion also described at trough of SRG where the biggest amounts of free volumes were generated. Note that the dashed line of orange color indicates initial film surface before light irradiation.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

H= P max A c = P max 0.239 h c 2
h c = h max ε P max S
S= dP dh | h= h max
E r = π 2β S A c

Metrics