Abstract

Two-dimensional gas-phase coherent anti-Stokes Raman scattering (2D-CARS) thermometry is demonstrated at 1 kHz in a heated jet. A hybrid femtosecond/picosecond CARS configuration is used in a two-beam phase-matching arrangement with a 100-femtosecond pump/Stokes pulse and a 107-picosecond probe pulse. The femtosecond pulse is generated using a mode-locked oscillator and regenerative amplifier that is synchronized to a separate picosecond oscillator and burst-mode amplifier. The CARS signal is spectrally dispersed in a custom imaging spectrometer and detected using a high-speed camera with image intensifier. 1-kHz, single-shot planar measurements at room temperature exhibit error of 2.6% and shot-to-shot variations of 2.6%. The spatial variation in measured temperature is 9.4%. 2D-CARS temperature measurements are demonstrated in a heated O2 jet to capture the spatiotemporal evolution of the temperature field.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering

Joseph D. Miller, Sukesh Roy, Mikhail N. Slipchenko, James R. Gord, and Terrence R. Meyer
Opt. Express 19(16) 15627-15640 (2011)

Polarization suppression of the nonresonant background in femtosecond coherent anti-Stokes Raman scattering for flame thermometry at 5 kHz

Daniel R. Richardson, Devashish Bangar, and Robert P. Lucht
Opt. Express 20(19) 21495-21504 (2012)

Gas-phase thermometry using delayed-probe-pulse picosecond coherent anti-Stokes Raman scattering spectra of H2

Hans U. Stauffer, Waruna D. Kulatilaka, Paul S. Hsu, James R. Gord, and Sukesh Roy
Appl. Opt. 50(4) A38-A48 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, Second Edition (Gordon and Breach Publishers, 1996).
  2. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci. 36(2), 280–306 (2010).
    [Crossref]
  3. S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Lett. 34, 3857–3859 (2009).
    [Crossref] [PubMed]
  4. A. Bohlin and C. J. Kliewer, “Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” J. Chem. Phys. 138(22), 221101 (2013).
    [Crossref] [PubMed]
  5. B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
    [Crossref] [PubMed]
  6. J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35(14), 2430–2432 (2010).
    [Crossref] [PubMed]
  7. J. D. Miller, S. Roy, M. N. Slipchenko, J. R. Gord, and T. R. Meyer, “Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” Opt. Express 19(16), 15627–15640 (2011).
    [Crossref] [PubMed]
  8. M. N. Slipchenko, B. D. Prince, S. C. Ducatman, and H. U. Stauffer, “Development of a simultaneously frequency- and time-resolved Raman-induced Kerr effect probe,” J. Phys. Chem. A 113(1), 135–140 (2009).
    [Crossref] [PubMed]
  9. A. Bohlin, B. D. Patterson, and C. J. Kliewer, “Communication: Simplified two-beam rotational CARS signal generation demonstrated in 1D,” J. Chem. Phys. 138(8), 081102 (2013).
    [Crossref] [PubMed]
  10. A. Satija and R. P. Lucht, “Development of a combined pure rotational and vibrational coherent anti-Stokes Raman scattering system,” Opt. Lett. 38(8), 1340–1342 (2013).
    [Crossref] [PubMed]
  11. N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt. 50(4), A20–A28 (2011).
    [Crossref] [PubMed]
  12. M. N. Slipchenko, J. D. Miller, S. Roy, T. R. Meyer, J. G. Mance, and J. R. Gord, “100 kHz, 100 ms, 400 J burst-mode laser with dual-wavelength diode-pumped amplifiers,” Opt. Lett. 39(16), 4735–4738 (2014).
    [Crossref] [PubMed]
  13. S. Roy, J. D. Miller, M. N. Slipchenko, P. S. Hsu, J. G. Mance, T. R. Meyer, and J. R. Gord, “100-ps-pulse-duration, 100-J burst-mode laser for kHz-MHz flow diagnostics,” Opt. Lett. 39(22), 6462–6465 (2014).
    [Crossref] [PubMed]
  14. S. Roy, P. S. Hsu, N. Jiang, M. N. Slipchenko, and J. R. Gord, “100-kHz-rate gas-phase thermometry using 100-ps pulses from a burst-mode laser,” Opt. Lett. 40(21), 5125–5128 (2015).
    [Crossref] [PubMed]
  15. S. P. Kearney, “Hybrid fs/ps rotational CARS temperature and oxygen measurements in the product gases of canonical flat flames,” Combust. Flame 162(5), 1748–1758 (2015).
    [Crossref]

2015 (2)

S. Roy, P. S. Hsu, N. Jiang, M. N. Slipchenko, and J. R. Gord, “100-kHz-rate gas-phase thermometry using 100-ps pulses from a burst-mode laser,” Opt. Lett. 40(21), 5125–5128 (2015).
[Crossref] [PubMed]

S. P. Kearney, “Hybrid fs/ps rotational CARS temperature and oxygen measurements in the product gases of canonical flat flames,” Combust. Flame 162(5), 1748–1758 (2015).
[Crossref]

2014 (2)

2013 (3)

A. Bohlin and C. J. Kliewer, “Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” J. Chem. Phys. 138(22), 221101 (2013).
[Crossref] [PubMed]

A. Bohlin, B. D. Patterson, and C. J. Kliewer, “Communication: Simplified two-beam rotational CARS signal generation demonstrated in 1D,” J. Chem. Phys. 138(8), 081102 (2013).
[Crossref] [PubMed]

A. Satija and R. P. Lucht, “Development of a combined pure rotational and vibrational coherent anti-Stokes Raman scattering system,” Opt. Lett. 38(8), 1340–1342 (2013).
[Crossref] [PubMed]

2011 (2)

2010 (2)

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci. 36(2), 280–306 (2010).
[Crossref]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35(14), 2430–2432 (2010).
[Crossref] [PubMed]

2009 (2)

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Lett. 34, 3857–3859 (2009).
[Crossref] [PubMed]

M. N. Slipchenko, B. D. Prince, S. C. Ducatman, and H. U. Stauffer, “Development of a simultaneously frequency- and time-resolved Raman-induced Kerr effect probe,” J. Phys. Chem. A 113(1), 135–140 (2009).
[Crossref] [PubMed]

2006 (1)

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[Crossref] [PubMed]

Bohlin, A.

A. Bohlin and C. J. Kliewer, “Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” J. Chem. Phys. 138(22), 221101 (2013).
[Crossref] [PubMed]

A. Bohlin, B. D. Patterson, and C. J. Kliewer, “Communication: Simplified two-beam rotational CARS signal generation demonstrated in 1D,” J. Chem. Phys. 138(8), 081102 (2013).
[Crossref] [PubMed]

Chakraborty, A.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[Crossref] [PubMed]

Danehy, P. M.

Ducatman, S. C.

M. N. Slipchenko, B. D. Prince, S. C. Ducatman, and H. U. Stauffer, “Development of a simultaneously frequency- and time-resolved Raman-induced Kerr effect probe,” J. Phys. Chem. A 113(1), 135–140 (2009).
[Crossref] [PubMed]

Gord, J. R.

S. Roy, P. S. Hsu, N. Jiang, M. N. Slipchenko, and J. R. Gord, “100-kHz-rate gas-phase thermometry using 100-ps pulses from a burst-mode laser,” Opt. Lett. 40(21), 5125–5128 (2015).
[Crossref] [PubMed]

M. N. Slipchenko, J. D. Miller, S. Roy, T. R. Meyer, J. G. Mance, and J. R. Gord, “100 kHz, 100 ms, 400 J burst-mode laser with dual-wavelength diode-pumped amplifiers,” Opt. Lett. 39(16), 4735–4738 (2014).
[Crossref] [PubMed]

S. Roy, J. D. Miller, M. N. Slipchenko, P. S. Hsu, J. G. Mance, T. R. Meyer, and J. R. Gord, “100-ps-pulse-duration, 100-J burst-mode laser for kHz-MHz flow diagnostics,” Opt. Lett. 39(22), 6462–6465 (2014).
[Crossref] [PubMed]

J. D. Miller, S. Roy, M. N. Slipchenko, J. R. Gord, and T. R. Meyer, “Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” Opt. Express 19(16), 15627–15640 (2011).
[Crossref] [PubMed]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35(14), 2430–2432 (2010).
[Crossref] [PubMed]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci. 36(2), 280–306 (2010).
[Crossref]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Lett. 34, 3857–3859 (2009).
[Crossref] [PubMed]

Hsu, P. S.

Ivey, C. B.

Jiang, N.

Kearney, S. P.

S. P. Kearney, “Hybrid fs/ps rotational CARS temperature and oxygen measurements in the product gases of canonical flat flames,” Combust. Flame 162(5), 1748–1758 (2015).
[Crossref]

Kliewer, C. J.

A. Bohlin, B. D. Patterson, and C. J. Kliewer, “Communication: Simplified two-beam rotational CARS signal generation demonstrated in 1D,” J. Chem. Phys. 138(8), 081102 (2013).
[Crossref] [PubMed]

A. Bohlin and C. J. Kliewer, “Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” J. Chem. Phys. 138(22), 221101 (2013).
[Crossref] [PubMed]

Kulatilaka, W. D.

Lempert, W. R.

Lucht, R. P.

Mance, J. G.

Meyer, T. R.

Miller, J. D.

Patnaik, A. K.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci. 36(2), 280–306 (2010).
[Crossref]

Patterson, B. D.

A. Bohlin, B. D. Patterson, and C. J. Kliewer, “Communication: Simplified two-beam rotational CARS signal generation demonstrated in 1D,” J. Chem. Phys. 138(8), 081102 (2013).
[Crossref] [PubMed]

Prince, B. D.

M. N. Slipchenko, B. D. Prince, S. C. Ducatman, and H. U. Stauffer, “Development of a simultaneously frequency- and time-resolved Raman-induced Kerr effect probe,” J. Phys. Chem. A 113(1), 135–140 (2009).
[Crossref] [PubMed]

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[Crossref] [PubMed]

Prince, B. M.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[Crossref] [PubMed]

Richardson, D. R.

Roy, S.

Satija, A.

Slipchenko, M. N.

Stauffer, H. U.

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35(14), 2430–2432 (2010).
[Crossref] [PubMed]

M. N. Slipchenko, B. D. Prince, S. C. Ducatman, and H. U. Stauffer, “Development of a simultaneously frequency- and time-resolved Raman-induced Kerr effect probe,” J. Phys. Chem. A 113(1), 135–140 (2009).
[Crossref] [PubMed]

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[Crossref] [PubMed]

Webster, M.

Appl. Opt. (1)

Combust. Flame (1)

S. P. Kearney, “Hybrid fs/ps rotational CARS temperature and oxygen measurements in the product gases of canonical flat flames,” Combust. Flame 162(5), 1748–1758 (2015).
[Crossref]

J. Chem. Phys. (3)

A. Bohlin and C. J. Kliewer, “Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” J. Chem. Phys. 138(22), 221101 (2013).
[Crossref] [PubMed]

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[Crossref] [PubMed]

A. Bohlin, B. D. Patterson, and C. J. Kliewer, “Communication: Simplified two-beam rotational CARS signal generation demonstrated in 1D,” J. Chem. Phys. 138(8), 081102 (2013).
[Crossref] [PubMed]

J. Phys. Chem. A (1)

M. N. Slipchenko, B. D. Prince, S. C. Ducatman, and H. U. Stauffer, “Development of a simultaneously frequency- and time-resolved Raman-induced Kerr effect probe,” J. Phys. Chem. A 113(1), 135–140 (2009).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (6)

Pror. Energy Combust. Sci. (1)

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci. 36(2), 280–306 (2010).
[Crossref]

Other (1)

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, Second Edition (Gordon and Breach Publishers, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental schematic showing laser synchronization, optical layout, and imaging spectrometer and detector.
Fig. 2
Fig. 2 Opto-electrical diagram of fs–ps pulse synchronization. RA – regenerative Ti:Sapphire amplifier; PD1 – 25-GHz-bandwidth amplified photodiode; PD2 – low-bandwidth photodiode; PG – pulse generator; RF Amp – 12-GHz-bandwidth radio-frequency amplifier; cw DL – continuous-wave diode laser; EOM – 10-GHz-bandwidth electro-optic modulator with 40-dB extinction; 1x2 – fiber splitter; Yb FA – ytterbium-based fiber amplifier; AOM – acousto-optic modulator; PA – burst-mode power amplifier.
Fig. 3
Fig. 3 Single-shot image of O2 S-branch transitions at room temperature. Two unique masks are used to highlight the spatial resolution and spatial dimension of the 2D-CARS technique. Each individual image is labeled with its corresponding ground rotational state. The spatial resolution is 79 µm in the vertical direction and 589 µm in the horizontal direction.
Fig. 4
Fig. 4 Series of ten single-shot 2D-CARS temperature images obtained at 1 kHz. The temperature is identified by the color scale where “Thresh.” identifies pixels that did not meet the threshold criteria.
Fig. 5
Fig. 5 Single-shot 2D-CARS images obtained at 1 kHz in a (Top) cold and (Middle) hot O2 jet. (Bottom) Single slice through the 2D-CARS images showing jet width and frequency shift of each transition-specific image.
Fig. 6
Fig. 6 (Top) Series of ten single-shot 2D-CARS temperature images showing time evolution of the forced jet. The temperature is identified by the color scale where “Thresh.” identifies pixels that did not meet the threshold criteria. (Bottom) Time series of temperature along the centerline of the jet at Y/D = 2.95–3.35.

Metrics