Abstract

The integrated model of echo laser pulse profile (ELPP) of a target with arbitrary shape is studied under the condition of the ELPP affected by target and atmospheric turbulence simultaneously. The ELPPs of four typical targets (a plane, a cone, a sphere and an aspherical surface) are employed to test the validity of the model by analytical and numerical approaches. Based on simulations of the ELPP under different targets and atmospheric turbulence intensity, the results show a good agreement between two methods, and the ELPP of a target with discontinuous surface is more easily affected by atmospheric turbulence than that with a continuous surface. Besides that, we study the relationship between the number of grids and the relative error of analytical and numerical approaches, which are of interest to obtain the optimal number of grids used in the simulations.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 lidar

Douglas H. Nelson, Donald L. Walters, Edward P. MacKerrow, Mark J. Schmitt, Charles R. Quick, William M. Porch, and Roger R. Petrin
Appl. Opt. 39(12) 1857-1871 (2000)

Differential optical-path approach to improve signal-to-noise ratio of pulsed-laser range finding

Qun Hao, Jie Cao, Yao Hu, Yunyi Yang, Kun Li, and Tengfei Li
Opt. Express 22(1) 563-575 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
    [Crossref] [PubMed]
  2. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
    [Crossref]
  3. B. Schwarz, “Mapping the world in 3D,” Nat. Photonics 4(7), 429–430 (2010).
    [Crossref]
  4. Y. Cai, X. Tong, P. Tong, H. Bu, and R. Shu, “Linear terrestrial laser scanning using array avalanche photodiodes as detectors for rapid three-dimensional imaging,” Appl. Opt. 49(34), H11–H19 (2010).
    [Crossref] [PubMed]
  5. O. Steinvall, T. Chevalier, and C. Grönwall, “Simulation and modeling of laser range profiling and imaging of small surface vessels,” Opt. Eng. 53(1), 013109 (2014).
    [Crossref]
  6. G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10(1), 23–26 (2015).
    [Crossref]
  7. Y. Qin, T. T. Vu, Y. Ban, and Z. Niu, “Range determination for generating point clouds from airborne small footprint LiDAR waveforms,” Opt. Express 20(23), 25935–25947 (2012).
    [Crossref] [PubMed]
  8. R. S. da Veiga, A. S. de Oliveira, L. V. R. de Arruda, and F. N. Junior, Robot Operating System (Springer, 2016).
  9. Y. Chen, Y. Shen, X. Liu, and B. Zhong, “3D object tracking via image sets and depth-based occlusion detection,” Signal Process. 112, 146–153 (2015).
    [Crossref]
  10. Y. Li and Z. Wu, “Targets recognition using subnanosecond pulse laser range profiles,” Opt. Express 18(16), 16788–16796 (2010).
    [Crossref] [PubMed]
  11. V. A. Banakh and I. N. Smalikho, “Fluctuations of energy density of short-pulse optical radiation in the turbulent atmosphere,” Opt. Express 22(19), 22285–22297 (2014).
    [Crossref] [PubMed]
  12. U. Stilla and B. Jutzi, “Waveform analysis for small-footprint pulsed laser systems,” in Topographic Laser Ranging and Scanning: Principles and Processing, 215–234 (CRC Press, 2008).
  13. H.-J. Li and S.-H. Yang, “Using range profiles as feature vectors to identify aerospace objects,” IEEE Trans. Antenn. Propag. 41(3), 261–268 (1993).
    [Crossref]
  14. C. Chen, H. Yang, Y. Lou, S. Tong, and R. Liu, “Temporal broadening of optical pulses propagating through non-Kolmogorov turbulence,” Opt. Express 20(7), 7749–7757 (2012).
    [Crossref] [PubMed]
  15. Y. Li, Z. Wu, L. Bai, H. Li, and Y. Cao, “The laser range profile and range imaging of a coarse cone,” Proc. SPIE 8855, 88550N (2013).
    [Crossref]
  16. S. E. Johnson, “Effect of target surface orientation on the range precision of laser detection and ranging systems,”Journal of Applied Remote Sensing 3(1), 033564 (2009).
    [Crossref]
  17. N. Mosavi, C. Nelson, B. S. Marks, B. G. Boone, and C. R. Menyuk, “Aberrated beam propagation through turbulence and comparison of Monte Carlo simulations to field test measurements,” Opt. Eng. 53(8), 086108 (2014).
    [Crossref]
  18. H. Zhai, B. Wang, J. Zhang, and A. Dang, “Fractal phase screen generation algorithm for atmospheric turbulence,” Appl. Opt. 54(13), 4023–4032 (2015).
    [Crossref]
  19. C. Chen, H. Yang, M. Kavehrad, and Y. Lou, “Time-dependent scintillations of pulsed Gaussian-beam waves propagating in generalized atmospheric turbulence,” Opt. Laser Technol. 61, 8–14 (2014).
    [Crossref]
  20. Q. Hao, J. Cao, Y. Hu, Y. Yang, K. Li, and T. Li, “Differential optical-path approach to improve signal-to-noise ratio of pulsed-laser range finding,” Opt. Express 22(1), 563–575 (2014).
    [Crossref] [PubMed]
  21. K. E. Torrance and E. M. Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. Am. 57(9), 1105–1114 (1967).
    [Crossref]
  22. N. Tanaka, S. Tominaga, and T. Kawai, “Estimation of the torrance-sparrow reflection model from a single multi-band image,”in Pattern Recognition,2000. Proceedings 15th International Conference on (IEEE, 2000), pp. 596–599.
    [Crossref]
  23. R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM Trans. Graph. 1(1), 7–24 (1982).
    [Crossref]
  24. A. Dür, “An improved normalization for the Ward reflectance model,” Journal of graphics, gpu, and game tools. 11(1), 51–59 (2006).
    [Crossref]
  25. R. D. Richmond and S. C. Cain, Direct-detection LADAR systems (SPIE Press Bellingham, 2010).
  26. O. Korotkova, L. C. Andrews, and R. L. Phillips, “LIDAR model for a rough-surface target: Method of partial coherence,” Proc. SPIE 5237, 49–60 (2004).
    [Crossref]
  27. C. Y. Young, L. C. Andrews, and A. Ishimaru, “Time-of-arrival fluctuations of a space–time Gaussian pulse in weak optical turbulence: an analytic solution,” Appl. Opt. 37(33), 7655–7660 (1998).
    [Crossref] [PubMed]
  28. C. Y. Young, “Broadening of ultra-short optical pulses in moderate to strong turbulence,” Proc. SPIE 4821, 74–81 (2002).
    [Crossref]
  29. W. Nelson, P. Sprangle, and C. C. Davis, “Atmospheric propagation and combining of high-power lasers,” Appl. Opt. 55(7), 1757–1764 (2016).
    [Crossref] [PubMed]
  30. J. Xiang, “Fast and accurate simulation of the turbulent phase screen using fast Fourier transform,” Opt. Eng. 53(1), 016110 (2014).
    [Crossref]
  31. N. A. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29(10), 1174–1180 (1990).
    [Crossref]
  32. F. Assémat, R. Wilson, and E. Gendron, “Method for simulating infinitely long and non stationary phase screens with optimized memory storage,” Opt. Express 14(3), 988–999 (2006).
    [Crossref] [PubMed]
  33. G. Sedmak, “Performance analysis of and compensation for aspect-ratio effects of fast-fourier-transform-based simulations of large atmospheric wave fronts,” Appl. Opt. 37(21), 4605–4613 (1998).
    [Crossref] [PubMed]
  34. E. M. Johansson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372–383 (1994).
    [Crossref]
  35. J. J. S. Escobar, L. I. B. Santillán, J. V. Ubera, J. S. Luna, and H. G. Bonilla, “Measuring the profile of a simulated machined aspherical surface using a nonconventional optimization algorithm,” Opt. Eng. 47(8), 083601 (2008).
    [Crossref]
  36. H. J. Kong, T. H. Kim, S. E. Jo, and M. S. Oh, “Smart three-dimensional imaging LADAR using two Geiger-mode avalanche photodiodes,” Opt. Express 19(20), 19323–19329 (2011).
    [Crossref] [PubMed]

2016 (1)

2015 (3)

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10(1), 23–26 (2015).
[Crossref]

Y. Chen, Y. Shen, X. Liu, and B. Zhong, “3D object tracking via image sets and depth-based occlusion detection,” Signal Process. 112, 146–153 (2015).
[Crossref]

H. Zhai, B. Wang, J. Zhang, and A. Dang, “Fractal phase screen generation algorithm for atmospheric turbulence,” Appl. Opt. 54(13), 4023–4032 (2015).
[Crossref]

2014 (6)

C. Chen, H. Yang, M. Kavehrad, and Y. Lou, “Time-dependent scintillations of pulsed Gaussian-beam waves propagating in generalized atmospheric turbulence,” Opt. Laser Technol. 61, 8–14 (2014).
[Crossref]

Q. Hao, J. Cao, Y. Hu, Y. Yang, K. Li, and T. Li, “Differential optical-path approach to improve signal-to-noise ratio of pulsed-laser range finding,” Opt. Express 22(1), 563–575 (2014).
[Crossref] [PubMed]

V. A. Banakh and I. N. Smalikho, “Fluctuations of energy density of short-pulse optical radiation in the turbulent atmosphere,” Opt. Express 22(19), 22285–22297 (2014).
[Crossref] [PubMed]

O. Steinvall, T. Chevalier, and C. Grönwall, “Simulation and modeling of laser range profiling and imaging of small surface vessels,” Opt. Eng. 53(1), 013109 (2014).
[Crossref]

J. Xiang, “Fast and accurate simulation of the turbulent phase screen using fast Fourier transform,” Opt. Eng. 53(1), 016110 (2014).
[Crossref]

N. Mosavi, C. Nelson, B. S. Marks, B. G. Boone, and C. R. Menyuk, “Aberrated beam propagation through turbulence and comparison of Monte Carlo simulations to field test measurements,” Opt. Eng. 53(8), 086108 (2014).
[Crossref]

2013 (2)

2012 (2)

2011 (1)

2010 (4)

2008 (1)

J. J. S. Escobar, L. I. B. Santillán, J. V. Ubera, J. S. Luna, and H. G. Bonilla, “Measuring the profile of a simulated machined aspherical surface using a nonconventional optimization algorithm,” Opt. Eng. 47(8), 083601 (2008).
[Crossref]

2006 (2)

2004 (1)

O. Korotkova, L. C. Andrews, and R. L. Phillips, “LIDAR model for a rough-surface target: Method of partial coherence,” Proc. SPIE 5237, 49–60 (2004).
[Crossref]

2002 (1)

C. Y. Young, “Broadening of ultra-short optical pulses in moderate to strong turbulence,” Proc. SPIE 4821, 74–81 (2002).
[Crossref]

1998 (2)

1994 (1)

E. M. Johansson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372–383 (1994).
[Crossref]

1993 (1)

H.-J. Li and S.-H. Yang, “Using range profiles as feature vectors to identify aerospace objects,” IEEE Trans. Antenn. Propag. 41(3), 261–268 (1993).
[Crossref]

1990 (1)

N. A. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29(10), 1174–1180 (1990).
[Crossref]

1982 (1)

R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM Trans. Graph. 1(1), 7–24 (1982).
[Crossref]

1967 (1)

Andrews, L. C.

O. Korotkova, L. C. Andrews, and R. L. Phillips, “LIDAR model for a rough-surface target: Method of partial coherence,” Proc. SPIE 5237, 49–60 (2004).
[Crossref]

C. Y. Young, L. C. Andrews, and A. Ishimaru, “Time-of-arrival fluctuations of a space–time Gaussian pulse in weak optical turbulence: an analytic solution,” Appl. Opt. 37(33), 7655–7660 (1998).
[Crossref] [PubMed]

Assémat, F.

Bai, L.

Y. Li, Z. Wu, L. Bai, H. Li, and Y. Cao, “The laser range profile and range imaging of a coarse cone,” Proc. SPIE 8855, 88550N (2013).
[Crossref]

Ban, Y.

Banakh, V. A.

Bonilla, H. G.

J. J. S. Escobar, L. I. B. Santillán, J. V. Ubera, J. S. Luna, and H. G. Bonilla, “Measuring the profile of a simulated machined aspherical surface using a nonconventional optimization algorithm,” Opt. Eng. 47(8), 083601 (2008).
[Crossref]

Boone, B. G.

N. Mosavi, C. Nelson, B. S. Marks, B. G. Boone, and C. R. Menyuk, “Aberrated beam propagation through turbulence and comparison of Monte Carlo simulations to field test measurements,” Opt. Eng. 53(8), 086108 (2014).
[Crossref]

Bu, H.

Buller, G. S.

Cai, Y.

Cao, J.

Cao, Y.

Y. Li, Z. Wu, L. Bai, H. Li, and Y. Cao, “The laser range profile and range imaging of a coarse cone,” Proc. SPIE 8855, 88550N (2013).
[Crossref]

Chen, C.

C. Chen, H. Yang, M. Kavehrad, and Y. Lou, “Time-dependent scintillations of pulsed Gaussian-beam waves propagating in generalized atmospheric turbulence,” Opt. Laser Technol. 61, 8–14 (2014).
[Crossref]

C. Chen, H. Yang, Y. Lou, S. Tong, and R. Liu, “Temporal broadening of optical pulses propagating through non-Kolmogorov turbulence,” Opt. Express 20(7), 7749–7757 (2012).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, Y. Shen, X. Liu, and B. Zhong, “3D object tracking via image sets and depth-based occlusion detection,” Signal Process. 112, 146–153 (2015).
[Crossref]

Chevalier, T.

O. Steinvall, T. Chevalier, and C. Grönwall, “Simulation and modeling of laser range profiling and imaging of small surface vessels,” Opt. Eng. 53(1), 013109 (2014).
[Crossref]

Cook, R. L.

R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM Trans. Graph. 1(1), 7–24 (1982).
[Crossref]

Dang, A.

Davis, C. C.

Dorenbos, S. N.

Dür, A.

A. Dür, “An improved normalization for the Ward reflectance model,” Journal of graphics, gpu, and game tools. 11(1), 51–59 (2006).
[Crossref]

Escobar, J. J. S.

J. J. S. Escobar, L. I. B. Santillán, J. V. Ubera, J. S. Luna, and H. G. Bonilla, “Measuring the profile of a simulated machined aspherical surface using a nonconventional optimization algorithm,” Opt. Eng. 47(8), 083601 (2008).
[Crossref]

Faccio, D.

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10(1), 23–26 (2015).
[Crossref]

Gariepy, G.

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10(1), 23–26 (2015).
[Crossref]

Gavel, D. T.

E. M. Johansson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372–383 (1994).
[Crossref]

Gemmell, N. R.

Gendron, E.

Grönwall, C.

O. Steinvall, T. Chevalier, and C. Grönwall, “Simulation and modeling of laser range profiling and imaging of small surface vessels,” Opt. Eng. 53(1), 013109 (2014).
[Crossref]

Hadfield, R. H.

Hao, Q.

Henderson, R.

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10(1), 23–26 (2015).
[Crossref]

Hu, Y.

Ishimaru, A.

Jo, S. E.

Johansson, E. M.

E. M. Johansson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372–383 (1994).
[Crossref]

Kavehrad, M.

C. Chen, H. Yang, M. Kavehrad, and Y. Lou, “Time-dependent scintillations of pulsed Gaussian-beam waves propagating in generalized atmospheric turbulence,” Opt. Laser Technol. 61, 8–14 (2014).
[Crossref]

Kim, S.-W.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Kim, T. H.

Kim, Y.-J.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Kong, H. J.

Korotkova, O.

O. Korotkova, L. C. Andrews, and R. L. Phillips, “LIDAR model for a rough-surface target: Method of partial coherence,” Proc. SPIE 5237, 49–60 (2004).
[Crossref]

Krichel, N. J.

Leach, J.

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10(1), 23–26 (2015).
[Crossref]

Lee, J.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, K.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, S.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Li, H.

Y. Li, Z. Wu, L. Bai, H. Li, and Y. Cao, “The laser range profile and range imaging of a coarse cone,” Proc. SPIE 8855, 88550N (2013).
[Crossref]

Li, H.-J.

H.-J. Li and S.-H. Yang, “Using range profiles as feature vectors to identify aerospace objects,” IEEE Trans. Antenn. Propag. 41(3), 261–268 (1993).
[Crossref]

Li, K.

Li, T.

Li, Y.

Y. Li, Z. Wu, L. Bai, H. Li, and Y. Cao, “The laser range profile and range imaging of a coarse cone,” Proc. SPIE 8855, 88550N (2013).
[Crossref]

Y. Li and Z. Wu, “Targets recognition using subnanosecond pulse laser range profiles,” Opt. Express 18(16), 16788–16796 (2010).
[Crossref] [PubMed]

Liu, R.

Liu, X.

Y. Chen, Y. Shen, X. Liu, and B. Zhong, “3D object tracking via image sets and depth-based occlusion detection,” Signal Process. 112, 146–153 (2015).
[Crossref]

Lou, Y.

C. Chen, H. Yang, M. Kavehrad, and Y. Lou, “Time-dependent scintillations of pulsed Gaussian-beam waves propagating in generalized atmospheric turbulence,” Opt. Laser Technol. 61, 8–14 (2014).
[Crossref]

C. Chen, H. Yang, Y. Lou, S. Tong, and R. Liu, “Temporal broadening of optical pulses propagating through non-Kolmogorov turbulence,” Opt. Express 20(7), 7749–7757 (2012).
[Crossref] [PubMed]

Luna, J. S.

J. J. S. Escobar, L. I. B. Santillán, J. V. Ubera, J. S. Luna, and H. G. Bonilla, “Measuring the profile of a simulated machined aspherical surface using a nonconventional optimization algorithm,” Opt. Eng. 47(8), 083601 (2008).
[Crossref]

Marks, B. S.

N. Mosavi, C. Nelson, B. S. Marks, B. G. Boone, and C. R. Menyuk, “Aberrated beam propagation through turbulence and comparison of Monte Carlo simulations to field test measurements,” Opt. Eng. 53(8), 086108 (2014).
[Crossref]

McCarthy, A.

Menyuk, C. R.

N. Mosavi, C. Nelson, B. S. Marks, B. G. Boone, and C. R. Menyuk, “Aberrated beam propagation through turbulence and comparison of Monte Carlo simulations to field test measurements,” Opt. Eng. 53(8), 086108 (2014).
[Crossref]

Mosavi, N.

N. Mosavi, C. Nelson, B. S. Marks, B. G. Boone, and C. R. Menyuk, “Aberrated beam propagation through turbulence and comparison of Monte Carlo simulations to field test measurements,” Opt. Eng. 53(8), 086108 (2014).
[Crossref]

Nelson, C.

N. Mosavi, C. Nelson, B. S. Marks, B. G. Boone, and C. R. Menyuk, “Aberrated beam propagation through turbulence and comparison of Monte Carlo simulations to field test measurements,” Opt. Eng. 53(8), 086108 (2014).
[Crossref]

Nelson, W.

Niu, Z.

Oh, M. S.

Phillips, R. L.

O. Korotkova, L. C. Andrews, and R. L. Phillips, “LIDAR model for a rough-surface target: Method of partial coherence,” Proc. SPIE 5237, 49–60 (2004).
[Crossref]

Qin, Y.

Ren, X.

Roddier, N. A.

N. A. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29(10), 1174–1180 (1990).
[Crossref]

Santillán, L. I. B.

J. J. S. Escobar, L. I. B. Santillán, J. V. Ubera, J. S. Luna, and H. G. Bonilla, “Measuring the profile of a simulated machined aspherical surface using a nonconventional optimization algorithm,” Opt. Eng. 47(8), 083601 (2008).
[Crossref]

Schwarz, B.

B. Schwarz, “Mapping the world in 3D,” Nat. Photonics 4(7), 429–430 (2010).
[Crossref]

Sedmak, G.

Shen, Y.

Y. Chen, Y. Shen, X. Liu, and B. Zhong, “3D object tracking via image sets and depth-based occlusion detection,” Signal Process. 112, 146–153 (2015).
[Crossref]

Shu, R.

Smalikho, I. N.

Sparrow, E. M.

Sprangle, P.

Steinvall, O.

O. Steinvall, T. Chevalier, and C. Grönwall, “Simulation and modeling of laser range profiling and imaging of small surface vessels,” Opt. Eng. 53(1), 013109 (2014).
[Crossref]

Tanner, M. G.

Tong, P.

Tong, S.

Tong, X.

Tonolini, F.

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10(1), 23–26 (2015).
[Crossref]

Torrance, K. E.

R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM Trans. Graph. 1(1), 7–24 (1982).
[Crossref]

K. E. Torrance and E. M. Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. Am. 57(9), 1105–1114 (1967).
[Crossref]

Ubera, J. V.

J. J. S. Escobar, L. I. B. Santillán, J. V. Ubera, J. S. Luna, and H. G. Bonilla, “Measuring the profile of a simulated machined aspherical surface using a nonconventional optimization algorithm,” Opt. Eng. 47(8), 083601 (2008).
[Crossref]

Vu, T. T.

Wang, B.

Wilson, R.

Wu, Z.

Y. Li, Z. Wu, L. Bai, H. Li, and Y. Cao, “The laser range profile and range imaging of a coarse cone,” Proc. SPIE 8855, 88550N (2013).
[Crossref]

Y. Li and Z. Wu, “Targets recognition using subnanosecond pulse laser range profiles,” Opt. Express 18(16), 16788–16796 (2010).
[Crossref] [PubMed]

Xiang, J.

J. Xiang, “Fast and accurate simulation of the turbulent phase screen using fast Fourier transform,” Opt. Eng. 53(1), 016110 (2014).
[Crossref]

Yang, H.

C. Chen, H. Yang, M. Kavehrad, and Y. Lou, “Time-dependent scintillations of pulsed Gaussian-beam waves propagating in generalized atmospheric turbulence,” Opt. Laser Technol. 61, 8–14 (2014).
[Crossref]

C. Chen, H. Yang, Y. Lou, S. Tong, and R. Liu, “Temporal broadening of optical pulses propagating through non-Kolmogorov turbulence,” Opt. Express 20(7), 7749–7757 (2012).
[Crossref] [PubMed]

Yang, S.-H.

H.-J. Li and S.-H. Yang, “Using range profiles as feature vectors to identify aerospace objects,” IEEE Trans. Antenn. Propag. 41(3), 261–268 (1993).
[Crossref]

Yang, Y.

Young, C. Y.

Zhai, H.

Zhang, J.

Zhong, B.

Y. Chen, Y. Shen, X. Liu, and B. Zhong, “3D object tracking via image sets and depth-based occlusion detection,” Signal Process. 112, 146–153 (2015).
[Crossref]

Zwiller, V.

ACM Trans. Graph. (1)

R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM Trans. Graph. 1(1), 7–24 (1982).
[Crossref]

Appl. Opt. (5)

IEEE Trans. Antenn. Propag. (1)

H.-J. Li and S.-H. Yang, “Using range profiles as feature vectors to identify aerospace objects,” IEEE Trans. Antenn. Propag. 41(3), 261–268 (1993).
[Crossref]

J. Opt. Soc. Am. (1)

Journal of graphics, gpu, and game tools. (1)

A. Dür, “An improved normalization for the Ward reflectance model,” Journal of graphics, gpu, and game tools. 11(1), 51–59 (2006).
[Crossref]

Nat. Photonics (3)

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

B. Schwarz, “Mapping the world in 3D,” Nat. Photonics 4(7), 429–430 (2010).
[Crossref]

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10(1), 23–26 (2015).
[Crossref]

Opt. Eng. (5)

O. Steinvall, T. Chevalier, and C. Grönwall, “Simulation and modeling of laser range profiling and imaging of small surface vessels,” Opt. Eng. 53(1), 013109 (2014).
[Crossref]

N. Mosavi, C. Nelson, B. S. Marks, B. G. Boone, and C. R. Menyuk, “Aberrated beam propagation through turbulence and comparison of Monte Carlo simulations to field test measurements,” Opt. Eng. 53(8), 086108 (2014).
[Crossref]

J. J. S. Escobar, L. I. B. Santillán, J. V. Ubera, J. S. Luna, and H. G. Bonilla, “Measuring the profile of a simulated machined aspherical surface using a nonconventional optimization algorithm,” Opt. Eng. 47(8), 083601 (2008).
[Crossref]

J. Xiang, “Fast and accurate simulation of the turbulent phase screen using fast Fourier transform,” Opt. Eng. 53(1), 016110 (2014).
[Crossref]

N. A. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29(10), 1174–1180 (1990).
[Crossref]

Opt. Express (8)

F. Assémat, R. Wilson, and E. Gendron, “Method for simulating infinitely long and non stationary phase screens with optimized memory storage,” Opt. Express 14(3), 988–999 (2006).
[Crossref] [PubMed]

H. J. Kong, T. H. Kim, S. E. Jo, and M. S. Oh, “Smart three-dimensional imaging LADAR using two Geiger-mode avalanche photodiodes,” Opt. Express 19(20), 19323–19329 (2011).
[Crossref] [PubMed]

Q. Hao, J. Cao, Y. Hu, Y. Yang, K. Li, and T. Li, “Differential optical-path approach to improve signal-to-noise ratio of pulsed-laser range finding,” Opt. Express 22(1), 563–575 (2014).
[Crossref] [PubMed]

Y. Qin, T. T. Vu, Y. Ban, and Z. Niu, “Range determination for generating point clouds from airborne small footprint LiDAR waveforms,” Opt. Express 20(23), 25935–25947 (2012).
[Crossref] [PubMed]

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
[Crossref] [PubMed]

C. Chen, H. Yang, Y. Lou, S. Tong, and R. Liu, “Temporal broadening of optical pulses propagating through non-Kolmogorov turbulence,” Opt. Express 20(7), 7749–7757 (2012).
[Crossref] [PubMed]

Y. Li and Z. Wu, “Targets recognition using subnanosecond pulse laser range profiles,” Opt. Express 18(16), 16788–16796 (2010).
[Crossref] [PubMed]

V. A. Banakh and I. N. Smalikho, “Fluctuations of energy density of short-pulse optical radiation in the turbulent atmosphere,” Opt. Express 22(19), 22285–22297 (2014).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

C. Chen, H. Yang, M. Kavehrad, and Y. Lou, “Time-dependent scintillations of pulsed Gaussian-beam waves propagating in generalized atmospheric turbulence,” Opt. Laser Technol. 61, 8–14 (2014).
[Crossref]

Proc. SPIE (4)

Y. Li, Z. Wu, L. Bai, H. Li, and Y. Cao, “The laser range profile and range imaging of a coarse cone,” Proc. SPIE 8855, 88550N (2013).
[Crossref]

C. Y. Young, “Broadening of ultra-short optical pulses in moderate to strong turbulence,” Proc. SPIE 4821, 74–81 (2002).
[Crossref]

E. M. Johansson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372–383 (1994).
[Crossref]

O. Korotkova, L. C. Andrews, and R. L. Phillips, “LIDAR model for a rough-surface target: Method of partial coherence,” Proc. SPIE 5237, 49–60 (2004).
[Crossref]

Signal Process. (1)

Y. Chen, Y. Shen, X. Liu, and B. Zhong, “3D object tracking via image sets and depth-based occlusion detection,” Signal Process. 112, 146–153 (2015).
[Crossref]

Other (5)

R. S. da Veiga, A. S. de Oliveira, L. V. R. de Arruda, and F. N. Junior, Robot Operating System (Springer, 2016).

S. E. Johnson, “Effect of target surface orientation on the range precision of laser detection and ranging systems,”Journal of Applied Remote Sensing 3(1), 033564 (2009).
[Crossref]

U. Stilla and B. Jutzi, “Waveform analysis for small-footprint pulsed laser systems,” in Topographic Laser Ranging and Scanning: Principles and Processing, 215–234 (CRC Press, 2008).

R. D. Richmond and S. C. Cain, Direct-detection LADAR systems (SPIE Press Bellingham, 2010).

N. Tanaka, S. Tominaga, and T. Kawai, “Estimation of the torrance-sparrow reflection model from a single multi-band image,”in Pattern Recognition,2000. Proceedings 15th International Conference on (IEEE, 2000), pp. 596–599.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic diagram of target with arbitrary shape illuminated by pulse laser.
Fig. 2
Fig. 2 Triangle relationship of BRDF.
Fig. 3
Fig. 3 Phase screen model.
Fig. 4
Fig. 4 Simulation results under the same parameters of [16, 17]. (a), and (b) are the ELPPs from tilted surface, and the beam radius under different propagation distance and turbulence intensity, respectively.
Fig. 5
Fig. 5 Geometry models of the four targets. From (a) to (d) are the four targets of a plane, a cone, a sphere and an aspherical surface, respectively.
Fig. 6
Fig. 6 The relationship between the ELPP and tilt angle when Cn2 = 3 × 10−15. (a), (b), (c) and (d) are plane, cone, sphere, and aspherical surface, respectively.
Fig. 7
Fig. 7 The ELPPs affected by atmospheric turbulence intensity when α = 15°. (a), (b), (c) and (d) are the results based on a plane, a cone, a sphere, and an aspherical surface, respectively.
Fig. 8
Fig. 8 Comparison of ELPPs of different targets between analytical method and phase screen method Cn2 = 3 × 10−13, α = 15°. (a), (b), (c) and (d) are the plane, cone, sphere, and aspherical surface, respectively.
Fig. 9
Fig. 9 Based on the analytical approach, beam radius affected by turbulence intensity and propagation distance. (a), (b) are 3D and 2D models of the relationship between beam radius and propagation distance and turbulence intensity.
Fig. 10
Fig. 10 The beam radius affected by propagation distance. (a) is based on the phase screen method, and (b) is the comparison of two methods under the condition of Cn2 = 3 × 10−13.
Fig. 11
Fig. 11 Echo pulse width comparison of the analytical method and the phase screen method when Cn2 = 3 × 10−13. (a), (b), (c) and (d) are the plane, cone, sphere, and aspherical surface, respectively.
Fig. 12
Fig. 12 The MRE echo pulse width comparison of the analytical method and the phase screen method when Cn2 = 3 × 10−13. (a), (b), (c) and (d) are the plane, cone, sphere, and aspherical surface, respectively.

Tables (2)

Tables Icon

Table 1 Parameters for calculating reflectivity of a target with white diffuse reflector

Tables Icon

Table 2 Parameter values used in the simulations

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

P t ( t )= E t τ 2π exp( t 2 2 τ 2 ),
P r ( Δx,Δy ) =ΔxΔy I 0 ( x,y,r ) P r ( t2 z c )cos θ ( Δx,Δy ) =ΔxΔy 2 π W R 2 exp(2 x 2 + y 2 W R 2 ) P r ( t2 z c )cos θ ( Δx,Δy ) , where P r ( t )= E t T a 2 T o η D ρ r ( Δx,Δy ) 2π τ rec exp[ 1 2τ r 2 ( t 2R c ) 2 ], cos θ ( Δx,Δy ) = 1 1+ z ' x 2 + z ' y 2
[ x'y'z' ]=[ xyz ][ cosα0sinα 010 sinα0cosα ], cosθ ' ( Δx,Δy ) = 1 1+( z' ) ' x' 2 +( z' ) ' y' 2 .
P r ( Δx,Δy ) = 2ΔxΔy π W R 2 exp[ - 2( x ' 2 +y ' 2 ) W R 2 ] E t T a 2 T o η D ρ r ( Δx,Δy ) 2π τ rec exp[ 1 2τ rec 2 ( t 2R c 2z' c ) 2 ]cos( θ ' ( Δx,Δy ) ).
f r ( θ i , θ r , φ r )= k b k r 2 cosβ 1+( k r 2 1 )cosβ exp[ b ( 1cosγ ) a ] G( θ i , θ r , φ r ) cos θ i cos θ r + k d cos θ i ,
{ cos 2 γ=0.5( cos θ i cos θ r +sin θ i sin θ r cos θ r +1 ) cosβ= cos θ i +cos θ r 2cosγ G( θ i , θ r , φ r )= 1+ w p | tan θ p i tan θ p r | 1+ δ r tan γ p ( 1+ w p tan 2 θ p i )( 1+ w p tan 2 θ p r ) . w p = δ p ( 1+ u p sinβ sinβ+ ν p cosβ ) tan θ p i =tan θ i sin θ i +sin θ r cos φ r 2sinβcosγ tan θ p r =tan θ r sin θ r +sin θ i cos φ r 2sinβcosγ tan γ p = | cos θ i cosγ | 2sinβcosγ
ρ r ( Δx,Δy ) ( θ i , θ r ,0 )= f r ( θ i , θ r ,0 )cos θ r .
{ W R ' 2 = W 1 2 ( 1+4q c Λ 2 ) 2 W 1 2 =W 0 2 +W diff 2 + W turb 2 +W ab 2 W diff 2 = 4R ' 2 / k 2 W 0 2 W turb 2 =2 .18C n 2 l 0 -1/3 R ' 3 W ab 2 =8R ' 2 C 4 2 W 0 6 ,
τ tar 2 = τ 0 2 + tan 2 ( θ ' ( Δx,Δy ) ) W R ' 2 c 2 ,
{ τ atm 2 = τ 0 2 + 8×( 0.3908 C n 2 R ' L 0 5/3 ) c 2 L 0 =5/ 1+ ( R ' 7500 2000 ) 2 ,
τ rec 2 = τ tar 2 + τ atm 2 .
{ P rec = m=1 M n=1 N 2Δ x m Δ y n π W R ' 2 exp[ - 2( x ' m 2 +y ' n 2 ) W R ' 2 ] E t T a 2 T o η D ρ r ( Δx,Δy ) 2π τ rec exp[ 1 2 τ rec 2 ( t 2R c 2z ' ( m,n ) c ) 2 ] cos( θ ' ( Δ x m ,Δ y n ) ) P rec = x'= y'= 2 π W R ' 2 exp[ - 2( x ' 2 +y ' 2 ) W R ' 2 ] E t T a 2 T o η D ρ r ( Δx,Δy ) 2π τ rec exp[ 1 2 τ rec 2 ( t 2R c 2z ' (x',y') c ) 2 ]cos( θ ' ( x,y ) ) dx'dy' .
W R ' 2 =2 + d r 2 r 2 I( r, R ' ) + d r 2 I( r, R ' ) ,
{ ϕ HF ( m,n )= m'= N x /2 m'= N x /2 n'= N y /2 n'= N y /2 h( m',n' )f( m',n' ) exp i2π( m'm N x + n'n N y ) f( m',n' )= 2π G x G y 0.00058 r 0 5/6 ( f x 2 + f y 2 ) 11 / 12 .
{ ϕ LF ( m,n )= p=1 N p m'=3 2 n'=3 2 h(m',n') f( m',n' ) exp i2π 3 p ( ( m'+0.5 )m N x + ( n'+0.5 )n N y ) f( m',n' )= 2π 3 p G x G y 0.00058 r 0 5/6 ( f x 2 + f y 2 ) 11 / 12 f x = 3 p ( m'+0.5 )Δ f x f y = 3 p ( n'+0.5 )Δ f y ,
ϕ( m,n )= ϕ HF ( m,n )+ ϕ LF ( m,n ).
U( x,y,NΔz )=exp{ iϕ( m,n ) }IFFT{ B F FFT{ U( x,y,( N-1 )Δz ) } },
W R ' 2 ==2 + d r 2 r 2 | U( x,y, R ' ) | 2 + d r 2 | U( x,y, R ' ) | 2 .
z= c S 2 1+ [ 1( K+1 ) c 2 S 2 ] 1 2 + A 1 S 4 + A 2 S 6 + A 3 S 8 + A 4 S 10 ,

Metrics