Abstract

Silicon is an ideal material for on-chip applications, however its poor acoustic properties limit its performance for important optoacoustic applications, particularly for stimulated Brillouin scattering (SBS). We theoretically show that silicon inverse opals exhibit a strongly improved acoustic performance that enhances the bulk SBS gain coefficient by more than two orders of magnitude. We also design a waveguide that incorporates silicon inverse opals and which has SBS gain values that are comparable with chalcogenide glass waveguides. This research opens new directions for opto-acoustic applications in on-chip material systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stimulated Brillouin scattering in silicon/chalcogenide slot waveguides

Sayyed Reza Mirnaziry, Christian Wolff, M. J. Steel, Benjamin J. Eggleton, and Christopher G. Poulton
Opt. Express 24(5) 4786-4800 (2016)

Germanium as a material for stimulated Brillouin scattering in the mid-infrared

C. Wolff, R. Soref, C.G. Poulton, and B.J. Eggleton
Opt. Express 22(25) 30735-30747 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
  2. H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
    [Crossref] [PubMed]
  3. C. Wolff, R. Soref, C. Poulton, and B. Eggleton, “Germanium as a material for stimulated Brillouin scattering in the mid-infrared,” Opt. Express 22, 30735–30747 (2014).
    [Crossref]
  4. R. van Laer, B. Kuyken, D. van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
    [Crossref]
  5. E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463 (2016).
    [Crossref]
  6. R. van Laer, A. Bazin, B. Kuyken, R. Baets, and D. van Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys. 17, 115005 (2015).
    [Crossref]
  7. C. Wolff, R. van Laer, M. Steel, B. Eggleton, and C. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys. 18, 025006 (2016).
    [Crossref]
  8. C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “Guided acoustic and optical waves in silicon-on-insulator for Brillouin scattering and optomechanics,” APL Photon. 1, 071301 (2016).
    [Crossref]
  9. B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photon. 5, 536–587 (2013).
    [Crossref]
  10. R. Pant, C. G. Poulton, D. Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19, 8285–8290 (2011).
    [Crossref] [PubMed]
  11. C. Wolff, P. Gutsche, M. J. Steel, C. Poulton, and B. Eggleton, “Impact of nonlinear loss on stimulated Brillouin scattering,” J. Opt. Soc. Am. B 32, 1968–1978 (2015).
    [Crossref]
  12. J. C. Tchahame, J.-C. Beugnot, K. P. Huy, V. Laude, A. Kudlinski, and T. Sylvestre, “Surface Brillouin scattering in photonic crystal fibers,” Opt. Lett. 41, 3269–3272 (2016).
    [Crossref] [PubMed]
  13. O. Florez, P. F. Jarschel, Y. A. V. Espinel, C. M. B. Cordeiro, T. P. MayerAlegre, G. S. Wiederhecker, and P. Dainese, “Brillouin scattering self-cancellation,” Nat. Commun. 7, 11759 (2016).
    [Crossref] [PubMed]
  14. M. J. A. Smith, B. T. Kuhlmey, C. M. de Sterke, C. Wolff, M. Lapine, and C. G. Poulton, “Metamaterial control of stimulated Brillouin scattering,” Opt. Lett. 41, 2338–2341 (2016).
    [Crossref] [PubMed]
  15. M. J. A. Smith, B. T. Kuhlmey, C. M. de Sterke, C. Wolff, M. Lapine, and C. G. Poulton, “Stimulated Brillouin scattering in metamaterials,” J. Opt. Soc. Am. B 33, 2162–2171 (2016)
    [Crossref]
  16. K. S. Abedin, “Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber,” Opt. Express 13, 10266–10271 (2005).
    [Crossref] [PubMed]
  17. P. E. Powers, Fundamentals of nonlinear optics (CRC, 2011).
  18. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photon. 2, 1–59 (2010).
    [Crossref]
  19. B. A. Auld, Acoustic fields and waves in solids (John Wiley & Sons, 1973).
  20. D. Gaillot, T. Yamashita, and C. J. Summers, “Photonic band gaps in highly conformal inverse-opal based photonic crystals,” Phys. Rev. B 72, 205109 (2005).
    [Crossref]
  21. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
    [Crossref] [PubMed]
  22. B. G. Helme and P. J. King, “The phonon viscosity tensor of Si, Ge, GaAs, and InSb,” Phys. Stat. Solidi A. 45, K33–K37 (1978).
    [Crossref]
  23. C. Wolff, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Stimulated Brillouin scattering in integrated photonic waveguides: Forces, scattering mechanisms, and coupled-mode analysis,” Phys. Rev. A 92, 013836 (2015).
    [Crossref]

2016 (7)

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463 (2016).
[Crossref]

C. Wolff, R. van Laer, M. Steel, B. Eggleton, and C. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys. 18, 025006 (2016).
[Crossref]

C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “Guided acoustic and optical waves in silicon-on-insulator for Brillouin scattering and optomechanics,” APL Photon. 1, 071301 (2016).
[Crossref]

O. Florez, P. F. Jarschel, Y. A. V. Espinel, C. M. B. Cordeiro, T. P. MayerAlegre, G. S. Wiederhecker, and P. Dainese, “Brillouin scattering self-cancellation,” Nat. Commun. 7, 11759 (2016).
[Crossref] [PubMed]

M. J. A. Smith, B. T. Kuhlmey, C. M. de Sterke, C. Wolff, M. Lapine, and C. G. Poulton, “Metamaterial control of stimulated Brillouin scattering,” Opt. Lett. 41, 2338–2341 (2016).
[Crossref] [PubMed]

J. C. Tchahame, J.-C. Beugnot, K. P. Huy, V. Laude, A. Kudlinski, and T. Sylvestre, “Surface Brillouin scattering in photonic crystal fibers,” Opt. Lett. 41, 3269–3272 (2016).
[Crossref] [PubMed]

M. J. A. Smith, B. T. Kuhlmey, C. M. de Sterke, C. Wolff, M. Lapine, and C. G. Poulton, “Stimulated Brillouin scattering in metamaterials,” J. Opt. Soc. Am. B 33, 2162–2171 (2016)
[Crossref]

2015 (4)

C. Wolff, P. Gutsche, M. J. Steel, C. Poulton, and B. Eggleton, “Impact of nonlinear loss on stimulated Brillouin scattering,” J. Opt. Soc. Am. B 32, 1968–1978 (2015).
[Crossref]

R. van Laer, A. Bazin, B. Kuyken, R. Baets, and D. van Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys. 17, 115005 (2015).
[Crossref]

R. van Laer, B. Kuyken, D. van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

C. Wolff, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Stimulated Brillouin scattering in integrated photonic waveguides: Forces, scattering mechanisms, and coupled-mode analysis,” Phys. Rev. A 92, 013836 (2015).
[Crossref]

2014 (1)

2013 (2)

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photon. 5, 536–587 (2013).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref] [PubMed]

2012 (1)

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).

2011 (1)

2010 (1)

2005 (2)

K. S. Abedin, “Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber,” Opt. Express 13, 10266–10271 (2005).
[Crossref] [PubMed]

D. Gaillot, T. Yamashita, and C. J. Summers, “Photonic band gaps in highly conformal inverse-opal based photonic crystals,” Phys. Rev. B 72, 205109 (2005).
[Crossref]

2000 (1)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

1978 (1)

B. G. Helme and P. J. King, “The phonon viscosity tensor of Si, Ge, GaAs, and InSb,” Phys. Stat. Solidi A. 45, K33–K37 (1978).
[Crossref]

Abedin, K. S.

Auld, B. A.

B. A. Auld, Acoustic fields and waves in solids (John Wiley & Sons, 1973).

Baets, R.

R. van Laer, B. Kuyken, D. van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

R. van Laer, A. Bazin, B. Kuyken, R. Baets, and D. van Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys. 17, 115005 (2015).
[Crossref]

Bazin, A.

R. van Laer, A. Bazin, B. Kuyken, R. Baets, and D. van Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys. 17, 115005 (2015).
[Crossref]

Beugnot, J.-C.

Blanco, A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

Camacho, R.

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).

Choi, D. Y.

Chomski, E.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

Chowdhury, D.

Cordeiro, C. M. B.

O. Florez, P. F. Jarschel, Y. A. V. Espinel, C. M. B. Cordeiro, T. P. MayerAlegre, G. S. Wiederhecker, and P. Dainese, “Brillouin scattering self-cancellation,” Nat. Commun. 7, 11759 (2016).
[Crossref] [PubMed]

Cox, J. A.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref] [PubMed]

Dainese, P.

O. Florez, P. F. Jarschel, Y. A. V. Espinel, C. M. B. Cordeiro, T. P. MayerAlegre, G. S. Wiederhecker, and P. Dainese, “Brillouin scattering self-cancellation,” Nat. Commun. 7, 11759 (2016).
[Crossref] [PubMed]

Davids, P.

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).

de Sterke, C. M.

Eggleton, B.

Eggleton, B. J.

Espinel, Y. A. V.

O. Florez, P. F. Jarschel, Y. A. V. Espinel, C. M. B. Cordeiro, T. P. MayerAlegre, G. S. Wiederhecker, and P. Dainese, “Brillouin scattering self-cancellation,” Nat. Commun. 7, 11759 (2016).
[Crossref] [PubMed]

Florez, O.

O. Florez, P. F. Jarschel, Y. A. V. Espinel, C. M. B. Cordeiro, T. P. MayerAlegre, G. S. Wiederhecker, and P. Dainese, “Brillouin scattering self-cancellation,” Nat. Commun. 7, 11759 (2016).
[Crossref] [PubMed]

Gaillot, D.

D. Gaillot, T. Yamashita, and C. J. Summers, “Photonic band gaps in highly conformal inverse-opal based photonic crystals,” Phys. Rev. B 72, 205109 (2005).
[Crossref]

Grabtchak, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

Gutsche, P.

Helme, B. G.

B. G. Helme and P. J. King, “The phonon viscosity tensor of Si, Ge, GaAs, and InSb,” Phys. Stat. Solidi A. 45, K33–K37 (1978).
[Crossref]

Hile, S.

Hill, J. T.

C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “Guided acoustic and optical waves in silicon-on-insulator for Brillouin scattering and optomechanics,” APL Photon. 1, 071301 (2016).
[Crossref]

Huy, K. P.

Ibisate, M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

Jarecki, R.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref] [PubMed]

Jarschel, P. F.

O. Florez, P. F. Jarschel, Y. A. V. Espinel, C. M. B. Cordeiro, T. P. MayerAlegre, G. S. Wiederhecker, and P. Dainese, “Brillouin scattering self-cancellation,” Nat. Commun. 7, 11759 (2016).
[Crossref] [PubMed]

John, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

King, P. J.

B. G. Helme and P. J. King, “The phonon viscosity tensor of Si, Ge, GaAs, and InSb,” Phys. Stat. Solidi A. 45, K33–K37 (1978).
[Crossref]

Kittlaus, E. A.

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463 (2016).
[Crossref]

Kobyakov, A.

Kudlinski, A.

Kuhlmey, B. T.

Kuyken, B.

R. van Laer, B. Kuyken, D. van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

R. van Laer, A. Bazin, B. Kuyken, R. Baets, and D. van Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys. 17, 115005 (2015).
[Crossref]

Lapine, M.

Laude, V.

Leonard, S. W.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

Li, E.

Lopez, C.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

Luther-Davies, B.

Madden, S. J.

MayerAlegre, T. P.

O. Florez, P. F. Jarschel, Y. A. V. Espinel, C. M. B. Cordeiro, T. P. MayerAlegre, G. S. Wiederhecker, and P. Dainese, “Brillouin scattering self-cancellation,” Nat. Commun. 7, 11759 (2016).
[Crossref] [PubMed]

Mcfarlane, H.

Meseguer, F.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

Miguez, H.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

Mondia, J. P.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

Olsson, R. H.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref] [PubMed]

Ozin, G. A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

Pant, R.

Poulton, C.

Poulton, C. G.

Powers, P. E.

P. E. Powers, Fundamentals of nonlinear optics (CRC, 2011).

Qiu, W.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref] [PubMed]

Rakich, P. T.

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463 (2016).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref] [PubMed]

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).

Reinke, C.

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).

Safavi-Naeini, A. H.

C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “Guided acoustic and optical waves in silicon-on-insulator for Brillouin scattering and optomechanics,” APL Photon. 1, 071301 (2016).
[Crossref]

Sarabalis, C. J.

C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “Guided acoustic and optical waves in silicon-on-insulator for Brillouin scattering and optomechanics,” APL Photon. 1, 071301 (2016).
[Crossref]

Sauer, M.

Shin, H.

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463 (2016).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref] [PubMed]

Smith, M. J. A.

Soref, R.

Starbuck, A.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref] [PubMed]

Steel, M.

C. Wolff, R. van Laer, M. Steel, B. Eggleton, and C. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys. 18, 025006 (2016).
[Crossref]

Steel, M. J.

C. Wolff, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Stimulated Brillouin scattering in integrated photonic waveguides: Forces, scattering mechanisms, and coupled-mode analysis,” Phys. Rev. A 92, 013836 (2015).
[Crossref]

C. Wolff, P. Gutsche, M. J. Steel, C. Poulton, and B. Eggleton, “Impact of nonlinear loss on stimulated Brillouin scattering,” J. Opt. Soc. Am. B 32, 1968–1978 (2015).
[Crossref]

Summers, C. J.

D. Gaillot, T. Yamashita, and C. J. Summers, “Photonic band gaps in highly conformal inverse-opal based photonic crystals,” Phys. Rev. B 72, 205109 (2005).
[Crossref]

Sylvestre, T.

Tchahame, J. C.

Thevenaz, L.

Toader, O.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

van Driel, H. M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

van Laer, R.

C. Wolff, R. van Laer, M. Steel, B. Eggleton, and C. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys. 18, 025006 (2016).
[Crossref]

R. van Laer, A. Bazin, B. Kuyken, R. Baets, and D. van Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys. 17, 115005 (2015).
[Crossref]

R. van Laer, B. Kuyken, D. van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

van Thourhout, D.

R. van Laer, B. Kuyken, D. van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

R. van Laer, A. Bazin, B. Kuyken, R. Baets, and D. van Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys. 17, 115005 (2015).
[Crossref]

Wang, Z.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref] [PubMed]

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).

Wiederhecker, G. S.

O. Florez, P. F. Jarschel, Y. A. V. Espinel, C. M. B. Cordeiro, T. P. MayerAlegre, G. S. Wiederhecker, and P. Dainese, “Brillouin scattering self-cancellation,” Nat. Commun. 7, 11759 (2016).
[Crossref] [PubMed]

Wolff, C.

Yamashita, T.

D. Gaillot, T. Yamashita, and C. J. Summers, “Photonic band gaps in highly conformal inverse-opal based photonic crystals,” Phys. Rev. B 72, 205109 (2005).
[Crossref]

Adv. Opt. Photon. (2)

APL Photon. (1)

C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “Guided acoustic and optical waves in silicon-on-insulator for Brillouin scattering and optomechanics,” APL Photon. 1, 071301 (2016).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Commun. (2)

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref] [PubMed]

O. Florez, P. F. Jarschel, Y. A. V. Espinel, C. M. B. Cordeiro, T. P. MayerAlegre, G. S. Wiederhecker, and P. Dainese, “Brillouin scattering self-cancellation,” Nat. Commun. 7, 11759 (2016).
[Crossref] [PubMed]

Nat. Photonics (2)

R. van Laer, B. Kuyken, D. van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199–203 (2015).
[Crossref]

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463 (2016).
[Crossref]

Nature (1)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000).
[Crossref] [PubMed]

New J. Phys. (2)

R. van Laer, A. Bazin, B. Kuyken, R. Baets, and D. van Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys. 17, 115005 (2015).
[Crossref]

C. Wolff, R. van Laer, M. Steel, B. Eggleton, and C. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys. 18, 025006 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. A (1)

C. Wolff, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Stimulated Brillouin scattering in integrated photonic waveguides: Forces, scattering mechanisms, and coupled-mode analysis,” Phys. Rev. A 92, 013836 (2015).
[Crossref]

Phys. Rev. B (1)

D. Gaillot, T. Yamashita, and C. J. Summers, “Photonic band gaps in highly conformal inverse-opal based photonic crystals,” Phys. Rev. B 72, 205109 (2005).
[Crossref]

Phys. Rev. X (1)

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).

Phys. Stat. Solidi A. (1)

B. G. Helme and P. J. King, “The phonon viscosity tensor of Si, Ge, GaAs, and InSb,” Phys. Stat. Solidi A. 45, K33–K37 (1978).
[Crossref]

Other (2)

P. E. Powers, Fundamentals of nonlinear optics (CRC, 2011).

B. A. Auld, Acoustic fields and waves in solids (John Wiley & Sons, 1973).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Fundamental unit cell for face-centred cubic (FCC) lattice of interpenetrating pores in silicon. (b) Waveguide design comprising silicon inverse opal core with silicon cladding (width d) embedded in fused silica substrate where w = 550 nm and h = 500 nm.

Fig. 2
Fig. 2

(a) SBS power gain coefficient g P wg [ W 1 m 1 ] versus porosity f in the core and silicon shell thickness d; (b) log10 (QA) where QA is acoustic quality factor; (c) Stokes shift Ω B wg / ( 2 π ) [GHz]; and (d) Optical and acoustic modes at (f = 80%; d = 50 nm) where the colorscales (arb. units) refer to | E x | 2 + | E y | 2 and | u x | 2 + | u y | 2, respectively.

Tables (2)

Tables Icon

Table 1 Calculated bulk optical parameters, optoacoustic parameters, and SBS gain coefficient at λ1 = 1550 nm.a

Tables Icon

Table 2 Calculated bulk acoustic parameters at λ1 = 1550 nmb

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

g P = 4 π 2 γ 12 2 n c λ 1 2 ρ V A Γ B ,
g P wg = ( 4 π c λ 1 | P | U A ) | ξ | 2 Q A ,

Metrics