Abstract

We demonstrate an Al/Si multilayer-grating microstructure covered on Si substrate. This microstructure presents a designable narrowband absorption in short-wave infrared (SWIR) waveband (2.0 μm-2.3 μm). We investigate its absorption mechanism by both modeling and simulations, and explain the results well with metal-insulator-metal and Fabry-Perot cavity theory. Furthermore, we present the absorption of fabricated multilayer-grating microstructure through experiment, and discuss the influence of structure’s lateral angle on its absorption in detail. This work provides the possibility to design Si-based devices with designable working bands in SWIR spectrum.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Si-based near-infrared narrowband absorber based on square Au patches

Xiaoyi Liu, Jinsong Gao, Haigui Yang, and Xiaoyi Wang
J. Opt. Soc. Am. B 33(10) 2149-2153 (2016)

Dual-band tunable narrowband near-infrared light trapping control based on a hybrid grating-based Fabry–Perot structure

Kun Zhou, Qiang Cheng, Lu Lu, Bowen Li, Jinlin Song, and Zixue Luo
Opt. Express 28(2) 1647-1656 (2020)

Grating-type mid-infrared light absorber based on silicon carbide material

Wenrui Xue, Xi Chen, Yanling Peng, and Rongcao Yang
Opt. Express 24(20) 22596-22605 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. K. Liang and H. K. Tsang, “Efficient Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85(16), 3343–3345 (2004).
    [Crossref]
  2. A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12(18), 4261–4268 (2004).
    [Crossref] [PubMed]
  3. S. Manipatruni, Q. Xu, and M. Lipson, “PINIP based high-speed high-extinction ratio micron-size silicon electrooptic modulator,” Opt. Express 15(20), 13035–13042 (2007).
    [Crossref] [PubMed]
  4. P. Zhang, S. Li, C. Liu, X. Wei, Z. Wu, Y. Jiang, and Z. Chen, “Near-infrared optical absorption enhanced in black silicon via Ag nanoparticle-induced localized surface plasmon,” Nanoscale Res. Lett. 9(1), 519 (2014).
    [Crossref] [PubMed]
  5. Y. Wang, J. Gao, H. Yang, X. Wang, and Z. Shen, “Compensating the degradation of near-Infrared absorption of black silicon caused by thermal annealing,” Nanoscale Res. Lett. 11(1), 56 (2016).
    [Crossref] [PubMed]
  6. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
    [Crossref] [PubMed]
  7. M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
    [Crossref] [PubMed]
  8. W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
    [Crossref] [PubMed]
  9. C. F. Guo, T. Y. Sun, F. Cao, Q. Liu, and Z. F. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
    [Crossref]
  10. Q. Min and R. Gordon, “Surface plasmon microcavity for resonant transmission through a slit in a gold film,” Opt. Express 16(13), 9708–9713 (2008).
    [Crossref] [PubMed]
  11. K. Wu, T. Rindzevicius, M. S. Schmidt, K. B. Mogensen, S. Xiao, and A. Boisen, “Plasmon resonances of Ag capped Si nanopillars fabricated using mask-less lithography,” Opt. Express 23(10), 12965–12978 (2015).
    [Crossref] [PubMed]
  12. Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752 (2014).
    [Crossref] [PubMed]
  13. D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8(1), 13–22 (2013).
    [Crossref]
  14. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [Crossref] [PubMed]
  15. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
    [Crossref]
  16. R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
    [Crossref] [PubMed]
  17. K. Ding and C. Z. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light Sci. Appl. 1(7), e20 (2012).
    [Crossref]
  18. Y. J. Lu, C. Y. Wang, J. Kim, H. Y. Chen, M. Y. Lu, Y. C. Chen, W. H. Chang, L. J. Chen, M. I. Stockman, C. K. Shih, and S. Gwo, “All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing,” Nano Lett. 14(8), 4381–4388 (2014).
    [Crossref] [PubMed]
  19. K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
    [Crossref] [PubMed]
  20. X. Y. Liu, J. S. Gao, H. G. Yang, H. Liu, X. Y. Wang, and Z. F. Shen, “Near-infrared absorption enhancement mechanism investigations of deep-trench silicon microstructures covered with gold films,” Plasmonics 11(4), 1019–1024 (2016).
    [Crossref]
  21. Y. J. Liang, F. Liu, Y. F. Chen, X. J. Wang, K. N. Sun, and Z. W. Pan, “New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared,” Light Sci. Appl. 5(7), e16124 (2016).
    [Crossref]
  22. C. Mermelstein, S. Simanowski, M. Mayer, R. Kiefer, J. Schmitz, M. Walther, and J. Wagner, “Room-temperature low-threshold low-loss continuous-wave operation of 2.26 μm GaInAsSb/AlGaAsSb quantum-well laser diodes,” Appl. Phys. Lett. 77(11), 1581–1583 (2000).
    [Crossref]
  23. A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
    [Crossref] [PubMed]
  24. M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
    [Crossref] [PubMed]
  25. F. Hu, H. Yi, and Z. Zhou, “Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities,” Opt. Express 19(6), 4848–4855 (2011).
    [Crossref] [PubMed]
  26. M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102(25), 251105 (2013).
    [Crossref]
  27. J. Petschulat, C. Helgert, M. Steinert, N. Bergner, C. Rockstuhl, F. Lederer, T. Pertsch, A. Tünnermann, and E. B. Kley, “Plasmonic modes of extreme subwavelength nanocavities,” Opt. Lett. 35(16), 2693–2695 (2010).
    [Crossref] [PubMed]

2016 (3)

Y. Wang, J. Gao, H. Yang, X. Wang, and Z. Shen, “Compensating the degradation of near-Infrared absorption of black silicon caused by thermal annealing,” Nanoscale Res. Lett. 11(1), 56 (2016).
[Crossref] [PubMed]

X. Y. Liu, J. S. Gao, H. G. Yang, H. Liu, X. Y. Wang, and Z. F. Shen, “Near-infrared absorption enhancement mechanism investigations of deep-trench silicon microstructures covered with gold films,” Plasmonics 11(4), 1019–1024 (2016).
[Crossref]

Y. J. Liang, F. Liu, Y. F. Chen, X. J. Wang, K. N. Sun, and Z. W. Pan, “New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared,” Light Sci. Appl. 5(7), e16124 (2016).
[Crossref]

2015 (1)

2014 (7)

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752 (2014).
[Crossref] [PubMed]

P. Zhang, S. Li, C. Liu, X. Wei, Z. Wu, Y. Jiang, and Z. Chen, “Near-infrared optical absorption enhanced in black silicon via Ag nanoparticle-induced localized surface plasmon,” Nanoscale Res. Lett. 9(1), 519 (2014).
[Crossref] [PubMed]

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

C. F. Guo, T. Y. Sun, F. Cao, Q. Liu, and Z. F. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Y. J. Lu, C. Y. Wang, J. Kim, H. Y. Chen, M. Y. Lu, Y. C. Chen, W. H. Chang, L. J. Chen, M. I. Stockman, C. K. Shih, and S. Gwo, “All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing,” Nano Lett. 14(8), 4381–4388 (2014).
[Crossref] [PubMed]

K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref] [PubMed]

2013 (4)

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102(25), 251105 (2013).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8(1), 13–22 (2013).
[Crossref]

2012 (1)

K. Ding and C. Z. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light Sci. Appl. 1(7), e20 (2012).
[Crossref]

2011 (2)

F. Hu, H. Yi, and Z. Zhou, “Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities,” Opt. Express 19(6), 4848–4855 (2011).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

2010 (2)

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[Crossref] [PubMed]

J. Petschulat, C. Helgert, M. Steinert, N. Bergner, C. Rockstuhl, F. Lederer, T. Pertsch, A. Tünnermann, and E. B. Kley, “Plasmonic modes of extreme subwavelength nanocavities,” Opt. Lett. 35(16), 2693–2695 (2010).
[Crossref] [PubMed]

2008 (2)

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Q. Min and R. Gordon, “Surface plasmon microcavity for resonant transmission through a slit in a gold film,” Opt. Express 16(13), 9708–9713 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

2004 (2)

T. K. Liang and H. K. Tsang, “Efficient Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85(16), 3343–3345 (2004).
[Crossref]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12(18), 4261–4268 (2004).
[Crossref] [PubMed]

2000 (1)

C. Mermelstein, S. Simanowski, M. Mayer, R. Kiefer, J. Schmitz, M. Walther, and J. Wagner, “Room-temperature low-threshold low-loss continuous-wave operation of 2.26 μm GaInAsSb/AlGaAsSb quantum-well laser diodes,” Appl. Phys. Lett. 77(11), 1581–1583 (2000).
[Crossref]

Atar, F. B.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

Aussenegg, F. R.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Behymer, E. M.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102(25), 251105 (2013).
[Crossref]

Bergner, N.

Boisen, A.

Bond, T. C.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102(25), 251105 (2013).
[Crossref]

Bora, M.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102(25), 251105 (2013).
[Crossref]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8(1), 13–22 (2013).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Britten, J. A.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102(25), 251105 (2013).
[Crossref]

Brown, L. V.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Brunets, I.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[Crossref] [PubMed]

Cao, F.

C. F. Guo, T. Y. Sun, F. Cao, Q. Liu, and Z. F. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Chang, A. S. P.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102(25), 251105 (2013).
[Crossref]

Chang, W. H.

Y. J. Lu, C. Y. Wang, J. Kim, H. Y. Chen, M. Y. Lu, Y. C. Chen, W. H. Chang, L. J. Chen, M. I. Stockman, C. K. Shih, and S. Gwo, “All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing,” Nano Lett. 14(8), 4381–4388 (2014).
[Crossref] [PubMed]

Chen, H. L.

K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref] [PubMed]

Chen, H. Y.

Y. J. Lu, C. Y. Wang, J. Kim, H. Y. Chen, M. Y. Lu, Y. C. Chen, W. H. Chang, L. J. Chen, M. I. Stockman, C. K. Shih, and S. Gwo, “All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing,” Nano Lett. 14(8), 4381–4388 (2014).
[Crossref] [PubMed]

Chen, L. J.

Y. J. Lu, C. Y. Wang, J. Kim, H. Y. Chen, M. Y. Lu, Y. C. Chen, W. H. Chang, L. J. Chen, M. I. Stockman, C. K. Shih, and S. Gwo, “All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing,” Nano Lett. 14(8), 4381–4388 (2014).
[Crossref] [PubMed]

Chen, Y. C.

Y. J. Lu, C. Y. Wang, J. Kim, H. Y. Chen, M. Y. Lu, Y. C. Chen, W. H. Chang, L. J. Chen, M. I. Stockman, C. K. Shih, and S. Gwo, “All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing,” Nano Lett. 14(8), 4381–4388 (2014).
[Crossref] [PubMed]

Chen, Y. F.

Y. J. Liang, F. Liu, Y. F. Chen, X. J. Wang, K. N. Sun, and Z. W. Pan, “New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared,” Light Sci. Appl. 5(7), e16124 (2016).
[Crossref]

Chen, Z.

P. Zhang, S. Li, C. Liu, X. Wei, Z. Wu, Y. Jiang, and Z. Chen, “Near-infrared optical absorption enhanced in black silicon via Ag nanoparticle-induced localized surface plasmon,” Nanoscale Res. Lett. 9(1), 519 (2014).
[Crossref] [PubMed]

Cohen, O.

Dehlinger, D. A.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102(25), 251105 (2013).
[Crossref]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Ding, K.

K. Ding and C. Z. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light Sci. Appl. 1(7), e20 (2012).
[Crossref]

Ditlbacher, H.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Fang, Z.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Galler, N.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Gao, J.

Y. Wang, J. Gao, H. Yang, X. Wang, and Z. Shen, “Compensating the degradation of near-Infrared absorption of black silicon caused by thermal annealing,” Nanoscale Res. Lett. 11(1), 56 (2016).
[Crossref] [PubMed]

Gao, J. S.

X. Y. Liu, J. S. Gao, H. G. Yang, H. Liu, X. Y. Wang, and Z. F. Shen, “Near-infrared absorption enhancement mechanism investigations of deep-trench silicon microstructures covered with gold films,” Plasmonics 11(4), 1019–1024 (2016).
[Crossref]

Gong, Q.

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752 (2014).
[Crossref] [PubMed]

Gordon, R.

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8(1), 13–22 (2013).
[Crossref]

Guo, C. F.

C. F. Guo, T. Y. Sun, F. Cao, Q. Liu, and Z. F. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Gwo, S.

Y. J. Lu, C. Y. Wang, J. Kim, H. Y. Chen, M. Y. Lu, Y. C. Chen, W. H. Chang, L. J. Chen, M. I. Stockman, C. K. Shih, and S. Gwo, “All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing,” Nano Lett. 14(8), 4381–4388 (2014).
[Crossref] [PubMed]

Hak, D.

Halas, N. J.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Helgert, C.

Hohenau, A.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Hu, F.

Hu, X.

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752 (2014).
[Crossref] [PubMed]

Jiang, Y.

P. Zhang, S. Li, C. Liu, X. Wei, Z. Wu, Y. Jiang, and Z. Chen, “Near-infrared optical absorption enhanced in black silicon via Ag nanoparticle-induced localized surface plasmon,” Nanoscale Res. Lett. 9(1), 519 (2014).
[Crossref] [PubMed]

Kiefer, R.

C. Mermelstein, S. Simanowski, M. Mayer, R. Kiefer, J. Schmitz, M. Walther, and J. Wagner, “Room-temperature low-threshold low-loss continuous-wave operation of 2.26 μm GaInAsSb/AlGaAsSb quantum-well laser diodes,” Appl. Phys. Lett. 77(11), 1581–1583 (2000).
[Crossref]

Kim, J.

Y. J. Lu, C. Y. Wang, J. Kim, H. Y. Chen, M. Y. Lu, Y. C. Chen, W. H. Chang, L. J. Chen, M. I. Stockman, C. K. Shih, and S. Gwo, “All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing,” Nano Lett. 14(8), 4381–4388 (2014).
[Crossref] [PubMed]

King, N. S.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Kley, E. B.

Knight, M. W.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Koller, D. M.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Krenn, J. R.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Lai, Y. S.

K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref] [PubMed]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Larson, C. C.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102(25), 251105 (2013).
[Crossref]

Lederer, F.

Leitner, A.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Li, S.

P. Zhang, S. Li, C. Liu, X. Wei, Z. Wu, Y. Jiang, and Z. Chen, “Near-infrared optical absorption enhanced in black silicon via Ag nanoparticle-induced localized surface plasmon,” Nanoscale Res. Lett. 9(1), 519 (2014).
[Crossref] [PubMed]

Li, W.

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

Liang, T. K.

T. K. Liang and H. K. Tsang, “Efficient Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85(16), 3343–3345 (2004).
[Crossref]

Liang, Y. J.

Y. J. Liang, F. Liu, Y. F. Chen, X. J. Wang, K. N. Sun, and Z. W. Pan, “New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared,” Light Sci. Appl. 5(7), e16124 (2016).
[Crossref]

Lin, K. T.

K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref] [PubMed]

Lipson, M.

List, E. J. W.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Liu, A.

Liu, C.

P. Zhang, S. Li, C. Liu, X. Wei, Z. Wu, Y. Jiang, and Z. Chen, “Near-infrared optical absorption enhanced in black silicon via Ag nanoparticle-induced localized surface plasmon,” Nanoscale Res. Lett. 9(1), 519 (2014).
[Crossref] [PubMed]

Liu, F.

Y. J. Liang, F. Liu, Y. F. Chen, X. J. Wang, K. N. Sun, and Z. W. Pan, “New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared,” Light Sci. Appl. 5(7), e16124 (2016).
[Crossref]

Liu, H.

X. Y. Liu, J. S. Gao, H. G. Yang, H. Liu, X. Y. Wang, and Z. F. Shen, “Near-infrared absorption enhancement mechanism investigations of deep-trench silicon microstructures covered with gold films,” Plasmonics 11(4), 1019–1024 (2016).
[Crossref]

Liu, Q.

C. F. Guo, T. Y. Sun, F. Cao, Q. Liu, and Z. F. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Liu, X. Y.

X. Y. Liu, J. S. Gao, H. G. Yang, H. Liu, X. Y. Wang, and Z. F. Shen, “Near-infrared absorption enhancement mechanism investigations of deep-trench silicon microstructures covered with gold films,” Plasmonics 11(4), 1019–1024 (2016).
[Crossref]

Lu, M. Y.

Y. J. Lu, C. Y. Wang, J. Kim, H. Y. Chen, M. Y. Lu, Y. C. Chen, W. H. Chang, L. J. Chen, M. I. Stockman, C. K. Shih, and S. Gwo, “All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing,” Nano Lett. 14(8), 4381–4388 (2014).
[Crossref] [PubMed]

Lu, Y. J.

Y. J. Lu, C. Y. Wang, J. Kim, H. Y. Chen, M. Y. Lu, Y. C. Chen, W. H. Chang, L. J. Chen, M. I. Stockman, C. K. Shih, and S. Gwo, “All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing,” Nano Lett. 14(8), 4381–4388 (2014).
[Crossref] [PubMed]

Manipatruni, S.

Mayer, M.

C. Mermelstein, S. Simanowski, M. Mayer, R. Kiefer, J. Schmitz, M. Walther, and J. Wagner, “Room-temperature low-threshold low-loss continuous-wave operation of 2.26 μm GaInAsSb/AlGaAsSb quantum-well laser diodes,” Appl. Phys. Lett. 77(11), 1581–1583 (2000).
[Crossref]

Mermelstein, C.

C. Mermelstein, S. Simanowski, M. Mayer, R. Kiefer, J. Schmitz, M. Walther, and J. Wagner, “Room-temperature low-threshold low-loss continuous-wave operation of 2.26 μm GaInAsSb/AlGaAsSb quantum-well laser diodes,” Appl. Phys. Lett. 77(11), 1581–1583 (2000).
[Crossref]

Min, Q.

Mogensen, K. B.

Munechika, K.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102(25), 251105 (2013).
[Crossref]

Nazirzadeh, M. A.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

Nguyen, H. T.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102(25), 251105 (2013).
[Crossref]

Ning, C. Z.

K. Ding and C. Z. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light Sci. Appl. 1(7), e20 (2012).
[Crossref]

Nordlander, P.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Okyay, A. K.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

Pan, Z. W.

Y. J. Liang, F. Liu, Y. F. Chen, X. J. Wang, K. N. Sun, and Z. W. Pan, “New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared,” Light Sci. Appl. 5(7), e16124 (2016).
[Crossref]

Paniccia, M.

Pertsch, T.

Petschulat, J.

Polman, A.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[Crossref] [PubMed]

Reil, F.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

Ren, Z. F.

C. F. Guo, T. Y. Sun, F. Cao, Q. Liu, and Z. F. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Rindzevicius, T.

Rockstuhl, C.

Rong, H.

Schmidt, M. S.

Schmitz, J.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[Crossref] [PubMed]

C. Mermelstein, S. Simanowski, M. Mayer, R. Kiefer, J. Schmitz, M. Walther, and J. Wagner, “Room-temperature low-threshold low-loss continuous-wave operation of 2.26 μm GaInAsSb/AlGaAsSb quantum-well laser diodes,” Appl. Phys. Lett. 77(11), 1581–1583 (2000).
[Crossref]

Shen, Z.

Y. Wang, J. Gao, H. Yang, X. Wang, and Z. Shen, “Compensating the degradation of near-Infrared absorption of black silicon caused by thermal annealing,” Nanoscale Res. Lett. 11(1), 56 (2016).
[Crossref] [PubMed]

Shen, Z. F.

X. Y. Liu, J. S. Gao, H. G. Yang, H. Liu, X. Y. Wang, and Z. F. Shen, “Near-infrared absorption enhancement mechanism investigations of deep-trench silicon microstructures covered with gold films,” Plasmonics 11(4), 1019–1024 (2016).
[Crossref]

Shih, C. K.

Y. J. Lu, C. Y. Wang, J. Kim, H. Y. Chen, M. Y. Lu, Y. C. Chen, W. H. Chang, L. J. Chen, M. I. Stockman, C. K. Shih, and S. Gwo, “All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing,” Nano Lett. 14(8), 4381–4388 (2014).
[Crossref] [PubMed]

Simanowski, S.

C. Mermelstein, S. Simanowski, M. Mayer, R. Kiefer, J. Schmitz, M. Walther, and J. Wagner, “Room-temperature low-threshold low-loss continuous-wave operation of 2.26 μm GaInAsSb/AlGaAsSb quantum-well laser diodes,” Appl. Phys. Lett. 77(11), 1581–1583 (2000).
[Crossref]

Sobhani, A.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Steinert, M.

Stockman, M. I.

Y. J. Lu, C. Y. Wang, J. Kim, H. Y. Chen, M. Y. Lu, Y. C. Chen, W. H. Chang, L. J. Chen, M. I. Stockman, C. K. Shih, and S. Gwo, “All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing,” Nano Lett. 14(8), 4381–4388 (2014).
[Crossref] [PubMed]

Sun, K. N.

Y. J. Liang, F. Liu, Y. F. Chen, X. J. Wang, K. N. Sun, and Z. W. Pan, “New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared,” Light Sci. Appl. 5(7), e16124 (2016).
[Crossref]

Sun, T. Y.

C. F. Guo, T. Y. Sun, F. Cao, Q. Liu, and Z. F. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Tsang, H. K.

T. K. Liang and H. K. Tsang, “Efficient Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85(16), 3343–3345 (2004).
[Crossref]

Tünnermann, A.

Turgut, B. B.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

Urban, A. S.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

Valentine, J.

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

van Loon, R. V. A.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[Crossref] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Wagner, J.

C. Mermelstein, S. Simanowski, M. Mayer, R. Kiefer, J. Schmitz, M. Walther, and J. Wagner, “Room-temperature low-threshold low-loss continuous-wave operation of 2.26 μm GaInAsSb/AlGaAsSb quantum-well laser diodes,” Appl. Phys. Lett. 77(11), 1581–1583 (2000).
[Crossref]

Walters, R. J.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[Crossref] [PubMed]

Walther, M.

C. Mermelstein, S. Simanowski, M. Mayer, R. Kiefer, J. Schmitz, M. Walther, and J. Wagner, “Room-temperature low-threshold low-loss continuous-wave operation of 2.26 μm GaInAsSb/AlGaAsSb quantum-well laser diodes,” Appl. Phys. Lett. 77(11), 1581–1583 (2000).
[Crossref]

Wang, C. Y.

Y. J. Lu, C. Y. Wang, J. Kim, H. Y. Chen, M. Y. Lu, Y. C. Chen, W. H. Chang, L. J. Chen, M. I. Stockman, C. K. Shih, and S. Gwo, “All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing,” Nano Lett. 14(8), 4381–4388 (2014).
[Crossref] [PubMed]

Wang, X.

Y. Wang, J. Gao, H. Yang, X. Wang, and Z. Shen, “Compensating the degradation of near-Infrared absorption of black silicon caused by thermal annealing,” Nanoscale Res. Lett. 11(1), 56 (2016).
[Crossref] [PubMed]

Wang, X. J.

Y. J. Liang, F. Liu, Y. F. Chen, X. J. Wang, K. N. Sun, and Z. W. Pan, “New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared,” Light Sci. Appl. 5(7), e16124 (2016).
[Crossref]

Wang, X. Y.

X. Y. Liu, J. S. Gao, H. G. Yang, H. Liu, X. Y. Wang, and Z. F. Shen, “Near-infrared absorption enhancement mechanism investigations of deep-trench silicon microstructures covered with gold films,” Plasmonics 11(4), 1019–1024 (2016).
[Crossref]

Wang, Y.

Y. Wang, J. Gao, H. Yang, X. Wang, and Z. Shen, “Compensating the degradation of near-Infrared absorption of black silicon caused by thermal annealing,” Nanoscale Res. Lett. 11(1), 56 (2016).
[Crossref] [PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

Wei, X.

P. Zhang, S. Li, C. Liu, X. Wei, Z. Wu, Y. Jiang, and Z. Chen, “Near-infrared optical absorption enhanced in black silicon via Ag nanoparticle-induced localized surface plasmon,” Nanoscale Res. Lett. 9(1), 519 (2014).
[Crossref] [PubMed]

Wu, K.

Wu, Z.

P. Zhang, S. Li, C. Liu, X. Wei, Z. Wu, Y. Jiang, and Z. Chen, “Near-infrared optical absorption enhanced in black silicon via Ag nanoparticle-induced localized surface plasmon,” Nanoscale Res. Lett. 9(1), 519 (2014).
[Crossref] [PubMed]

Xiao, S.

Xu, Q.

Yang, H.

Y. Wang, J. Gao, H. Yang, X. Wang, and Z. Shen, “Compensating the degradation of near-Infrared absorption of black silicon caused by thermal annealing,” Nanoscale Res. Lett. 11(1), 56 (2016).
[Crossref] [PubMed]

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752 (2014).
[Crossref] [PubMed]

Yang, H. G.

X. Y. Liu, J. S. Gao, H. G. Yang, H. Liu, X. Y. Wang, and Z. F. Shen, “Near-infrared absorption enhancement mechanism investigations of deep-trench silicon microstructures covered with gold films,” Plasmonics 11(4), 1019–1024 (2016).
[Crossref]

Yi, H.

Yu, C. C.

K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref] [PubMed]

Zhang, P.

P. Zhang, S. Li, C. Liu, X. Wei, Z. Wu, Y. Jiang, and Z. Chen, “Near-infrared optical absorption enhanced in black silicon via Ag nanoparticle-induced localized surface plasmon,” Nanoscale Res. Lett. 9(1), 519 (2014).
[Crossref] [PubMed]

Zheng, B.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Zheng, B. Y.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

Zhou, Z.

Zhu, Y.

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

T. K. Liang and H. K. Tsang, “Efficient Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85(16), 3343–3345 (2004).
[Crossref]

C. Mermelstein, S. Simanowski, M. Mayer, R. Kiefer, J. Schmitz, M. Walther, and J. Wagner, “Room-temperature low-threshold low-loss continuous-wave operation of 2.26 μm GaInAsSb/AlGaAsSb quantum-well laser diodes,” Appl. Phys. Lett. 77(11), 1581–1583 (2000).
[Crossref]

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102(25), 251105 (2013).
[Crossref]

Light Sci. Appl. (3)

Y. J. Liang, F. Liu, Y. F. Chen, X. J. Wang, K. N. Sun, and Z. W. Pan, “New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared,” Light Sci. Appl. 5(7), e16124 (2016).
[Crossref]

C. F. Guo, T. Y. Sun, F. Cao, Q. Liu, and Z. F. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

K. Ding and C. Z. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light Sci. Appl. 1(7), e20 (2012).
[Crossref]

Nano Lett. (3)

Y. J. Lu, C. Y. Wang, J. Kim, H. Y. Chen, M. Y. Lu, Y. C. Chen, W. H. Chang, L. J. Chen, M. I. Stockman, C. K. Shih, and S. Gwo, “All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing,” Nano Lett. 14(8), 4381–4388 (2014).
[Crossref] [PubMed]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

Nanoscale Res. Lett. (2)

P. Zhang, S. Li, C. Liu, X. Wei, Z. Wu, Y. Jiang, and Z. Chen, “Near-infrared optical absorption enhanced in black silicon via Ag nanoparticle-induced localized surface plasmon,” Nanoscale Res. Lett. 9(1), 519 (2014).
[Crossref] [PubMed]

Y. Wang, J. Gao, H. Yang, X. Wang, and Z. Shen, “Compensating the degradation of near-Infrared absorption of black silicon caused by thermal annealing,” Nanoscale Res. Lett. 11(1), 56 (2016).
[Crossref] [PubMed]

Nat. Commun. (2)

K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref] [PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8(1), 13–22 (2013).
[Crossref]

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Plasmonics (1)

X. Y. Liu, J. S. Gao, H. G. Yang, H. Liu, X. Y. Wang, and Z. F. Shen, “Near-infrared absorption enhancement mechanism investigations of deep-trench silicon microstructures covered with gold films,” Plasmonics 11(4), 1019–1024 (2016).
[Crossref]

Sci. Rep. (2)

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752 (2014).
[Crossref] [PubMed]

Science (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Diagram of the designed multilayer-grating microstructure. (b) Top-view SEM image of fabricated multilayer-grating microstructure. The inset shows the cross-sectional SEM image of alternate Al and Si layers.
Fig. 2
Fig. 2 (a) The dependence of simulated absorptance on the W of the multilayer-grating microstructures. (b) Longitudinal (xz-plane) electric-field intensity distributions of the microstructures with different W from 1.15 μm to 1.35 μm. The colorbars stand for the normalized electric field intensity.
Fig. 3
Fig. 3 The relationship between W and absorption peak wavelength of the microstructures calculated by Eq. (4) and FDTD simulations, respectively.
Fig. 4
Fig. 4 (a) The dependence of simulated absorption peak value on the number of stacked layers of designed multilayer grating. (b) The dependence of simulated absorption peak value on layer thickness of designed multilayer grating.
Fig. 5
Fig. 5 (a) The experimental absorptance (red) and simulated absorptance (blue) of the multilayer-grating microstructure with W = 1.25 μm. (b) Cross-sectional SEM image of prepared microstructure with lateral angle θ = 33°. (c) Cross-sectional SEM image of prepared microstructure with lateral angle θ = 86°.
Fig. 6
Fig. 6 The relationship between simulated absorptance and the lateral angle (θ) of the multilayer-grating microstructures. The experimental value is also given (dashed line).
Fig. 7
Fig. 7 Summary of the absorption spectrum of multilayer-grating microstructures with various stripe width (W). The colorbar stands for the relative absorptance.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

2Wβ+ φ r =2mπ
m=(2Wβ+φ ) r /2π
ε d k m + ε m k d tanh( k d h/2)=0
β 2 ε d k 0 2 = k d 2
β 2 ε m k 0 2 = k m 2
λ r =2 n eff W/(m φ r /2π)

Metrics