Abstract

We report on a flow-through optical sensor consisting of a microcapillary with mirrored channels. Illuminating the structure from the side results in a complicated spectral interference pattern due to the different cavities formed between the inner and outer capillary walls. Using a Fourier transform technique to isolate the desired channel modes and measure their resonance shift, we obtain a refractometric detection limit of (6.3 ± 1.1) x 10−6 RIU near a center wavelength of 600 nm. This simple device demonstrates experimental refractometric sensitivities up to (5.6 ± 0.2) x 102 nm/RIU in the visible spectrum, and it is calculated to reach 1540 nm/RIU with a detection limit of 2.3 x 10−6 RIU at a wavelength of 1.55 µm. These values are comparable to or exceed some of the best Fabry-Perot sensors reported to date. Furthermore, the device can function as a gas or liquid sensor or even as a pressure sensor owing to its high refractometric sensitivity and simple operation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fluorescent polymer coated capillaries as optofluidic refractometric sensors

Kristopher J. Rowland, Alexandre François, Peter Hoffmann, and Tanya M. Monro
Opt. Express 21(9) 11492-11505 (2013)

Refractometric sensing with fluorescent-core microcapillaries

C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum
Opt. Express 19(22) 21540-21551 (2011)

Flow-through micro-capillary refractive index sensor based on T/R spectral shift monitoring

Giulia Rigamonti, Marco Guardamagna, Valentina Bello, Stefania Marconi, Ferdinando Auricchio, and Sabina Merlo
Biomed. Opt. Express 8(10) 4438-4453 (2017)

References

  • View by:
  • |
  • |
  • |

  1. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
    [Crossref] [PubMed]
  2. J. Jágerská, H. Zhang, Z. Diao, N. L. Thomas, and R. Houdré, “Refractive index sensing with an air-slot photonic crystal nanocavity,” Opt. Lett. 35(15), 2523–2525 (2010).
    [Crossref] [PubMed]
  3. H. Clevenson, P. Desjardins, X. T. Gan, and D. Englund, “High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity,” Appl. Phys. Lett. 104(24), 241108 (2014).
    [Crossref]
  4. M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
    [Crossref] [PubMed]
  5. Y.-J. Rao, M. Deng, D.-W. Duan, X.-C. Yang, T. Zhu, and G.-H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15(21), 14123–14128 (2007).
    [Crossref] [PubMed]
  6. A. François, Y. Zhi, and A. Meldrum, “Whispering Gallery Mode Devices for Sensing and Biosensing,” in Photonic Materials for Sensing, Biosensing, and Display Devices (Springer Series in Materials Science, 2016) pp. 237–288.
  7. T. Reynolds, M. R. Henderson, A. François, N. Riesen, J. M. Hall, S. V. Afshar, S. J. Nicholls, and T. M. Monro, “Optimization of whispering gallery resonator design for biosensing applications,” Opt. Express 23(13), 17067–17076 (2015).
    [Crossref] [PubMed]
  8. Y. G. Zhang, S. B. Han, S. L. Zhang, P. H. Liu, and Y. C. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 6802906 (2015).
    [Crossref]
  9. R. St-Gelais, J. Masson, and Y. A. Peter, “All-silicon integrated Fabry-Perot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94(24), 243905 (2009).
    [Crossref]
  10. T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
    [Crossref] [PubMed]
  11. C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum, “Refractometric sensing with fluorescent-core microcapillaries,” Opt. Express 19(22), 21540–21551 (2011).
    [Crossref] [PubMed]
  12. Y. Zhi, T. Thiessen, and A. Meldrum, “Silicon quantum dot coated microspheres for microfluidic refractive index sensing,” J. Opt. Soc. Am. B 30(1), 51–56 (2013).
    [Crossref]
  13. S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92(22), 221108 (2008).
    [Crossref] [PubMed]
  14. P. Zijlstra, K. L. van der Molen, and A. P. Mosk, “Spatial refractive index sensor using whispering gallery modes in an optically trapped microsphere,” Appl. Phys. Lett. 90(16), 161101 (2007).
    [Crossref]
  15. A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
    [Crossref]
  16. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  17. H. Y. Choi, K. S. Park, S. J. Park, U.-C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
    [Crossref] [PubMed]
  18. D.-W. Duan, Y. J. Rao, Y.-S. Hou, and T. Zhu, “Microbubble based fiber-optic Fabry-Perot interferometer formed by fusion splicing single-mode fibers for strain measurement,” Appl. Opt. 51(8), 1033–1036 (2012).
    [Crossref] [PubMed]
  19. C. R. Liao, T. Y. Hu, and D. N. Wang, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing,” Opt. Express 20(20), 22813–22818 (2012).
    [Crossref] [PubMed]
  20. Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
    [Crossref]
  21. W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
    [Crossref]
  22. S. Calixto, M. Rosete-Aguilar, D. Monzon-Hernandez, and V. P. Minkovich, “Capillary refractometer integrated in a microfluidic configuration,” Appl. Opt. 47(6), 843–848 (2008).
    [Crossref] [PubMed]
  23. H. El Ghandoor, E. Hegazi, I. Nasser, and G. M. Behery, “Measuring the refractive index of crude oil using a capillary tube interferometer,” Opt. Laser Technol. 35(5), 361–367 (2003).
    [Crossref]
  24. B. Krattiger, A. E. Bruno, H. M. Widmer, M. Geiser, and R. Dändliker, “Laser-Based Refractive-Index Detection for Capillary Electrophoresis: Ray-Tracing Interference Theory,” Appl. Opt. 32(6), 956–965 (1993).
    [Crossref] [PubMed]
  25. S. Qi, X. Yang, C. Zhang, L. Zhang, X. Wang, T. Xu, J. Tian, and G. Zhang, “Analysis of capillary interferometry for measuring refractive indices of minute samples,” Appl. Opt. 43(3), 530–536 (2004).
    [Crossref] [PubMed]
  26. H. J. Tarigan, P. Neill, C. K. Kenmore, and D. J. Bornhop, “Capillary-Scale Refractive Index Detection by Interferometric Backscatter,” Anal. Chem. 68(10), 1762–1770 (1996).
    [Crossref]
  27. A. Yang, W. Li, G. Yuan, J. Dong, and J. Zhang, “Measuring the refractive indices of liquids with a capillary tube interferometer,” Appl. Opt. 45(31), 7993–7998 (2006).
    [Crossref] [PubMed]
  28. S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
    [Crossref] [PubMed]
  29. S. Surdo, F. Carpignano, L. M. Strambini, S. Merlo, and G. Barillaro, “Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio)sensing applications,” RSC Advances 4(94), 51935–51941 (2014).
    [Crossref]
  30. O. Svelto, S. Longhi, G. Della Valle, S. Kuck, G. Hiuber, M. Pollnau, H. Hillmer, S. Hansmann, R. Engelbrecht, H. Brand, J. Kaiser, A. B. Peterson, R. Malz, S. S. G. Marawsky, U. Brinkmann, D. Lot, A. Borsutzky, H. Wachter, M. W. Sigrist, S. E. E. Schneidmiller, M. Yurkov, K. Midorikawa, J. Hein, R. Sauerbrey, and J. Helmcke, eds., Lasers and Coherent Light Sources, Springer Handbook of Lasers and Optics (Springer, 2007), p. 354.
  31. http://www.polysciences.com/default/pentabromophenyl-acrylate .
  32. X. Wei and D. K. Roper, “Tin Sensitization for Electroless Plating Review,” J. Electrochem. Soc. 161(5), D235–D242 (2014).
    [Crossref]
  33. E. Klantsataya, A. François, H. Ebendorff-Heidepriem, B. Sciacca, A. Zuber, and T. M. Monro, “Effect of surface roughness on metal enhanced fluorescence in planar substrates and optical fibers,” Opt. Mater. Express 6(6), 2128 (2016).
    [Crossref]
  34. J. W. Silverstone, S. McFarlane, C. P. K. Manchee, and A. Meldrum, “Ultimate resolution for refractometric sensing with whispering gallery mode microcavities,” Opt. Express 20(8), 8284–8295 (2012).
    [Crossref] [PubMed]
  35. Y. Clergent, C. Durou, and M. Laurens, “Refractive index variations for argon, nitrogen, and carbon dioxide at lambda = 632.8 nm (He-Ne laser light) in the range 288.15K <= T <= 323.15K, 0 < p < 110 kPa,” J. Chem. Eng. Data 44(2), 197–199 (1999).
    [Crossref]
  36. F. Carpignano, G. Rigamonti, T. Migliazza, and S. Merlo, “Refractive Index Sensing in Rectangular Glass Micro-Capillaries by Spectral Reflectivity Measurements,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100309 (2016).
    [Crossref]
  37. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009).
    [Crossref] [PubMed]
  38. G. Liu and M. Han, “Fiber-optic gas pressure sensing with a laser-heated silicon-based Fabry-Perot interferometer,” Opt. Lett. 40(11), 2461–2464 (2015).
    [Crossref] [PubMed]
  39. B. Xu, C. Wang, D. N. Wang, Y. Liu, and Y. Li, “Fiber-tip gas pressure sensor based on dual capillaries,” Opt. Express 23(18), 23484–23492 (2015).
    [Crossref] [PubMed]
  40. É. Pinet, “Pressure measurement with fiber-optic sensors: commercial technologies and applications,” Proc. SPIE 7753, 775304 (2011).
    [Crossref]
  41. Y. Z. Zhu, K. L. Cooper, G. R. Pickrell, and A. Wang, “High-temperature fiber-tip pressure sensor,” J. Lightwave Technol. 24(2), 861–869 (2006).
    [Crossref]
  42. http://www.crystran.co.uk/optical-materials/silica-glass-sio2 .
  43. W. B. Emerson, “Compressibility of fused-quartz glass at atmopsheric pressure,” J. Res. Natl. Bur. Stand. 18(6), 683–711 (1937).
    [Crossref]
  44. S. B. Sane and W. G. Knauss, “The Time-Dependent Bulk Response of Poly (Methyl Methacrylate),” Mech. Time-Depend. Mater. 5(4), 293–324 (2001).
    [Crossref]
  45. J. Xie, S. de Gironcoli, S. Baroni, and M. Scheffler, “First-principles calculation of the thermal properties of silver,” Phys. Rev. B 59(2), 965–969 (1999).
    [Crossref]
  46. J. Mai, V. V. Abhyankar, M. E. Piccini, J. P. Olano, R. Willson, and A. V. Hatch, “Rapid detection of trace bacteria in biofluids using porous monoliths in microchannels,” Biosens. Bioelectron. 54, 435–441 (2014).
    [Crossref] [PubMed]

2016 (2)

F. Carpignano, G. Rigamonti, T. Migliazza, and S. Merlo, “Refractive Index Sensing in Rectangular Glass Micro-Capillaries by Spectral Reflectivity Measurements,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100309 (2016).
[Crossref]

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, B. Sciacca, A. Zuber, and T. M. Monro, “Effect of surface roughness on metal enhanced fluorescence in planar substrates and optical fibers,” Opt. Mater. Express 6(6), 2128 (2016).
[Crossref]

2015 (6)

G. Liu and M. Han, “Fiber-optic gas pressure sensing with a laser-heated silicon-based Fabry-Perot interferometer,” Opt. Lett. 40(11), 2461–2464 (2015).
[Crossref] [PubMed]

T. Reynolds, M. R. Henderson, A. François, N. Riesen, J. M. Hall, S. V. Afshar, S. J. Nicholls, and T. M. Monro, “Optimization of whispering gallery resonator design for biosensing applications,” Opt. Express 23(13), 17067–17076 (2015).
[Crossref] [PubMed]

B. Xu, C. Wang, D. N. Wang, Y. Liu, and Y. Li, “Fiber-tip gas pressure sensor based on dual capillaries,” Opt. Express 23(18), 23484–23492 (2015).
[Crossref] [PubMed]

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Y. G. Zhang, S. B. Han, S. L. Zhang, P. H. Liu, and Y. C. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 6802906 (2015).
[Crossref]

A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

2014 (4)

H. Clevenson, P. Desjardins, X. T. Gan, and D. Englund, “High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity,” Appl. Phys. Lett. 104(24), 241108 (2014).
[Crossref]

S. Surdo, F. Carpignano, L. M. Strambini, S. Merlo, and G. Barillaro, “Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio)sensing applications,” RSC Advances 4(94), 51935–51941 (2014).
[Crossref]

X. Wei and D. K. Roper, “Tin Sensitization for Electroless Plating Review,” J. Electrochem. Soc. 161(5), D235–D242 (2014).
[Crossref]

J. Mai, V. V. Abhyankar, M. E. Piccini, J. P. Olano, R. Willson, and A. V. Hatch, “Rapid detection of trace bacteria in biofluids using porous monoliths in microchannels,” Biosens. Bioelectron. 54, 435–441 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (4)

2011 (4)

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum, “Refractometric sensing with fluorescent-core microcapillaries,” Opt. Express 19(22), 21540–21551 (2011).
[Crossref] [PubMed]

É. Pinet, “Pressure measurement with fiber-optic sensors: commercial technologies and applications,” Proc. SPIE 7753, 775304 (2011).
[Crossref]

2010 (1)

2009 (2)

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009).
[Crossref] [PubMed]

R. St-Gelais, J. Masson, and Y. A. Peter, “All-silicon integrated Fabry-Perot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94(24), 243905 (2009).
[Crossref]

2008 (5)

2007 (2)

Y.-J. Rao, M. Deng, D.-W. Duan, X.-C. Yang, T. Zhu, and G.-H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15(21), 14123–14128 (2007).
[Crossref] [PubMed]

P. Zijlstra, K. L. van der Molen, and A. P. Mosk, “Spatial refractive index sensor using whispering gallery modes in an optically trapped microsphere,” Appl. Phys. Lett. 90(16), 161101 (2007).
[Crossref]

2006 (3)

2004 (1)

2003 (1)

H. El Ghandoor, E. Hegazi, I. Nasser, and G. M. Behery, “Measuring the refractive index of crude oil using a capillary tube interferometer,” Opt. Laser Technol. 35(5), 361–367 (2003).
[Crossref]

2001 (1)

S. B. Sane and W. G. Knauss, “The Time-Dependent Bulk Response of Poly (Methyl Methacrylate),” Mech. Time-Depend. Mater. 5(4), 293–324 (2001).
[Crossref]

1999 (2)

J. Xie, S. de Gironcoli, S. Baroni, and M. Scheffler, “First-principles calculation of the thermal properties of silver,” Phys. Rev. B 59(2), 965–969 (1999).
[Crossref]

Y. Clergent, C. Durou, and M. Laurens, “Refractive index variations for argon, nitrogen, and carbon dioxide at lambda = 632.8 nm (He-Ne laser light) in the range 288.15K <= T <= 323.15K, 0 < p < 110 kPa,” J. Chem. Eng. Data 44(2), 197–199 (1999).
[Crossref]

1996 (1)

H. J. Tarigan, P. Neill, C. K. Kenmore, and D. J. Bornhop, “Capillary-Scale Refractive Index Detection by Interferometric Backscatter,” Anal. Chem. 68(10), 1762–1770 (1996).
[Crossref]

1993 (1)

1937 (1)

W. B. Emerson, “Compressibility of fused-quartz glass at atmopsheric pressure,” J. Res. Natl. Bur. Stand. 18(6), 683–711 (1937).
[Crossref]

Abhyankar, V. V.

J. Mai, V. V. Abhyankar, M. E. Piccini, J. P. Olano, R. Willson, and A. V. Hatch, “Rapid detection of trace bacteria in biofluids using porous monoliths in microchannels,” Biosens. Bioelectron. 54, 435–441 (2014).
[Crossref] [PubMed]

Afshar, S. V.

Afshar V, S.

A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

Baldini, F.

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

Barillaro, G.

S. Surdo, F. Carpignano, L. M. Strambini, S. Merlo, and G. Barillaro, “Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio)sensing applications,” RSC Advances 4(94), 51935–51941 (2014).
[Crossref]

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

Baroni, S.

J. Xie, S. de Gironcoli, S. Baroni, and M. Scheffler, “First-principles calculation of the thermal properties of silver,” Phys. Rev. B 59(2), 965–969 (1999).
[Crossref]

Beckham, R. E.

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92(22), 221108 (2008).
[Crossref] [PubMed]

Behery, G. M.

H. El Ghandoor, E. Hegazi, I. Nasser, and G. M. Behery, “Measuring the refractive index of crude oil using a capillary tube interferometer,” Opt. Laser Technol. 35(5), 361–367 (2003).
[Crossref]

Bornhop, D. J.

H. J. Tarigan, P. Neill, C. K. Kenmore, and D. J. Bornhop, “Capillary-Scale Refractive Index Detection by Interferometric Backscatter,” Anal. Chem. 68(10), 1762–1770 (1996).
[Crossref]

Bruno, A. E.

Calixto, S.

Carpignano, F.

F. Carpignano, G. Rigamonti, T. Migliazza, and S. Merlo, “Refractive Index Sensing in Rectangular Glass Micro-Capillaries by Spectral Reflectivity Measurements,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100309 (2016).
[Crossref]

S. Surdo, F. Carpignano, L. M. Strambini, S. Merlo, and G. Barillaro, “Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio)sensing applications,” RSC Advances 4(94), 51935–51941 (2014).
[Crossref]

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

Cheng, G.-H.

Choi, E. S.

Choi, H. Y.

Clergent, Y.

Y. Clergent, C. Durou, and M. Laurens, “Refractive index variations for argon, nitrogen, and carbon dioxide at lambda = 632.8 nm (He-Ne laser light) in the range 288.15K <= T <= 323.15K, 0 < p < 110 kPa,” J. Chem. Eng. Data 44(2), 197–199 (1999).
[Crossref]

Clevenson, H.

H. Clevenson, P. Desjardins, X. T. Gan, and D. Englund, “High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity,” Appl. Phys. Lett. 104(24), 241108 (2014).
[Crossref]

Cooper, K. L.

Dändliker, R.

de Gironcoli, S.

J. Xie, S. de Gironcoli, S. Baroni, and M. Scheffler, “First-principles calculation of the thermal properties of silver,” Phys. Rev. B 59(2), 965–969 (1999).
[Crossref]

Deng, M.

Desjardins, P.

H. Clevenson, P. Desjardins, X. T. Gan, and D. Englund, “High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity,” Appl. Phys. Lett. 104(24), 241108 (2014).
[Crossref]

Diao, Z.

Dong, J.

Duan, D.-W.

Durou, C.

Y. Clergent, C. Durou, and M. Laurens, “Refractive index variations for argon, nitrogen, and carbon dioxide at lambda = 632.8 nm (He-Ne laser light) in the range 288.15K <= T <= 323.15K, 0 < p < 110 kPa,” J. Chem. Eng. Data 44(2), 197–199 (1999).
[Crossref]

Ebendorff-Heidepriem, H.

El Ghandoor, H.

H. El Ghandoor, E. Hegazi, I. Nasser, and G. M. Behery, “Measuring the refractive index of crude oil using a capillary tube interferometer,” Opt. Laser Technol. 35(5), 361–367 (2003).
[Crossref]

Emerson, W. B.

W. B. Emerson, “Compressibility of fused-quartz glass at atmopsheric pressure,” J. Res. Natl. Bur. Stand. 18(6), 683–711 (1937).
[Crossref]

Englund, D.

H. Clevenson, P. Desjardins, X. T. Gan, and D. Englund, “High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity,” Appl. Phys. Lett. 104(24), 241108 (2014).
[Crossref]

Fan, X.

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

Foreman, M. R.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

François, A.

Gan, X. T.

H. Clevenson, P. Desjardins, X. T. Gan, and D. Englund, “High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity,” Appl. Phys. Lett. 104(24), 241108 (2014).
[Crossref]

Geiser, M.

Giannetti, A.

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

Guo, Y.

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

Hall, J. M.

Han, M.

Han, S. B.

Y. G. Zhang, S. B. Han, S. L. Zhang, P. H. Liu, and Y. C. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 6802906 (2015).
[Crossref]

Han, Y.

Hatch, A. V.

J. Mai, V. V. Abhyankar, M. E. Piccini, J. P. Olano, R. Willson, and A. V. Hatch, “Rapid detection of trace bacteria in biofluids using porous monoliths in microchannels,” Biosens. Bioelectron. 54, 435–441 (2014).
[Crossref] [PubMed]

Hegazi, E.

H. El Ghandoor, E. Hegazi, I. Nasser, and G. M. Behery, “Measuring the refractive index of crude oil using a capillary tube interferometer,” Opt. Laser Technol. 35(5), 361–367 (2003).
[Crossref]

Henderson, M. R.

Homola, J.

Hosseini, H. M. M.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

Hou, Y.-S.

Houdré, R.

Hu, T. Y.

Jágerská, J.

Ji, H.

A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

Kenmore, C. K.

H. J. Tarigan, P. Neill, C. K. Kenmore, and D. J. Bornhop, “Capillary-Scale Refractive Index Detection by Interferometric Backscatter,” Anal. Chem. 68(10), 1762–1770 (1996).
[Crossref]

Klantsataya, E.

Knauss, W. G.

S. B. Sane and W. G. Knauss, “The Time-Dependent Bulk Response of Poly (Methyl Methacrylate),” Mech. Time-Depend. Mater. 5(4), 293–324 (2001).
[Crossref]

Krattiger, B.

Laurens, M.

Y. Clergent, C. Durou, and M. Laurens, “Refractive index variations for argon, nitrogen, and carbon dioxide at lambda = 632.8 nm (He-Ne laser light) in the range 288.15K <= T <= 323.15K, 0 < p < 110 kPa,” J. Chem. Eng. Data 44(2), 197–199 (1999).
[Crossref]

Lee, B. H.

Li, H.

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

Li, W.

Li, Y.

Liao, C. R.

Lim, C. S.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

Liu, A. Q.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

Liu, G.

Liu, P. H.

Y. G. Zhang, S. B. Han, S. L. Zhang, P. H. Liu, and Y. C. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 6802906 (2015).
[Crossref]

Liu, Y.

Mai, J.

J. Mai, V. V. Abhyankar, M. E. Piccini, J. P. Olano, R. Willson, and A. V. Hatch, “Rapid detection of trace bacteria in biofluids using porous monoliths in microchannels,” Biosens. Bioelectron. 54, 435–441 (2014).
[Crossref] [PubMed]

Manchee, C. P. K.

Masson, J.

R. St-Gelais, J. Masson, and Y. A. Peter, “All-silicon integrated Fabry-Perot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94(24), 243905 (2009).
[Crossref]

McFarlane, S.

Meissner, K. E.

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92(22), 221108 (2008).
[Crossref] [PubMed]

Meldrum, A.

Merlo, S.

F. Carpignano, G. Rigamonti, T. Migliazza, and S. Merlo, “Refractive Index Sensing in Rectangular Glass Micro-Capillaries by Spectral Reflectivity Measurements,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100309 (2016).
[Crossref]

S. Surdo, F. Carpignano, L. M. Strambini, S. Merlo, and G. Barillaro, “Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio)sensing applications,” RSC Advances 4(94), 51935–51941 (2014).
[Crossref]

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

Migliazza, T.

F. Carpignano, G. Rigamonti, T. Migliazza, and S. Merlo, “Refractive Index Sensing in Rectangular Glass Micro-Capillaries by Spectral Reflectivity Measurements,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100309 (2016).
[Crossref]

Minkovich, V. P.

Monro, T. M.

Monzon-Hernandez, D.

Mosk, A. P.

P. Zijlstra, K. L. van der Molen, and A. P. Mosk, “Spatial refractive index sensor using whispering gallery modes in an optically trapped microsphere,” Appl. Phys. Lett. 90(16), 161101 (2007).
[Crossref]

Nasser, I.

H. El Ghandoor, E. Hegazi, I. Nasser, and G. M. Behery, “Measuring the refractive index of crude oil using a capillary tube interferometer,” Opt. Laser Technol. 35(5), 361–367 (2003).
[Crossref]

Neill, P.

H. J. Tarigan, P. Neill, C. K. Kenmore, and D. J. Bornhop, “Capillary-Scale Refractive Index Detection by Interferometric Backscatter,” Anal. Chem. 68(10), 1762–1770 (1996).
[Crossref]

Nicholls, S. J.

Nittoor, V. R.

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

Olano, J. P.

J. Mai, V. V. Abhyankar, M. E. Piccini, J. P. Olano, R. Willson, and A. V. Hatch, “Rapid detection of trace bacteria in biofluids using porous monoliths in microchannels,” Biosens. Bioelectron. 54, 435–441 (2014).
[Crossref] [PubMed]

Paek, U.-C.

Pang, S.

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92(22), 221108 (2008).
[Crossref] [PubMed]

Park, K. S.

Park, S. J.

Peter, Y. A.

R. St-Gelais, J. Masson, and Y. A. Peter, “All-silicon integrated Fabry-Perot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94(24), 243905 (2009).
[Crossref]

Piccini, M. E.

J. Mai, V. V. Abhyankar, M. E. Piccini, J. P. Olano, R. Willson, and A. V. Hatch, “Rapid detection of trace bacteria in biofluids using porous monoliths in microchannels,” Biosens. Bioelectron. 54, 435–441 (2014).
[Crossref] [PubMed]

Pickrell, G. R.

Piliarik, M.

Pinet, É.

É. Pinet, “Pressure measurement with fiber-optic sensors: commercial technologies and applications,” Proc. SPIE 7753, 775304 (2011).
[Crossref]

Qi, S.

Rao, Y. J.

Rao, Y.-J.

Reddy, K.

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

Reynolds, T.

Riesen, N.

T. Reynolds, M. R. Henderson, A. François, N. Riesen, J. M. Hall, S. V. Afshar, S. J. Nicholls, and T. M. Monro, “Optimization of whispering gallery resonator design for biosensing applications,” Opt. Express 23(13), 17067–17076 (2015).
[Crossref] [PubMed]

A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

Rigamonti, G.

F. Carpignano, G. Rigamonti, T. Migliazza, and S. Merlo, “Refractive Index Sensing in Rectangular Glass Micro-Capillaries by Spectral Reflectivity Measurements,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100309 (2016).
[Crossref]

Roper, D. K.

X. Wei and D. K. Roper, “Tin Sensitization for Electroless Plating Review,” J. Electrochem. Soc. 161(5), D235–D242 (2014).
[Crossref]

Rosete-Aguilar, M.

Sane, S. B.

S. B. Sane and W. G. Knauss, “The Time-Dependent Bulk Response of Poly (Methyl Methacrylate),” Mech. Time-Depend. Mater. 5(4), 293–324 (2001).
[Crossref]

Scheffler, M.

J. Xie, S. de Gironcoli, S. Baroni, and M. Scheffler, “First-principles calculation of the thermal properties of silver,” Phys. Rev. B 59(2), 965–969 (1999).
[Crossref]

Sciacca, B.

Shelar, H. S.

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

Shi, Y. C.

Y. G. Zhang, S. B. Han, S. L. Zhang, P. H. Liu, and Y. C. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 6802906 (2015).
[Crossref]

Silverstone, J. W.

Song, W. Z.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

St-Gelais, R.

R. St-Gelais, J. Masson, and Y. A. Peter, “All-silicon integrated Fabry-Perot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94(24), 243905 (2009).
[Crossref]

Strambini, L. M.

S. Surdo, F. Carpignano, L. M. Strambini, S. Merlo, and G. Barillaro, “Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio)sensing applications,” RSC Advances 4(94), 51935–51941 (2014).
[Crossref]

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

Surdo, S.

S. Surdo, F. Carpignano, L. M. Strambini, S. Merlo, and G. Barillaro, “Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio)sensing applications,” RSC Advances 4(94), 51935–51941 (2014).
[Crossref]

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

Swaim, J. D.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Tarigan, H. J.

H. J. Tarigan, P. Neill, C. K. Kenmore, and D. J. Bornhop, “Capillary-Scale Refractive Index Detection by Interferometric Backscatter,” Anal. Chem. 68(10), 1762–1770 (1996).
[Crossref]

Thiessen, T.

Thomas, N. L.

Tian, J.

Trono, C.

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

Tsai, H. L.

van der Molen, K. L.

P. Zijlstra, K. L. van der Molen, and A. P. Mosk, “Spatial refractive index sensor using whispering gallery modes in an optically trapped microsphere,” Appl. Phys. Lett. 90(16), 161101 (2007).
[Crossref]

Veinot, J. G. C.

Vollmer, F.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Wang, A.

Wang, C.

Wang, D. N.

Wang, X.

Wei, T.

Wei, X.

X. Wei and D. K. Roper, “Tin Sensitization for Electroless Plating Review,” J. Electrochem. Soc. 161(5), D235–D242 (2014).
[Crossref]

White, I. M.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

Widmer, H. M.

Willson, R.

J. Mai, V. V. Abhyankar, M. E. Piccini, J. P. Olano, R. Willson, and A. V. Hatch, “Rapid detection of trace bacteria in biofluids using porous monoliths in microchannels,” Biosens. Bioelectron. 54, 435–441 (2014).
[Crossref] [PubMed]

Xiao, H.

Xie, J.

J. Xie, S. de Gironcoli, S. Baroni, and M. Scheffler, “First-principles calculation of the thermal properties of silver,” Phys. Rev. B 59(2), 965–969 (1999).
[Crossref]

Xu, B.

Xu, T.

Yang, A.

Yang, X.

Yang, X.-C.

Yap, P. H.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

Yuan, G.

Zamora, V.

Zhang, C.

Zhang, G.

Zhang, H.

Zhang, J.

Zhang, L.

Zhang, S. L.

Y. G. Zhang, S. B. Han, S. L. Zhang, P. H. Liu, and Y. C. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 6802906 (2015).
[Crossref]

Zhang, X. M.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

Zhang, Y. G.

Y. G. Zhang, S. B. Han, S. L. Zhang, P. H. Liu, and Y. C. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 6802906 (2015).
[Crossref]

Zhi, Y.

Zhu, T.

Zhu, Y. Z.

Zijlstra, P.

P. Zijlstra, K. L. van der Molen, and A. P. Mosk, “Spatial refractive index sensor using whispering gallery modes in an optically trapped microsphere,” Appl. Phys. Lett. 90(16), 161101 (2007).
[Crossref]

Zuber, A.

Adv. Opt. Photonics (1)

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Anal. Chem. (1)

H. J. Tarigan, P. Neill, C. K. Kenmore, and D. J. Bornhop, “Capillary-Scale Refractive Index Detection by Interferometric Backscatter,” Anal. Chem. 68(10), 1762–1770 (1996).
[Crossref]

Appl. Opt. (5)

Appl. Phys. Lett. (7)

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

H. Clevenson, P. Desjardins, X. T. Gan, and D. Englund, “High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity,” Appl. Phys. Lett. 104(24), 241108 (2014).
[Crossref]

R. St-Gelais, J. Masson, and Y. A. Peter, “All-silicon integrated Fabry-Perot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94(24), 243905 (2009).
[Crossref]

S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92(22), 221108 (2008).
[Crossref] [PubMed]

P. Zijlstra, K. L. van der Molen, and A. P. Mosk, “Spatial refractive index sensor using whispering gallery modes in an optically trapped microsphere,” Appl. Phys. Lett. 90(16), 161101 (2007).
[Crossref]

A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

Biosens. Bioelectron. (1)

J. Mai, V. V. Abhyankar, M. E. Piccini, J. P. Olano, R. Willson, and A. V. Hatch, “Rapid detection of trace bacteria in biofluids using porous monoliths in microchannels,” Biosens. Bioelectron. 54, 435–441 (2014).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Carpignano, G. Rigamonti, T. Migliazza, and S. Merlo, “Refractive Index Sensing in Rectangular Glass Micro-Capillaries by Spectral Reflectivity Measurements,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7100309 (2016).
[Crossref]

IEEE Photonics J. (1)

Y. G. Zhang, S. B. Han, S. L. Zhang, P. H. Liu, and Y. C. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 6802906 (2015).
[Crossref]

J. Chem. Eng. Data (1)

Y. Clergent, C. Durou, and M. Laurens, “Refractive index variations for argon, nitrogen, and carbon dioxide at lambda = 632.8 nm (He-Ne laser light) in the range 288.15K <= T <= 323.15K, 0 < p < 110 kPa,” J. Chem. Eng. Data 44(2), 197–199 (1999).
[Crossref]

J. Electrochem. Soc. (1)

X. Wei and D. K. Roper, “Tin Sensitization for Electroless Plating Review,” J. Electrochem. Soc. 161(5), D235–D242 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Res. Natl. Bur. Stand. (1)

W. B. Emerson, “Compressibility of fused-quartz glass at atmopsheric pressure,” J. Res. Natl. Bur. Stand. 18(6), 683–711 (1937).
[Crossref]

Lab Chip (1)

S. Surdo, S. Merlo, F. Carpignano, L. M. Strambini, C. Trono, A. Giannetti, F. Baldini, and G. Barillaro, “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis,” Lab Chip 12(21), 4403–4415 (2012).
[Crossref] [PubMed]

Mech. Time-Depend. Mater. (1)

S. B. Sane and W. G. Knauss, “The Time-Dependent Bulk Response of Poly (Methyl Methacrylate),” Mech. Time-Depend. Mater. 5(4), 293–324 (2001).
[Crossref]

Nat. Photonics (1)

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

Opt. Express (9)

J. W. Silverstone, S. McFarlane, C. P. K. Manchee, and A. Meldrum, “Ultimate resolution for refractometric sensing with whispering gallery mode microcavities,” Opt. Express 20(8), 8284–8295 (2012).
[Crossref] [PubMed]

C. R. Liao, T. Y. Hu, and D. N. Wang, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing,” Opt. Express 20(20), 22813–22818 (2012).
[Crossref] [PubMed]

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009).
[Crossref] [PubMed]

T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
[Crossref] [PubMed]

Y.-J. Rao, M. Deng, D.-W. Duan, X.-C. Yang, T. Zhu, and G.-H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15(21), 14123–14128 (2007).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

T. Reynolds, M. R. Henderson, A. François, N. Riesen, J. M. Hall, S. V. Afshar, S. J. Nicholls, and T. M. Monro, “Optimization of whispering gallery resonator design for biosensing applications,” Opt. Express 23(13), 17067–17076 (2015).
[Crossref] [PubMed]

B. Xu, C. Wang, D. N. Wang, Y. Liu, and Y. Li, “Fiber-tip gas pressure sensor based on dual capillaries,” Opt. Express 23(18), 23484–23492 (2015).
[Crossref] [PubMed]

C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum, “Refractometric sensing with fluorescent-core microcapillaries,” Opt. Express 19(22), 21540–21551 (2011).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

H. El Ghandoor, E. Hegazi, I. Nasser, and G. M. Behery, “Measuring the refractive index of crude oil using a capillary tube interferometer,” Opt. Laser Technol. 35(5), 361–367 (2003).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Rev. B (1)

J. Xie, S. de Gironcoli, S. Baroni, and M. Scheffler, “First-principles calculation of the thermal properties of silver,” Phys. Rev. B 59(2), 965–969 (1999).
[Crossref]

Proc. SPIE (1)

É. Pinet, “Pressure measurement with fiber-optic sensors: commercial technologies and applications,” Proc. SPIE 7753, 775304 (2011).
[Crossref]

RSC Advances (1)

S. Surdo, F. Carpignano, L. M. Strambini, S. Merlo, and G. Barillaro, “Capillarity-driven (self-powered) one-dimensional photonic crystals for refractometry and (bio)sensing applications,” RSC Advances 4(94), 51935–51941 (2014).
[Crossref]

Other (4)

O. Svelto, S. Longhi, G. Della Valle, S. Kuck, G. Hiuber, M. Pollnau, H. Hillmer, S. Hansmann, R. Engelbrecht, H. Brand, J. Kaiser, A. B. Peterson, R. Malz, S. S. G. Marawsky, U. Brinkmann, D. Lot, A. Borsutzky, H. Wachter, M. W. Sigrist, S. E. E. Schneidmiller, M. Yurkov, K. Midorikawa, J. Hein, R. Sauerbrey, and J. Helmcke, eds., Lasers and Coherent Light Sources, Springer Handbook of Lasers and Optics (Springer, 2007), p. 354.

http://www.polysciences.com/default/pentabromophenyl-acrylate .

A. François, Y. Zhi, and A. Meldrum, “Whispering Gallery Mode Devices for Sensing and Biosensing,” in Photonic Materials for Sensing, Biosensing, and Display Devices (Springer Series in Materials Science, 2016) pp. 237–288.

http://www.crystran.co.uk/optical-materials/silica-glass-sio2 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Diagram illustrating the basic structure of the capillary and the experimental setup. Light from the tungsten lamp (LS) was roughly collimated using a condenser lens (CL). A 20x objective lens (OL) was used to collect the transmitted radiation and pass it to an imaging CCD spectrometer with a nominal resolving power of 2800. Continuous exposures of 30 seconds each were taken for sensorgram measurements. Capillary interfaces 1, 2, 3, and 4 are labeled. The channel layer thickness is greatly exaggerated for clarity.

Fig. 2
Fig. 2

(a) Low-magnification SEM image showing the polymer-coated capillary channel. (b) A zoom-in of the interface showing the ~230-nm-thick ppba high-index coating. (c) Same as in (b) except with the Ag mirrors. The Ag coating appears bright against the capillary wall and is ~30 nm thick. These images were taken by cleaving the capillary and imaging it using a Zeiss Sigma 300 VP-FESEM operated at 25 keV in either backscatter or secondary electron mode.

Fig. 3
Fig. 3

(a) Raw transmitted light spectrum showing several overlapping oscillations. (b) Transmission spectrum taken with mineral oil in the channel. Only the high-frequency oscillations corresponding to the cavity defined by interfaces (1-4) are visible. (c) The mode spectrum for the same capillary (with air in the channel) immersed in mineral oil in order to remove interfaces 1 and 4. The low-frequency oscillations with a spacing of 3.6 nm correspond to interfaces (2-3). (d) A Fourier power series for the raw transmitted light spectrum. The arrowed peaks correspond to the cavity defined by the associated interfaces.

Fig. 4
Fig. 4

Refractometric sensorgram on transitioning from Ar to N2 and back to Ar. Only the main Fourier component for interface 2-3 was used to calculate the spectral shifts. The grey boundaries are centered on the mean and their thickness represents the standard error of the mean. The refractive indices of Ar and N2 are also shown, as calculated from the Gladstone-Dale equation. The fact that the final Ar result did not precisely return to the original one within the standard error of the mean is likely due to a systematic (drift) error, possibly caused by mechanical drifts that were difficult to eliminate when changing gases.

Fig. 5
Fig. 5

Pressure sensorgram showing the mode shifts as the pressure was changed twice and then held for ~11 min. Only the main Fourier component ((2-3) in Fig. 3) was used to calculate the spectral shifts. The inset shows a portion of each transmission spectrum on increasing pressure from bottom (red) to top (blue). The colors refer to the specific spectrum indicated by the colored points on the main panel. The standard error of the mean is < 2pm and is smaller than the data points. The refractive indices estimated from the Gladstone-Dale approximation are 1.00077, 1.00103, and 1.00128 for the three increasing pressures shown.

Fig. 6
Fig. 6

Transmission spectrum through the center of a silver-mirrored microcapillary, with Ar in the channel. The spectrum is dominated by a set of modes with an FSR of ~3.6 nm.

Fig. 7
Fig. 7

(a) Pressure sensorgram for Ar gas in a silver-mirrored capillary. The inset shows a linear fit to the mean resonance shifts, yielding a pressure sensitivity of 1.07 ± 0.02 nm/RIU. (b) Sensorgram as two concentrations of sucrose (11% w/w and 10% w/w) solution are pumped through the capillary

Tables (1)

Tables Icon

Table 1 Summary of the experimental, simulated, and calculated sensitivities of polymer-coated and silver-mirrored capillaries in nm/RIU. Listed values are for wavelengths of 600 nm and 1550 nm, and near RIs of 1.002 (air) or 1.33 (water). Units are nm/RIU.

Metrics