Abstract

Spatial-division multiplexed (SDM) hybrid Raman- and Brillouin- optical time-domain reflectometry (RODTR and BODTR) utilizing the multi-core fiber has been proposed and experimentally demonstrated. The solution is proposed in order to overcome the incompatible input pump power required for hybrid ROTDR and BOTDR in single mode fiber (SMF), while ensuring the capability of discriminative measurement between temperature and strain. What’s more, the central core has been intentionally chosen to implement BOTDR so as to avoid bending-induced cross-sensitivity on Brillouin frequency shift (BFS) measurement. The proposed system utilizes a single laser source, shared pump generation devices, but separate interrogation fiber channels, thus enabling efficient input power management for the two reflectometry, allowing for simultaneous measurement of spontaneous Raman scattering and Brillouin scattering. The worst temperature and strain resolutions are estimated to be about 2.2 °C and 40 με respectively in 6 km sensing range with 3 m spatial resolution.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Few-mode optical fiber based simultaneously distributed curvature and temperature sensing

Hao Wu, Ming Tang, Meng Wang, Can Zhao, Zhiyong Zhao, Ruoxu Wang, Ruolin Liao, Songnian Fu, Chen Yang, Weijun Tong, Perry Ping Shum, and Deming Liu
Opt. Express 25(11) 12722-12732 (2017)

References

  • View by:
  • |
  • |
  • |

  1. “Great potential,” Nat. Photonics 2(3), 143–158 (2008).
  2. C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photonics Technol. Lett. 13(10), 1094–1096 (2001).
    [Crossref]
  3. T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9(7), 979–981 (1997).
    [Crossref]
  4. H. H. Kee, G. P. Lees, and T. P. Newson, “All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous Brillouin scattering,” Opt. Lett. 25(10), 695–697 (2000).
    [Crossref] [PubMed]
  5. S. M. Maughan, H. H. Kee, and T. P. Newson, “Simultaneous distributed fiber temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12(7), 834–842 (2001).
    [Crossref]
  6. W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
    [Crossref] [PubMed]
  7. W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).
    [Crossref]
  8. M. Ding, Y. Mizuno, and K. Nakamura, “Discriminative strain and temperature measurement using Brillouin scattering and fluorescence in erbium-doped optical fiber,” Opt. Express 22(20), 24706–24712 (2014).
    [Crossref] [PubMed]
  9. K. Kishida, Y. Yamauchi, and A. Guzik, “Study of optical fibers strain-temperature sensitivities using hybrid Brillouin-Rayleigh System,” Photonics Sens. 4(1), 1–11 (2014).
    [Crossref]
  10. Y. Weng, E. Ip, Z. Pan, and T. Wang, “Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers,” Opt. Express 23(7), 9024–9039 (2015).
    [Crossref] [PubMed]
  11. X. Sun, J. Li, D. T. Burgess, M. Hines, and B. Zhu, “A multicore optical fiber for distributed sensing,” Proc. SPIE 9098, 90980W (2014).
  12. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering,” Opt. Lett. 30(11), 1276–1278 (2005).
    [Crossref] [PubMed]
  13. M. Taki, A. Signorini, C. J. Oton, T. Nannipieri, and F. Di Pasquale, “Hybrid Raman/Brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding,” Opt. Lett. 38(20), 4162–4165 (2013).
    [Crossref] [PubMed]
  14. D. Iida and F. Ito, “Low-bandwidth cost-effective Brillouin frequency sensing using reference Brillouin-scattered beam,” IEEE Photonics Technol. Lett. 20(22), 1845–1847 (2008).
    [Crossref]
  15. G. Bolognini, M. A. Soto, and F. Di Pasquale, “Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multiwavelength Fabry–Pérot lasers,” IEEE Photonics Technol. Lett. 21(20), 1523–1525 (2009).
    [Crossref]
  16. G. Bolognini and M. A. Soto, “Optical pulse coding in hybrid distributed sensing based on Raman and Brillouin scattering employing Fabry-Perot lasers,” Opt. Express 18(8), 8459–8465 (2010).
    [Crossref] [PubMed]
  17. M. Taki, Y. S. Muanenda, I. Toccafondo, A. Signorini, T. Nannipieri, and F. D. Pasquale, “Optimized hybrid Raman/fast-BOTDA sensor for temperature and strain measurements in large infrastructures,” IEEE Sens. J. 14(12), 4297–4304 (2014).
    [Crossref]
  18. Z. Zhao, M. A. Soto, M. Tang, and L. Thévenaz, “Curvature and shape distributed sensing using Brillouin scattering in multi-core fibers,” in Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2016), paper SeM4D.4.
  19. J. Dakin, D. Pratt, G. Bibby, and J. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
    [Crossref]
  20. K. De Souza, “Significance of coherent Rayleigh noise in fibre-optic distributed temperature sensing based on spontaneous Brillouin scattering,” Meas. Sci. Technol. 17(5), 1065–1069 (2006).
    [Crossref]
  21. F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, “Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry,” Meas. Sci. Technol. 20(2), 025202 (2009).
    [Crossref]
  22. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
    [Crossref] [PubMed]

2015 (1)

2014 (4)

X. Sun, J. Li, D. T. Burgess, M. Hines, and B. Zhu, “A multicore optical fiber for distributed sensing,” Proc. SPIE 9098, 90980W (2014).

M. Taki, Y. S. Muanenda, I. Toccafondo, A. Signorini, T. Nannipieri, and F. D. Pasquale, “Optimized hybrid Raman/fast-BOTDA sensor for temperature and strain measurements in large infrastructures,” IEEE Sens. J. 14(12), 4297–4304 (2014).
[Crossref]

M. Ding, Y. Mizuno, and K. Nakamura, “Discriminative strain and temperature measurement using Brillouin scattering and fluorescence in erbium-doped optical fiber,” Opt. Express 22(20), 24706–24712 (2014).
[Crossref] [PubMed]

K. Kishida, Y. Yamauchi, and A. Guzik, “Study of optical fibers strain-temperature sensitivities using hybrid Brillouin-Rayleigh System,” Photonics Sens. 4(1), 1–11 (2014).
[Crossref]

2013 (2)

2010 (2)

G. Bolognini and M. A. Soto, “Optical pulse coding in hybrid distributed sensing based on Raman and Brillouin scattering employing Fabry-Perot lasers,” Opt. Express 18(8), 8459–8465 (2010).
[Crossref] [PubMed]

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).
[Crossref]

2009 (3)

W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
[Crossref] [PubMed]

G. Bolognini, M. A. Soto, and F. Di Pasquale, “Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multiwavelength Fabry–Pérot lasers,” IEEE Photonics Technol. Lett. 21(20), 1523–1525 (2009).
[Crossref]

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, “Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry,” Meas. Sci. Technol. 20(2), 025202 (2009).
[Crossref]

2008 (1)

D. Iida and F. Ito, “Low-bandwidth cost-effective Brillouin frequency sensing using reference Brillouin-scattered beam,” IEEE Photonics Technol. Lett. 20(22), 1845–1847 (2008).
[Crossref]

2006 (1)

K. De Souza, “Significance of coherent Rayleigh noise in fibre-optic distributed temperature sensing based on spontaneous Brillouin scattering,” Meas. Sci. Technol. 17(5), 1065–1069 (2006).
[Crossref]

2005 (1)

2001 (2)

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photonics Technol. Lett. 13(10), 1094–1096 (2001).
[Crossref]

S. M. Maughan, H. H. Kee, and T. P. Newson, “Simultaneous distributed fiber temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12(7), 834–842 (2001).
[Crossref]

2000 (1)

1997 (1)

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9(7), 979–981 (1997).
[Crossref]

1985 (1)

J. Dakin, D. Pratt, G. Bibby, and J. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

Alahbabi, M. N.

Bao, X.

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, “Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry,” Meas. Sci. Technol. 20(2), 025202 (2009).
[Crossref]

Bibby, G.

J. Dakin, D. Pratt, G. Bibby, and J. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

Bolognini, G.

G. Bolognini and M. A. Soto, “Optical pulse coding in hybrid distributed sensing based on Raman and Brillouin scattering employing Fabry-Perot lasers,” Opt. Express 18(8), 8459–8465 (2010).
[Crossref] [PubMed]

G. Bolognini, M. A. Soto, and F. Di Pasquale, “Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multiwavelength Fabry–Pérot lasers,” IEEE Photonics Technol. Lett. 21(20), 1523–1525 (2009).
[Crossref]

Burgess, D. T.

X. Sun, J. Li, D. T. Burgess, M. Hines, and B. Zhu, “A multicore optical fiber for distributed sensing,” Proc. SPIE 9098, 90980W (2014).

Chi, S.

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photonics Technol. Lett. 13(10), 1094–1096 (2001).
[Crossref]

Chiang, P. W.

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photonics Technol. Lett. 13(10), 1094–1096 (2001).
[Crossref]

Cho, Y. T.

Dakin, J.

J. Dakin, D. Pratt, G. Bibby, and J. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

De Souza, K.

K. De Souza, “Significance of coherent Rayleigh noise in fibre-optic distributed temperature sensing based on spontaneous Brillouin scattering,” Meas. Sci. Technol. 17(5), 1065–1069 (2006).
[Crossref]

Di Pasquale, F.

M. Taki, A. Signorini, C. J. Oton, T. Nannipieri, and F. Di Pasquale, “Hybrid Raman/Brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding,” Opt. Lett. 38(20), 4162–4165 (2013).
[Crossref] [PubMed]

G. Bolognini, M. A. Soto, and F. Di Pasquale, “Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multiwavelength Fabry–Pérot lasers,” IEEE Photonics Technol. Lett. 21(20), 1523–1525 (2009).
[Crossref]

Ding, M.

Dou, R.

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, “Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry,” Meas. Sci. Technol. 20(2), 025202 (2009).
[Crossref]

Farhadiroushan, M.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9(7), 979–981 (1997).
[Crossref]

Guzik, A.

K. Kishida, Y. Yamauchi, and A. Guzik, “Study of optical fibers strain-temperature sensitivities using hybrid Brillouin-Rayleigh System,” Photonics Sens. 4(1), 1–11 (2014).
[Crossref]

Handerek, V. A.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9(7), 979–981 (1997).
[Crossref]

He, Z.

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).
[Crossref]

W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
[Crossref] [PubMed]

Hines, M.

X. Sun, J. Li, D. T. Burgess, M. Hines, and B. Zhu, “A multicore optical fiber for distributed sensing,” Proc. SPIE 9098, 90980W (2014).

Hotate, K.

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).
[Crossref]

W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
[Crossref] [PubMed]

Iida, D.

D. Iida and F. Ito, “Low-bandwidth cost-effective Brillouin frequency sensing using reference Brillouin-scattered beam,” IEEE Photonics Technol. Lett. 20(22), 1845–1847 (2008).
[Crossref]

Ip, E.

Ito, F.

D. Iida and F. Ito, “Low-bandwidth cost-effective Brillouin frequency sensing using reference Brillouin-scattered beam,” IEEE Photonics Technol. Lett. 20(22), 1845–1847 (2008).
[Crossref]

Kee, H. H.

S. M. Maughan, H. H. Kee, and T. P. Newson, “Simultaneous distributed fiber temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12(7), 834–842 (2001).
[Crossref]

H. H. Kee, G. P. Lees, and T. P. Newson, “All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous Brillouin scattering,” Opt. Lett. 25(10), 695–697 (2000).
[Crossref] [PubMed]

Kishida, K.

K. Kishida, Y. Yamauchi, and A. Guzik, “Study of optical fibers strain-temperature sensitivities using hybrid Brillouin-Rayleigh System,” Photonics Sens. 4(1), 1–11 (2014).
[Crossref]

Lee, C. C.

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photonics Technol. Lett. 13(10), 1094–1096 (2001).
[Crossref]

Lees, G. P.

Li, J.

X. Sun, J. Li, D. T. Burgess, M. Hines, and B. Zhu, “A multicore optical fiber for distributed sensing,” Proc. SPIE 9098, 90980W (2014).

Lu, Y.

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, “Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry,” Meas. Sci. Technol. 20(2), 025202 (2009).
[Crossref]

Maughan, S. M.

S. M. Maughan, H. H. Kee, and T. P. Newson, “Simultaneous distributed fiber temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12(7), 834–842 (2001).
[Crossref]

Mizuno, Y.

Muanenda, Y. S.

M. Taki, Y. S. Muanenda, I. Toccafondo, A. Signorini, T. Nannipieri, and F. D. Pasquale, “Optimized hybrid Raman/fast-BOTDA sensor for temperature and strain measurements in large infrastructures,” IEEE Sens. J. 14(12), 4297–4304 (2014).
[Crossref]

Nakamura, K.

Nannipieri, T.

M. Taki, Y. S. Muanenda, I. Toccafondo, A. Signorini, T. Nannipieri, and F. D. Pasquale, “Optimized hybrid Raman/fast-BOTDA sensor for temperature and strain measurements in large infrastructures,” IEEE Sens. J. 14(12), 4297–4304 (2014).
[Crossref]

M. Taki, A. Signorini, C. J. Oton, T. Nannipieri, and F. Di Pasquale, “Hybrid Raman/Brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding,” Opt. Lett. 38(20), 4162–4165 (2013).
[Crossref] [PubMed]

Newson, T. P.

Oton, C. J.

Pan, Z.

Parker, T. R.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9(7), 979–981 (1997).
[Crossref]

Pasquale, F. D.

M. Taki, Y. S. Muanenda, I. Toccafondo, A. Signorini, T. Nannipieri, and F. D. Pasquale, “Optimized hybrid Raman/fast-BOTDA sensor for temperature and strain measurements in large infrastructures,” IEEE Sens. J. 14(12), 4297–4304 (2014).
[Crossref]

Pratt, D.

J. Dakin, D. Pratt, G. Bibby, and J. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

Roger, A. J.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9(7), 979–981 (1997).
[Crossref]

Ross, J.

J. Dakin, D. Pratt, G. Bibby, and J. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

Signorini, A.

M. Taki, Y. S. Muanenda, I. Toccafondo, A. Signorini, T. Nannipieri, and F. D. Pasquale, “Optimized hybrid Raman/fast-BOTDA sensor for temperature and strain measurements in large infrastructures,” IEEE Sens. J. 14(12), 4297–4304 (2014).
[Crossref]

M. Taki, A. Signorini, C. J. Oton, T. Nannipieri, and F. Di Pasquale, “Hybrid Raman/Brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding,” Opt. Lett. 38(20), 4162–4165 (2013).
[Crossref] [PubMed]

Soto, M. A.

Sun, X.

X. Sun, J. Li, D. T. Burgess, M. Hines, and B. Zhu, “A multicore optical fiber for distributed sensing,” Proc. SPIE 9098, 90980W (2014).

Taki, M.

M. Taki, Y. S. Muanenda, I. Toccafondo, A. Signorini, T. Nannipieri, and F. D. Pasquale, “Optimized hybrid Raman/fast-BOTDA sensor for temperature and strain measurements in large infrastructures,” IEEE Sens. J. 14(12), 4297–4304 (2014).
[Crossref]

M. Taki, A. Signorini, C. J. Oton, T. Nannipieri, and F. Di Pasquale, “Hybrid Raman/Brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding,” Opt. Lett. 38(20), 4162–4165 (2013).
[Crossref] [PubMed]

Thévenaz, L.

Toccafondo, I.

M. Taki, Y. S. Muanenda, I. Toccafondo, A. Signorini, T. Nannipieri, and F. D. Pasquale, “Optimized hybrid Raman/fast-BOTDA sensor for temperature and strain measurements in large infrastructures,” IEEE Sens. J. 14(12), 4297–4304 (2014).
[Crossref]

Wang, F.

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, “Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry,” Meas. Sci. Technol. 20(2), 025202 (2009).
[Crossref]

Wang, T.

Weng, Y.

Yamauchi, Y.

K. Kishida, Y. Yamauchi, and A. Guzik, “Study of optical fibers strain-temperature sensitivities using hybrid Brillouin-Rayleigh System,” Photonics Sens. 4(1), 1–11 (2014).
[Crossref]

Zhang, X.

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, “Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry,” Meas. Sci. Technol. 20(2), 025202 (2009).
[Crossref]

Zhu, B.

X. Sun, J. Li, D. T. Burgess, M. Hines, and B. Zhu, “A multicore optical fiber for distributed sensing,” Proc. SPIE 9098, 90980W (2014).

Zou, W.

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).
[Crossref]

W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
[Crossref] [PubMed]

Electron. Lett. (1)

J. Dakin, D. Pratt, G. Bibby, and J. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

IEEE Photonics Technol. Lett. (5)

D. Iida and F. Ito, “Low-bandwidth cost-effective Brillouin frequency sensing using reference Brillouin-scattered beam,” IEEE Photonics Technol. Lett. 20(22), 1845–1847 (2008).
[Crossref]

G. Bolognini, M. A. Soto, and F. Di Pasquale, “Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multiwavelength Fabry–Pérot lasers,” IEEE Photonics Technol. Lett. 21(20), 1523–1525 (2009).
[Crossref]

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photonics Technol. Lett. 13(10), 1094–1096 (2001).
[Crossref]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9(7), 979–981 (1997).
[Crossref]

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).
[Crossref]

IEEE Sens. J. (1)

M. Taki, Y. S. Muanenda, I. Toccafondo, A. Signorini, T. Nannipieri, and F. D. Pasquale, “Optimized hybrid Raman/fast-BOTDA sensor for temperature and strain measurements in large infrastructures,” IEEE Sens. J. 14(12), 4297–4304 (2014).
[Crossref]

Meas. Sci. Technol. (3)

S. M. Maughan, H. H. Kee, and T. P. Newson, “Simultaneous distributed fiber temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12(7), 834–842 (2001).
[Crossref]

K. De Souza, “Significance of coherent Rayleigh noise in fibre-optic distributed temperature sensing based on spontaneous Brillouin scattering,” Meas. Sci. Technol. 17(5), 1065–1069 (2006).
[Crossref]

F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, “Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry,” Meas. Sci. Technol. 20(2), 025202 (2009).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Photonics Sens. (1)

K. Kishida, Y. Yamauchi, and A. Guzik, “Study of optical fibers strain-temperature sensitivities using hybrid Brillouin-Rayleigh System,” Photonics Sens. 4(1), 1–11 (2014).
[Crossref]

Proc. SPIE (1)

X. Sun, J. Li, D. T. Burgess, M. Hines, and B. Zhu, “A multicore optical fiber for distributed sensing,” Proc. SPIE 9098, 90980W (2014).

Other (2)

Z. Zhao, M. A. Soto, M. Tang, and L. Thévenaz, “Curvature and shape distributed sensing using Brillouin scattering in multi-core fibers,” in Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2016), paper SeM4D.4.

“Great potential,” Nat. Photonics 2(3), 143–158 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup of the MCF based SDM hybrid ROTDR and BOTDR system; LD: Laser diode; PC: polarization controller; SOA: semiconductor optical amplifier; MZM: Mach-Zehnder modulator; EDFA: erbium-doped fiber amplifier; PS: polarization switch; BPF: band-pass filter; BPD: balanced photodetector; Att.: tunable attenuator; APD: avalanche photodiode; ESA: electrical spectrum analyzer; OSc.: oscilloscope;
Fig. 2
Fig. 2 (a) The measured CRN time-domain trace at 10 MHz; (b) the measured CRN spectrum; (c) CRN gain spectrum at fiber locations of 1km, 2km and 3km, respectively.
Fig. 3
Fig. 3 (a) Cross sectional view of the 7-core MCF; (b) The measured Brillouin gain spectrum as a function of fiber distance.
Fig. 4
Fig. 4 The calibration of temperature and strain sensitivity. (a) The measured BFS along the whole sensing fiber with different temperature; the inset shows the BFS distribution near the hot-spot at the far end of the sensing fiber; (b) the peak frequency shift of BGS as a function of temperature; (c) the peak frequency shift of BGS as a function of strain; (d) error in BFS measurement versus fiber length.
Fig. 5
Fig. 5 (a) Raman Anti-Stokes traces with different temperature applied at the heated section; the inset shows the local view of intensity around the heated section. (b) Resolved temperature distribution profiles along the sensing fiber based on Raman measurement; the inset shows the enlarged view around the hot-spot.
Fig. 6
Fig. 6 (a) Estimated temperature resolution along the sensing fiber from Raman measurement; (b) Estimated strain resolution along the sensing fiber derived from both the measurements of Raman and Brillouin.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I as (z) I s (z) ( λ s λ as ) 4 exp( hΔν k B T(z) )
Δ ν B (z)= C T ΔT(z)+ C ε Δε(z)
Δε(z)= Δ ν B (z) C T ΔT(z) C ε

Metrics