Abstract

A theoretical and experimental study on the response of Brillouin scattering in multi-core optical fibers (MCF) under different curving conditions is presented. Results demonstrate that the Brillouin frequency shift of the off-center cores in MCF is highly bending-dependent, showing a linear dependence on the fiber curvature. This feature is here exploited to develop a new kind of distributed optical fiber sensor, which provides measurements of a distributed profile mapping the longitudinal fiber shape. Using conventional Brillouin optical time-domain analysis with differential pulse-width pairs, fully distributed shape sensing along a 1 km-long MCF is practically demonstrated. Experimental results show a very good agreement with the theoretically expected behavior deduced from the dependence of the Brillouin frequency on the strain induced by the fiber bending over a given core. The analysis and results presented in this paper constitute the first demonstration of distributed bending sensing, providing the cornerstone to further develop it into a fully distributed three-dimensional shape sensor.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Few-mode optical fiber based simultaneously distributed curvature and temperature sensing

Hao Wu, Ming Tang, Meng Wang, Can Zhao, Zhiyong Zhao, Ruoxu Wang, Ruolin Liao, Songnian Fu, Chen Yang, Weijun Tong, Perry Ping Shum, and Deming Liu
Opt. Express 25(11) 12722-12732 (2017)

Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber

Zhiyong Zhao, Yunli Dang, Ming Tang, Li Duan, Meng Wang, Hao Wu, Songnian Fu, Weijun Tong, Perry Ping Shum, and Deming Liu
Opt. Express 24(22) 25111-25118 (2016)

Shape sensing using multi-core fiber optic cable and parametric curve solutions

Jason P. Moore and Matthew D. Rogge
Opt. Express 20(3) 2967-2973 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
    [Crossref]
  2. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
    [Crossref] [PubMed]
  3. X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
    [Crossref] [PubMed]
  4. L. Thévenaz, “Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives,” Front. Optoelectron. China 3(1), 13–21 (2010).
    [Crossref]
  5. M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [Crossref]
  6. L. Zou, X. Bao, S. Afshar V, and L. Chen, “Dependence of the brillouin frequency shift on strain and temperature in a photonic crystal fiber,” Opt. Lett. 29(13), 1485–1487 (2004).
    [Crossref] [PubMed]
  7. Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett. 35(23), 3985–3987 (2010).
    [Crossref] [PubMed]
  8. K.-Y. Song and Y.-H. Kim, “Characterization of stimulated Brillouin scattering in a few-mode fiber,” Opt. Lett. 38(22), 4841–4844 (2013).
    [Crossref] [PubMed]
  9. J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
    [Crossref] [PubMed]
  10. B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
    [Crossref] [PubMed]
  11. L. Yuan, J. Yang, Z. Liu, and J. Sun, “In-fiber integrated Michelson interferometer,” Opt. Lett. 31(18), 2692–2694 (2006).
    [Crossref] [PubMed]
  12. G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
    [Crossref] [PubMed]
  13. L. Yuan, J. Yang, and Z. Liu, “A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer,” IEEE Sens. J. 8(7), 1114–1117 (2008).
    [Crossref]
  14. A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
    [Crossref]
  15. J. P. Moore and M. D. Rogge, “Shape sensing using multi-core fiber optic cable and parametric curve solutions,” Opt. Express 20(3), 2967–2973 (2012).
    [Crossref] [PubMed]
  16. Y. Mizuno, N. Hayashi, H. Tanaka, Y. Wada, and K. Nakamura, “Brillouin scattering in multi-core optical fibers for sensing applications,” Sci. Rep. 5, 11388 (2015).
    [Crossref] [PubMed]
  17. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [Crossref] [PubMed]

2016 (1)

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

2015 (2)

2014 (1)

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (1)

2011 (1)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
[Crossref] [PubMed]

2010 (2)

L. Thévenaz, “Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives,” Front. Optoelectron. China 3(1), 13–21 (2010).
[Crossref]

Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett. 35(23), 3985–3987 (2010).
[Crossref] [PubMed]

2008 (3)

W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
[Crossref] [PubMed]

L. Yuan, J. Yang, and Z. Liu, “A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer,” IEEE Sens. J. 8(7), 1114–1117 (2008).
[Crossref]

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

2006 (1)

2004 (1)

2003 (1)

1997 (1)

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Afshar V, S.

Bao, X.

Barton, J. S.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
[Crossref] [PubMed]

Bennion, I.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
[Crossref] [PubMed]

Bergman, A.

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

Beugnot, J.-C.

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref] [PubMed]

Chen, L.

Chen, X. F.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Deng, L.

Fender, A.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Feng, Z.

Flockhart, G. M. H.

Fu, S.

George, D. S.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Hayashi, N.

Y. Mizuno, N. Hayashi, H. Tanaka, Y. Wada, and K. Nakamura, “Brillouin scattering in multi-core optical fibers for sensing applications,” Sci. Rep. 5, 11388 (2015).
[Crossref] [PubMed]

Howden, R. I.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Jones, B. J. S.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Jones, J. D. C.

Kim, Y.-H.

Laude, V.

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref] [PubMed]

Lebrun, S.

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref] [PubMed]

Li, B.

Li, W.

Li, Y.

Liu, S.

Liu, Z.

L. Yuan, J. Yang, and Z. Liu, “A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer,” IEEE Sens. J. 8(7), 1114–1117 (2008).
[Crossref]

L. Yuan, J. Yang, Z. Liu, and J. Sun, “In-fiber integrated Michelson interferometer,” Opt. Lett. 31(18), 2692–2694 (2006).
[Crossref] [PubMed]

MacPherson, W. N.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
[Crossref] [PubMed]

Maier, R. R. J.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Maillotte, H.

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref] [PubMed]

McCulloch, S.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Mizuno, Y.

Y. Mizuno, N. Hayashi, H. Tanaka, Y. Wada, and K. Nakamura, “Brillouin scattering in multi-core optical fibers for sensing applications,” Sci. Rep. 5, 11388 (2015).
[Crossref] [PubMed]

Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett. 35(23), 3985–3987 (2010).
[Crossref] [PubMed]

Moore, J. P.

Motil, A.

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

Nakamura, K.

Y. Mizuno, N. Hayashi, H. Tanaka, Y. Wada, and K. Nakamura, “Brillouin scattering in multi-core optical fibers for sensing applications,” Sci. Rep. 5, 11388 (2015).
[Crossref] [PubMed]

Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett. 35(23), 3985–3987 (2010).
[Crossref] [PubMed]

Niklès, M.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Pauliat, G.

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref] [PubMed]

Robert, P. A.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Rogge, M. D.

Shum, P. P.

Smith, G. W.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Song, K.-Y.

Soto, M. A.

Sun, J.

Suo, R.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Sylvestre, T.

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref] [PubMed]

Tanaka, H.

Y. Mizuno, N. Hayashi, H. Tanaka, Y. Wada, and K. Nakamura, “Brillouin scattering in multi-core optical fibers for sensing applications,” Sci. Rep. 5, 11388 (2015).
[Crossref] [PubMed]

Tang, M.

Thévenaz, L.

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref] [PubMed]

L. Thévenaz, “Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives,” Front. Optoelectron. China 3(1), 13–21 (2010).
[Crossref]

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Tong, W.

Tur, M.

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

Wada, Y.

Y. Mizuno, N. Hayashi, H. Tanaka, Y. Wada, and K. Nakamura, “Brillouin scattering in multi-core optical fibers for sensing applications,” Sci. Rep. 5, 11388 (2015).
[Crossref] [PubMed]

Wu, Q.

Xu, Z.

Yang, J.

L. Yuan, J. Yang, and Z. Liu, “A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer,” IEEE Sens. J. 8(7), 1114–1117 (2008).
[Crossref]

L. Yuan, J. Yang, Z. Liu, and J. Sun, “In-fiber integrated Michelson interferometer,” Opt. Lett. 31(18), 2692–2694 (2006).
[Crossref] [PubMed]

Yuan, L.

L. Yuan, J. Yang, and Z. Liu, “A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer,” IEEE Sens. J. 8(7), 1114–1117 (2008).
[Crossref]

L. Yuan, J. Yang, Z. Liu, and J. Sun, “In-fiber integrated Michelson interferometer,” Opt. Lett. 31(18), 2692–2694 (2006).
[Crossref] [PubMed]

Zhang, L.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
[Crossref] [PubMed]

Zou, L.

Front. Optoelectron. China (1)

L. Thévenaz, “Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives,” Front. Optoelectron. China 3(1), 13–21 (2010).
[Crossref]

IEEE Sens. J. (2)

L. Yuan, J. Yang, and Z. Liu, “A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer,” IEEE Sens. J. 8(7), 1114–1117 (2008).
[Crossref]

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

J. Lightwave Technol. (1)

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Nat. Commun. (1)

J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nat. Commun. 5, 5242 (2014).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Laser Technol. (1)

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

Opt. Lett. (5)

Sci. Rep. (1)

Y. Mizuno, N. Hayashi, H. Tanaka, Y. Wada, and K. Nakamura, “Brillouin scattering in multi-core optical fibers for sensing applications,” Sci. Rep. 5, 11388 (2015).
[Crossref] [PubMed]

Sensors (Basel) (1)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Cross sectional view of the 7-core fiber used in our experiment and (b) transversal distribution of the cores with the definition of the important geometrical parameters.
Fig. 2
Fig. 2 Experimental setup. PC: polarization controller; MZM: Mach-Zehnder modulator; SOA: semiconductor optical amplifier; EDFA: erbium-doped fiber amplifier; PS: polarization switch; OC: optical circulator; FBG: fiber Bragg grating; PD: photodetector. OSc.: oscilloscope.
Fig. 3
Fig. 3 Brillouin gain spectrum versus distance (a) measured along an off-center core of a MCF showing a coiled and a straight fiber regions. A zoom-in along 20 m of the coiled fiber section shows (b) BFS fluctuations measured along an off-center core and (c) a uniform BFS profile obtained along the central core.
Fig. 4
Fig. 4 (a) Extracted Brillouin frequency shift for different bending radii. (b) Dependence of BFS on curvature measured along an outer core of the MCF. The error intervals on the curvature and the measured BFS are marked in green and purple triangle dots, respectively.
Fig. 5
Fig. 5 Shapes made for validating the ability of distributed shape sensing based on BOTDA in MCF. (a) Four U-shapes, and (b) three O-shapes.
Fig. 6
Fig. 6 BFS profiles versus distance, measured along three cores at (a) the 4 U-shape regions and (b) the 3 O-shape regions.
Fig. 7
Fig. 7 Retrieved bending angle for (a) the 4 U-shape region; (b) the 3 O-shape region, and curvature for (c) the 4 U-shape region and (d) the 3 O-shape region. The blue dots represent the bending angle and curvature values obtained using Eqs. (4)-(6) and BFS measurements. Number “1” to “7” denotes the seven measured shapes.

Tables (1)

Tables Icon

Table 1 Applied and measured bending angle and radius for each patterned shape.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ν B = 2 n eff V a λ
ε i = d i R cos( θ b θ i )
Δ ν Bi ν B =α ε i = α d i R cos( θ b θ i )
K( z )= i=1 N ε i ( z ) d i cos θ i i ^ i=1 N ε i ( z ) d i sin θ i j ^
θ b ( z )= cos 1 ( K i ^ ( z ) | K( z ) | )= sin 1 ( K j ^ ( z ) | K( z ) | )= tan 1 ( K j ^ ( z ) K i ^ ( z ) )
κ( z )= | K( z ) | ( i=1 N cos( θ b θ i ) cos( θ i ) ) 2 + ( i=1 N cos( θ b θ i ) sin( θ i ) ) 2
κ(z)= 2| K(z) | N

Metrics