Abstract

We propose theoretically a photonic Turing machine based on cellular automata in arrays of nonlinear cavities coupled with artificial gauge fields. The state of the system is recorded making use of the bistability of driven cavities, in which losses are fully compensated by an external continuous drive. The sequential update of the automaton layers is achieved automatically, by the local switching of bistable states, without requiring any additional synchronization or temporal control.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cellular-automata method for phase unwrapping

Dennis C. Ghiglia, Gary A. Mastin, and Louis A. Romero
J. Opt. Soc. Am. A 4(1) 267-280 (1987)

Digital optical computing with one-rule cellular automata

Miles J. Murdocca
Appl. Opt. 26(4) 682-688 (1987)

Optical programmable cellular logic array for image processing

Liren Liu, Xiaoben Liu, and Bo Cui
Appl. Opt. 30(8) 943-949 (1991)

References

  • View by:
  • |
  • |
  • |

  1. V. R. Almedia, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
    [Crossref]
  2. I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85, 299–374 (2013).
    [Crossref]
  3. C. Leyder, T. C. H. Liew, A. V. Kavokin, I. A. Shelykh, M. Romanelli, J. Ph. Karr, E. Giacobino, and A. Bramati, “Interference of Coherent Polariton Beams in Microcavities: Polarization-Controlled Optical Gates,” Phys. Rev. Lett. 99, 196402 (2007).
    [Crossref]
  4. C. Adrados, T. C. H. Liew, A. Amo, M. D. Martín, D. Sanvitto, C. Antón, E. Giacobino, A. Kavokin, A. Bramati, and L. Viña, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011).
    [Crossref] [PubMed]
  5. M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and Ultrafast Dynamics of a Two-Fluid Polariton Switch,” Phys. Rev. Lett. 109, 266407 (2012).
    [Crossref]
  6. E. Cancellieri, J. K. Chana, M. Sich, D. N. Krizhanovskii, M. S. Skolnick, and D. M. Whittaker, “Logic gates with bright dissipative polariton solitons in Bragg cavity systems,” Phys. Rev. B 92, 174528 (2015).
    [Crossref]
  7. D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nature Comm. 4, 1778 (2013).
    [Crossref]
  8. T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B 85, 235102 (2012).
    [Crossref]
  9. R. Cerna, Y. Léger, T. K. Paraïso, M. Wouters, F. Morier-Genoud, M. T. Portella-Oberli, and B. Deveaud, “Ultrafast tristable spin memory of a coherent polariton gas,” Nature Comm. 4, 2008 (2013).
    [Crossref]
  10. G. Christmann, C. Coulson, J. J. Baumberg, N. T. Pelekanos, Z. Hatzopoulos, S. I. Tsintzos, and P. G. Savvidis, “Control of polariton scattering in resonant-tunneling double-quantum-well semiconductor microcavities,” Phys. Rev. B 82, 113308 (2010).
    [Crossref]
  11. M. Amthor, T. C. H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Höfling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015).
    [Crossref]
  12. R. P. Feynman, “Simulating Physics with Computers,” Int. J. Theor. Phys. 21, 467–488, (1982).
    [Crossref]
  13. S. Wolfram, “Computation Theory of of Cellular Automata,” Commun. Math. Phys. 96, 15–57 (1984).
    [Crossref]
  14. I. Karafyllidis, “Design of a dedicated parallel processor for the prediction of forest fire spreading using cellular automata and genetic algorithms,” Eng. Appl. Artif. Intell. 17, 19–36, (2004).
    [Crossref]
  15. M. A. Arbib, “Simple self-reproducing universal automata,” Inf. Control 9, 177–189, (1966).
    [Crossref]
  16. Ch. Mizas, G. Ch. Sirakoulis, V. Mardiris, I. Karafyllidis, N. Glykos, and R. Sandaltzopoulos, “Reconstruction of DNA sequences using genetic algorithms and cellular automata: Towards mutation prediction?” BioSystems 92, 61–68, (2008).
    [Crossref] [PubMed]
  17. L. Nalpantidis, A. Amanatiadis, G. Ch. Sirakoulis, and A. Gasteratos, “Efficient hierarchical matching algorithm for processing uncalibrated stereo vision images and its hardware architecture,” IET Image Process. 5, 481–492, (2011).
    [Crossref]
  18. S. A Chatzichristofis, D. A Mitzias, G. Ch. Sirakoulis, and Y. S Boutalis, “A novel cellular automata based technique for visual multimedia content encryption,” Opt. Commun. 283, 4250–4260, (2010).
    [Crossref]
  19. I. Karafyllidis, “Cellular quantum computer architecture,” Phys. Lett. A 320, 35–38, (2003).
    [Crossref]
  20. I. Karafyllidis, “Definition and evolution of quantum cellular automata with two qubits per cell,” Phys. Rev. A 70, 044301 (2004).
    [Crossref]
  21. S. Wolfram, “Statistical mechanics of cellular automata,” Rev. Mod. Phys. 55, 601–644 (1983).
    [Crossref]
  22. M. Cook, “Universality in Elementary Cellular Automata Complex Systems,” Complex Systems 15, 1 (2004).
  23. X. Zhang, Y. Wang, J. Sun, D. Liu, and D. Huang, “All-optical AND gate at 10 Gbit/s based on cascaded single-port-couple SOAs,” Opt. Express 12, 361–366 (2004).
    [Crossref] [PubMed]
  24. Z. J. Li, Z. W. Chen, and B. J. Li, “Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference,” Opt. Express 13, 1033–1038 (2005).
    [Crossref] [PubMed]
  25. P. Andalib and J. Granpayeh, “All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators,” J. Opt. Soc. Am. B 26, 10–16 (2009).
    [Crossref]
  26. Y. Liu, F. Qin, Z. M. Meng, F. Zhou, Q. H. Mao, and Z. Y. Li, “All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs,” Opt. Express 19, 1945–1953 (2011).
    [Crossref] [PubMed]
  27. M. Ghadrdan and M. A. Mansouri-Birjandi, “All-Optical NOT Logic Gate Based on Photonic Crystals,” Int. J. Electr. Comput. Eng. (LJECE) 3, 478–482 (2013).
  28. W. P. Lin, Y. F. Hsu, and H. L. Kuo, “Design of Optical Nor Logic Gates Using Two Dimension Photonic Crystals,” Am. J. Mod. Phys. 2, 144–147 (2013).
    [Crossref]
  29. A. Baas, J. Ph. Karr, H. Eleuch, and E. Giacobino, “Optical bistability in semiconductor microcavities,” Phys. Rev. A 69, 023809 (2014).
    [Crossref]
  30. N. A. Gippius, S. G. Tikhodeev, V. D. Kulakovskii, D. N. Krizhanovskii, and A. I. Tartakovskii, “Nonlinear dynamics of polariton scattering in semiconductor microcavity: Bistability vs. stimulated scattering,” Europhys. Lett. 67, 997–1003 (2004).
    [Crossref]
  31. D. M. Whittaker, “Effects of polariton-energy renormalization in the microcavity optical parametric oscillator,” Phys. Rev. B 71, 115301 (2005).
    [Crossref]
  32. H. Ohadi, Y. del Valle-InclanRedondo, A. Dreismann, Y. G. Rubo, F. Pinsker, S. I. Tsintzos, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Tunable Magnetic Alignment between Trapped Exciton-Polariton Condensates,” Phys. Rev. Lett. 116, 106403 (2016).
    [Crossref] [PubMed]
  33. R. O. Umucalilar and I. Carusotto, “Artificial gauge field for photons in coupled cavity arrays,” Phys. Rev. A 84, 043804 (2011).
    [Crossref]
  34. T. K. Paraiso, M. Wouters, Y. Leger, F. Morier-Genoud, and B. Deveaud-Pledran, “Multi-stability of a coherent spin ensemble in a semiconductor microcavity,” Nature Mater. 9, 655–660 (2010).
    [Crossref]
  35. B. Nelsen, Gangqiang Liu, M. Steger, D. W. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless Flow and Sharp Threshold of a Polariton Condensate with Long Lifetime,” Phys Rev. X 3, 041015 (2013).
  36. A. Dreismann, H. Ohadi, YVI Redondo, R. Balili, Y. G. Rubo, S. I. Tsintzos, G. Deligeorgis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates,” Nature Mater. advanced online publication at (2016).
    [Crossref]
  37. V. Savona and W. Langbein, “Realistic heterointerface model for excitonic states in growth-interrupted GaAs quantum wells,” Phys. Rev. B 74, 075311 (2006).
    [Crossref]
  38. T. C. H. Liew, Yuri G. Rubo, and A. V. Kavokin, “Generation and Dynamics of Vortex Lattices in Coherent Exciton-Polariton Fields,” Phys. Rev. Lett. 101, 187401 (2008).
    [Crossref] [PubMed]
  39. T. Espinosa-Ortega, T. C. H. Liew, and I. A. Shelykh, “Optical diode based on exciton-polaritons,” Appl. Phys. Lett. 103, 191110 (2013).
    [Crossref]

2016 (1)

H. Ohadi, Y. del Valle-InclanRedondo, A. Dreismann, Y. G. Rubo, F. Pinsker, S. I. Tsintzos, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Tunable Magnetic Alignment between Trapped Exciton-Polariton Condensates,” Phys. Rev. Lett. 116, 106403 (2016).
[Crossref] [PubMed]

2015 (2)

E. Cancellieri, J. K. Chana, M. Sich, D. N. Krizhanovskii, M. S. Skolnick, and D. M. Whittaker, “Logic gates with bright dissipative polariton solitons in Bragg cavity systems,” Phys. Rev. B 92, 174528 (2015).
[Crossref]

M. Amthor, T. C. H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Höfling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015).
[Crossref]

2014 (1)

A. Baas, J. Ph. Karr, H. Eleuch, and E. Giacobino, “Optical bistability in semiconductor microcavities,” Phys. Rev. A 69, 023809 (2014).
[Crossref]

2013 (7)

M. Ghadrdan and M. A. Mansouri-Birjandi, “All-Optical NOT Logic Gate Based on Photonic Crystals,” Int. J. Electr. Comput. Eng. (LJECE) 3, 478–482 (2013).

W. P. Lin, Y. F. Hsu, and H. L. Kuo, “Design of Optical Nor Logic Gates Using Two Dimension Photonic Crystals,” Am. J. Mod. Phys. 2, 144–147 (2013).
[Crossref]

B. Nelsen, Gangqiang Liu, M. Steger, D. W. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless Flow and Sharp Threshold of a Polariton Condensate with Long Lifetime,” Phys Rev. X 3, 041015 (2013).

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nature Comm. 4, 1778 (2013).
[Crossref]

R. Cerna, Y. Léger, T. K. Paraïso, M. Wouters, F. Morier-Genoud, M. T. Portella-Oberli, and B. Deveaud, “Ultrafast tristable spin memory of a coherent polariton gas,” Nature Comm. 4, 2008 (2013).
[Crossref]

I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85, 299–374 (2013).
[Crossref]

T. Espinosa-Ortega, T. C. H. Liew, and I. A. Shelykh, “Optical diode based on exciton-polaritons,” Appl. Phys. Lett. 103, 191110 (2013).
[Crossref]

2012 (2)

T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B 85, 235102 (2012).
[Crossref]

M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and Ultrafast Dynamics of a Two-Fluid Polariton Switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

2011 (4)

L. Nalpantidis, A. Amanatiadis, G. Ch. Sirakoulis, and A. Gasteratos, “Efficient hierarchical matching algorithm for processing uncalibrated stereo vision images and its hardware architecture,” IET Image Process. 5, 481–492, (2011).
[Crossref]

C. Adrados, T. C. H. Liew, A. Amo, M. D. Martín, D. Sanvitto, C. Antón, E. Giacobino, A. Kavokin, A. Bramati, and L. Viña, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011).
[Crossref] [PubMed]

R. O. Umucalilar and I. Carusotto, “Artificial gauge field for photons in coupled cavity arrays,” Phys. Rev. A 84, 043804 (2011).
[Crossref]

Y. Liu, F. Qin, Z. M. Meng, F. Zhou, Q. H. Mao, and Z. Y. Li, “All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs,” Opt. Express 19, 1945–1953 (2011).
[Crossref] [PubMed]

2010 (3)

T. K. Paraiso, M. Wouters, Y. Leger, F. Morier-Genoud, and B. Deveaud-Pledran, “Multi-stability of a coherent spin ensemble in a semiconductor microcavity,” Nature Mater. 9, 655–660 (2010).
[Crossref]

G. Christmann, C. Coulson, J. J. Baumberg, N. T. Pelekanos, Z. Hatzopoulos, S. I. Tsintzos, and P. G. Savvidis, “Control of polariton scattering in resonant-tunneling double-quantum-well semiconductor microcavities,” Phys. Rev. B 82, 113308 (2010).
[Crossref]

S. A Chatzichristofis, D. A Mitzias, G. Ch. Sirakoulis, and Y. S Boutalis, “A novel cellular automata based technique for visual multimedia content encryption,” Opt. Commun. 283, 4250–4260, (2010).
[Crossref]

2009 (1)

2008 (2)

Ch. Mizas, G. Ch. Sirakoulis, V. Mardiris, I. Karafyllidis, N. Glykos, and R. Sandaltzopoulos, “Reconstruction of DNA sequences using genetic algorithms and cellular automata: Towards mutation prediction?” BioSystems 92, 61–68, (2008).
[Crossref] [PubMed]

T. C. H. Liew, Yuri G. Rubo, and A. V. Kavokin, “Generation and Dynamics of Vortex Lattices in Coherent Exciton-Polariton Fields,” Phys. Rev. Lett. 101, 187401 (2008).
[Crossref] [PubMed]

2007 (1)

C. Leyder, T. C. H. Liew, A. V. Kavokin, I. A. Shelykh, M. Romanelli, J. Ph. Karr, E. Giacobino, and A. Bramati, “Interference of Coherent Polariton Beams in Microcavities: Polarization-Controlled Optical Gates,” Phys. Rev. Lett. 99, 196402 (2007).
[Crossref]

2006 (1)

V. Savona and W. Langbein, “Realistic heterointerface model for excitonic states in growth-interrupted GaAs quantum wells,” Phys. Rev. B 74, 075311 (2006).
[Crossref]

2005 (2)

Z. J. Li, Z. W. Chen, and B. J. Li, “Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference,” Opt. Express 13, 1033–1038 (2005).
[Crossref] [PubMed]

D. M. Whittaker, “Effects of polariton-energy renormalization in the microcavity optical parametric oscillator,” Phys. Rev. B 71, 115301 (2005).
[Crossref]

2004 (6)

I. Karafyllidis, “Definition and evolution of quantum cellular automata with two qubits per cell,” Phys. Rev. A 70, 044301 (2004).
[Crossref]

M. Cook, “Universality in Elementary Cellular Automata Complex Systems,” Complex Systems 15, 1 (2004).

X. Zhang, Y. Wang, J. Sun, D. Liu, and D. Huang, “All-optical AND gate at 10 Gbit/s based on cascaded single-port-couple SOAs,” Opt. Express 12, 361–366 (2004).
[Crossref] [PubMed]

N. A. Gippius, S. G. Tikhodeev, V. D. Kulakovskii, D. N. Krizhanovskii, and A. I. Tartakovskii, “Nonlinear dynamics of polariton scattering in semiconductor microcavity: Bistability vs. stimulated scattering,” Europhys. Lett. 67, 997–1003 (2004).
[Crossref]

V. R. Almedia, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

I. Karafyllidis, “Design of a dedicated parallel processor for the prediction of forest fire spreading using cellular automata and genetic algorithms,” Eng. Appl. Artif. Intell. 17, 19–36, (2004).
[Crossref]

2003 (1)

I. Karafyllidis, “Cellular quantum computer architecture,” Phys. Lett. A 320, 35–38, (2003).
[Crossref]

1984 (1)

S. Wolfram, “Computation Theory of of Cellular Automata,” Commun. Math. Phys. 96, 15–57 (1984).
[Crossref]

1983 (1)

S. Wolfram, “Statistical mechanics of cellular automata,” Rev. Mod. Phys. 55, 601–644 (1983).
[Crossref]

1982 (1)

R. P. Feynman, “Simulating Physics with Computers,” Int. J. Theor. Phys. 21, 467–488, (1982).
[Crossref]

1966 (1)

M. A. Arbib, “Simple self-reproducing universal automata,” Inf. Control 9, 177–189, (1966).
[Crossref]

Adrados, C.

C. Adrados, T. C. H. Liew, A. Amo, M. D. Martín, D. Sanvitto, C. Antón, E. Giacobino, A. Kavokin, A. Bramati, and L. Viña, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011).
[Crossref] [PubMed]

Almedia, V. R.

V. R. Almedia, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

Amanatiadis, A.

L. Nalpantidis, A. Amanatiadis, G. Ch. Sirakoulis, and A. Gasteratos, “Efficient hierarchical matching algorithm for processing uncalibrated stereo vision images and its hardware architecture,” IET Image Process. 5, 481–492, (2011).
[Crossref]

Amo, A.

C. Adrados, T. C. H. Liew, A. Amo, M. D. Martín, D. Sanvitto, C. Antón, E. Giacobino, A. Kavokin, A. Bramati, and L. Viña, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011).
[Crossref] [PubMed]

Amthor, M.

M. Amthor, T. C. H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Höfling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015).
[Crossref]

Andalib, P.

Antón, C.

C. Adrados, T. C. H. Liew, A. Amo, M. D. Martín, D. Sanvitto, C. Antón, E. Giacobino, A. Kavokin, A. Bramati, and L. Viña, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011).
[Crossref] [PubMed]

Arbib, M. A.

M. A. Arbib, “Simple self-reproducing universal automata,” Inf. Control 9, 177–189, (1966).
[Crossref]

Baas, A.

A. Baas, J. Ph. Karr, H. Eleuch, and E. Giacobino, “Optical bistability in semiconductor microcavities,” Phys. Rev. A 69, 023809 (2014).
[Crossref]

Balili, R.

B. Nelsen, Gangqiang Liu, M. Steger, D. W. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless Flow and Sharp Threshold of a Polariton Condensate with Long Lifetime,” Phys Rev. X 3, 041015 (2013).

A. Dreismann, H. Ohadi, YVI Redondo, R. Balili, Y. G. Rubo, S. I. Tsintzos, G. Deligeorgis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates,” Nature Mater. advanced online publication at (2016).
[Crossref]

Ballarini, D.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nature Comm. 4, 1778 (2013).
[Crossref]

M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and Ultrafast Dynamics of a Two-Fluid Polariton Switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

Barrios, C. A.

V. R. Almedia, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

Baumberg, J. J.

H. Ohadi, Y. del Valle-InclanRedondo, A. Dreismann, Y. G. Rubo, F. Pinsker, S. I. Tsintzos, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Tunable Magnetic Alignment between Trapped Exciton-Polariton Condensates,” Phys. Rev. Lett. 116, 106403 (2016).
[Crossref] [PubMed]

G. Christmann, C. Coulson, J. J. Baumberg, N. T. Pelekanos, Z. Hatzopoulos, S. I. Tsintzos, and P. G. Savvidis, “Control of polariton scattering in resonant-tunneling double-quantum-well semiconductor microcavities,” Phys. Rev. B 82, 113308 (2010).
[Crossref]

A. Dreismann, H. Ohadi, YVI Redondo, R. Balili, Y. G. Rubo, S. I. Tsintzos, G. Deligeorgis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates,” Nature Mater. advanced online publication at (2016).
[Crossref]

Boutalis, Y. S

S. A Chatzichristofis, D. A Mitzias, G. Ch. Sirakoulis, and Y. S Boutalis, “A novel cellular automata based technique for visual multimedia content encryption,” Opt. Commun. 283, 4250–4260, (2010).
[Crossref]

Bramati, A.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nature Comm. 4, 1778 (2013).
[Crossref]

M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and Ultrafast Dynamics of a Two-Fluid Polariton Switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

C. Adrados, T. C. H. Liew, A. Amo, M. D. Martín, D. Sanvitto, C. Antón, E. Giacobino, A. Kavokin, A. Bramati, and L. Viña, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011).
[Crossref] [PubMed]

C. Leyder, T. C. H. Liew, A. V. Kavokin, I. A. Shelykh, M. Romanelli, J. Ph. Karr, E. Giacobino, and A. Bramati, “Interference of Coherent Polariton Beams in Microcavities: Polarization-Controlled Optical Gates,” Phys. Rev. Lett. 99, 196402 (2007).
[Crossref]

Brodbeck, S.

M. Amthor, T. C. H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Höfling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015).
[Crossref]

Cancellieri, E.

E. Cancellieri, J. K. Chana, M. Sich, D. N. Krizhanovskii, M. S. Skolnick, and D. M. Whittaker, “Logic gates with bright dissipative polariton solitons in Bragg cavity systems,” Phys. Rev. B 92, 174528 (2015).
[Crossref]

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nature Comm. 4, 1778 (2013).
[Crossref]

M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and Ultrafast Dynamics of a Two-Fluid Polariton Switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

Carusotto, I.

I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85, 299–374 (2013).
[Crossref]

R. O. Umucalilar and I. Carusotto, “Artificial gauge field for photons in coupled cavity arrays,” Phys. Rev. A 84, 043804 (2011).
[Crossref]

Cerna, R.

R. Cerna, Y. Léger, T. K. Paraïso, M. Wouters, F. Morier-Genoud, M. T. Portella-Oberli, and B. Deveaud, “Ultrafast tristable spin memory of a coherent polariton gas,” Nature Comm. 4, 2008 (2013).
[Crossref]

Chana, J. K.

E. Cancellieri, J. K. Chana, M. Sich, D. N. Krizhanovskii, M. S. Skolnick, and D. M. Whittaker, “Logic gates with bright dissipative polariton solitons in Bragg cavity systems,” Phys. Rev. B 92, 174528 (2015).
[Crossref]

Chatzichristofis, S. A

S. A Chatzichristofis, D. A Mitzias, G. Ch. Sirakoulis, and Y. S Boutalis, “A novel cellular automata based technique for visual multimedia content encryption,” Opt. Commun. 283, 4250–4260, (2010).
[Crossref]

Chen, Z. W.

Christmann, G.

G. Christmann, C. Coulson, J. J. Baumberg, N. T. Pelekanos, Z. Hatzopoulos, S. I. Tsintzos, and P. G. Savvidis, “Control of polariton scattering in resonant-tunneling double-quantum-well semiconductor microcavities,” Phys. Rev. B 82, 113308 (2010).
[Crossref]

Cingolani, R.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nature Comm. 4, 1778 (2013).
[Crossref]

M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and Ultrafast Dynamics of a Two-Fluid Polariton Switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

Ciuti, C.

I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85, 299–374 (2013).
[Crossref]

Cook, M.

M. Cook, “Universality in Elementary Cellular Automata Complex Systems,” Complex Systems 15, 1 (2004).

Coulson, C.

G. Christmann, C. Coulson, J. J. Baumberg, N. T. Pelekanos, Z. Hatzopoulos, S. I. Tsintzos, and P. G. Savvidis, “Control of polariton scattering in resonant-tunneling double-quantum-well semiconductor microcavities,” Phys. Rev. B 82, 113308 (2010).
[Crossref]

De Giorgi, M.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nature Comm. 4, 1778 (2013).
[Crossref]

M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and Ultrafast Dynamics of a Two-Fluid Polariton Switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

del Valle-InclanRedondo, Y.

H. Ohadi, Y. del Valle-InclanRedondo, A. Dreismann, Y. G. Rubo, F. Pinsker, S. I. Tsintzos, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Tunable Magnetic Alignment between Trapped Exciton-Polariton Condensates,” Phys. Rev. Lett. 116, 106403 (2016).
[Crossref] [PubMed]

Deligeorgis, G.

T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B 85, 235102 (2012).
[Crossref]

A. Dreismann, H. Ohadi, YVI Redondo, R. Balili, Y. G. Rubo, S. I. Tsintzos, G. Deligeorgis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates,” Nature Mater. advanced online publication at (2016).
[Crossref]

Deveaud, B.

R. Cerna, Y. Léger, T. K. Paraïso, M. Wouters, F. Morier-Genoud, M. T. Portella-Oberli, and B. Deveaud, “Ultrafast tristable spin memory of a coherent polariton gas,” Nature Comm. 4, 2008 (2013).
[Crossref]

Deveaud-Pledran, B.

T. K. Paraiso, M. Wouters, Y. Leger, F. Morier-Genoud, and B. Deveaud-Pledran, “Multi-stability of a coherent spin ensemble in a semiconductor microcavity,” Nature Mater. 9, 655–660 (2010).
[Crossref]

Dreismann, A.

H. Ohadi, Y. del Valle-InclanRedondo, A. Dreismann, Y. G. Rubo, F. Pinsker, S. I. Tsintzos, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Tunable Magnetic Alignment between Trapped Exciton-Polariton Condensates,” Phys. Rev. Lett. 116, 106403 (2016).
[Crossref] [PubMed]

A. Dreismann, H. Ohadi, YVI Redondo, R. Balili, Y. G. Rubo, S. I. Tsintzos, G. Deligeorgis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates,” Nature Mater. advanced online publication at (2016).
[Crossref]

Eldridge, P. S.

T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B 85, 235102 (2012).
[Crossref]

Eleuch, H.

A. Baas, J. Ph. Karr, H. Eleuch, and E. Giacobino, “Optical bistability in semiconductor microcavities,” Phys. Rev. A 69, 023809 (2014).
[Crossref]

Espinosa-Ortega, T.

T. Espinosa-Ortega, T. C. H. Liew, and I. A. Shelykh, “Optical diode based on exciton-polaritons,” Appl. Phys. Lett. 103, 191110 (2013).
[Crossref]

Feynman, R. P.

R. P. Feynman, “Simulating Physics with Computers,” Int. J. Theor. Phys. 21, 467–488, (1982).
[Crossref]

Gao, T.

T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B 85, 235102 (2012).
[Crossref]

Gasteratos, A.

L. Nalpantidis, A. Amanatiadis, G. Ch. Sirakoulis, and A. Gasteratos, “Efficient hierarchical matching algorithm for processing uncalibrated stereo vision images and its hardware architecture,” IET Image Process. 5, 481–492, (2011).
[Crossref]

Ghadrdan, M.

M. Ghadrdan and M. A. Mansouri-Birjandi, “All-Optical NOT Logic Gate Based on Photonic Crystals,” Int. J. Electr. Comput. Eng. (LJECE) 3, 478–482 (2013).

Giacobino, E.

A. Baas, J. Ph. Karr, H. Eleuch, and E. Giacobino, “Optical bistability in semiconductor microcavities,” Phys. Rev. A 69, 023809 (2014).
[Crossref]

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nature Comm. 4, 1778 (2013).
[Crossref]

M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and Ultrafast Dynamics of a Two-Fluid Polariton Switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

C. Adrados, T. C. H. Liew, A. Amo, M. D. Martín, D. Sanvitto, C. Antón, E. Giacobino, A. Kavokin, A. Bramati, and L. Viña, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011).
[Crossref] [PubMed]

C. Leyder, T. C. H. Liew, A. V. Kavokin, I. A. Shelykh, M. Romanelli, J. Ph. Karr, E. Giacobino, and A. Bramati, “Interference of Coherent Polariton Beams in Microcavities: Polarization-Controlled Optical Gates,” Phys. Rev. Lett. 99, 196402 (2007).
[Crossref]

Gigli, G.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nature Comm. 4, 1778 (2013).
[Crossref]

M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and Ultrafast Dynamics of a Two-Fluid Polariton Switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

Gippius, N. A.

N. A. Gippius, S. G. Tikhodeev, V. D. Kulakovskii, D. N. Krizhanovskii, and A. I. Tartakovskii, “Nonlinear dynamics of polariton scattering in semiconductor microcavity: Bistability vs. stimulated scattering,” Europhys. Lett. 67, 997–1003 (2004).
[Crossref]

Glykos, N.

Ch. Mizas, G. Ch. Sirakoulis, V. Mardiris, I. Karafyllidis, N. Glykos, and R. Sandaltzopoulos, “Reconstruction of DNA sequences using genetic algorithms and cellular automata: Towards mutation prediction?” BioSystems 92, 61–68, (2008).
[Crossref] [PubMed]

Granpayeh, J.

Hatzopoulos, Z.

H. Ohadi, Y. del Valle-InclanRedondo, A. Dreismann, Y. G. Rubo, F. Pinsker, S. I. Tsintzos, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Tunable Magnetic Alignment between Trapped Exciton-Polariton Condensates,” Phys. Rev. Lett. 116, 106403 (2016).
[Crossref] [PubMed]

T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B 85, 235102 (2012).
[Crossref]

G. Christmann, C. Coulson, J. J. Baumberg, N. T. Pelekanos, Z. Hatzopoulos, S. I. Tsintzos, and P. G. Savvidis, “Control of polariton scattering in resonant-tunneling double-quantum-well semiconductor microcavities,” Phys. Rev. B 82, 113308 (2010).
[Crossref]

A. Dreismann, H. Ohadi, YVI Redondo, R. Balili, Y. G. Rubo, S. I. Tsintzos, G. Deligeorgis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates,” Nature Mater. advanced online publication at (2016).
[Crossref]

Höfling, S.

M. Amthor, T. C. H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Höfling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015).
[Crossref]

Houdré, R.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nature Comm. 4, 1778 (2013).
[Crossref]

Hsu, Y. F.

W. P. Lin, Y. F. Hsu, and H. L. Kuo, “Design of Optical Nor Logic Gates Using Two Dimension Photonic Crystals,” Am. J. Mod. Phys. 2, 144–147 (2013).
[Crossref]

Huang, D.

Kamp, M.

M. Amthor, T. C. H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Höfling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015).
[Crossref]

Karafyllidis, I.

Ch. Mizas, G. Ch. Sirakoulis, V. Mardiris, I. Karafyllidis, N. Glykos, and R. Sandaltzopoulos, “Reconstruction of DNA sequences using genetic algorithms and cellular automata: Towards mutation prediction?” BioSystems 92, 61–68, (2008).
[Crossref] [PubMed]

I. Karafyllidis, “Design of a dedicated parallel processor for the prediction of forest fire spreading using cellular automata and genetic algorithms,” Eng. Appl. Artif. Intell. 17, 19–36, (2004).
[Crossref]

I. Karafyllidis, “Definition and evolution of quantum cellular automata with two qubits per cell,” Phys. Rev. A 70, 044301 (2004).
[Crossref]

I. Karafyllidis, “Cellular quantum computer architecture,” Phys. Lett. A 320, 35–38, (2003).
[Crossref]

Karr, J. Ph.

A. Baas, J. Ph. Karr, H. Eleuch, and E. Giacobino, “Optical bistability in semiconductor microcavities,” Phys. Rev. A 69, 023809 (2014).
[Crossref]

C. Leyder, T. C. H. Liew, A. V. Kavokin, I. A. Shelykh, M. Romanelli, J. Ph. Karr, E. Giacobino, and A. Bramati, “Interference of Coherent Polariton Beams in Microcavities: Polarization-Controlled Optical Gates,” Phys. Rev. Lett. 99, 196402 (2007).
[Crossref]

Kavokin, A.

C. Adrados, T. C. H. Liew, A. Amo, M. D. Martín, D. Sanvitto, C. Antón, E. Giacobino, A. Kavokin, A. Bramati, and L. Viña, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011).
[Crossref] [PubMed]

Kavokin, A. V.

M. Amthor, T. C. H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Höfling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015).
[Crossref]

T. C. H. Liew, Yuri G. Rubo, and A. V. Kavokin, “Generation and Dynamics of Vortex Lattices in Coherent Exciton-Polariton Fields,” Phys. Rev. Lett. 101, 187401 (2008).
[Crossref] [PubMed]

C. Leyder, T. C. H. Liew, A. V. Kavokin, I. A. Shelykh, M. Romanelli, J. Ph. Karr, E. Giacobino, and A. Bramati, “Interference of Coherent Polariton Beams in Microcavities: Polarization-Controlled Optical Gates,” Phys. Rev. Lett. 99, 196402 (2007).
[Crossref]

Krizhanovskii, D. N.

E. Cancellieri, J. K. Chana, M. Sich, D. N. Krizhanovskii, M. S. Skolnick, and D. M. Whittaker, “Logic gates with bright dissipative polariton solitons in Bragg cavity systems,” Phys. Rev. B 92, 174528 (2015).
[Crossref]

N. A. Gippius, S. G. Tikhodeev, V. D. Kulakovskii, D. N. Krizhanovskii, and A. I. Tartakovskii, “Nonlinear dynamics of polariton scattering in semiconductor microcavity: Bistability vs. stimulated scattering,” Europhys. Lett. 67, 997–1003 (2004).
[Crossref]

Kulakovskii, V. D.

N. A. Gippius, S. G. Tikhodeev, V. D. Kulakovskii, D. N. Krizhanovskii, and A. I. Tartakovskii, “Nonlinear dynamics of polariton scattering in semiconductor microcavity: Bistability vs. stimulated scattering,” Europhys. Lett. 67, 997–1003 (2004).
[Crossref]

Kuo, H. L.

W. P. Lin, Y. F. Hsu, and H. L. Kuo, “Design of Optical Nor Logic Gates Using Two Dimension Photonic Crystals,” Am. J. Mod. Phys. 2, 144–147 (2013).
[Crossref]

Langbein, W.

V. Savona and W. Langbein, “Realistic heterointerface model for excitonic states in growth-interrupted GaAs quantum wells,” Phys. Rev. B 74, 075311 (2006).
[Crossref]

Leger, Y.

T. K. Paraiso, M. Wouters, Y. Leger, F. Morier-Genoud, and B. Deveaud-Pledran, “Multi-stability of a coherent spin ensemble in a semiconductor microcavity,” Nature Mater. 9, 655–660 (2010).
[Crossref]

Léger, Y.

R. Cerna, Y. Léger, T. K. Paraïso, M. Wouters, F. Morier-Genoud, M. T. Portella-Oberli, and B. Deveaud, “Ultrafast tristable spin memory of a coherent polariton gas,” Nature Comm. 4, 2008 (2013).
[Crossref]

Leyder, C.

C. Leyder, T. C. H. Liew, A. V. Kavokin, I. A. Shelykh, M. Romanelli, J. Ph. Karr, E. Giacobino, and A. Bramati, “Interference of Coherent Polariton Beams in Microcavities: Polarization-Controlled Optical Gates,” Phys. Rev. Lett. 99, 196402 (2007).
[Crossref]

Li, B. J.

Li, Z. J.

Li, Z. Y.

Liew, T. C. H.

M. Amthor, T. C. H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Höfling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015).
[Crossref]

T. Espinosa-Ortega, T. C. H. Liew, and I. A. Shelykh, “Optical diode based on exciton-polaritons,” Appl. Phys. Lett. 103, 191110 (2013).
[Crossref]

T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B 85, 235102 (2012).
[Crossref]

C. Adrados, T. C. H. Liew, A. Amo, M. D. Martín, D. Sanvitto, C. Antón, E. Giacobino, A. Kavokin, A. Bramati, and L. Viña, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011).
[Crossref] [PubMed]

T. C. H. Liew, Yuri G. Rubo, and A. V. Kavokin, “Generation and Dynamics of Vortex Lattices in Coherent Exciton-Polariton Fields,” Phys. Rev. Lett. 101, 187401 (2008).
[Crossref] [PubMed]

C. Leyder, T. C. H. Liew, A. V. Kavokin, I. A. Shelykh, M. Romanelli, J. Ph. Karr, E. Giacobino, and A. Bramati, “Interference of Coherent Polariton Beams in Microcavities: Polarization-Controlled Optical Gates,” Phys. Rev. Lett. 99, 196402 (2007).
[Crossref]

Lin, W. P.

W. P. Lin, Y. F. Hsu, and H. L. Kuo, “Design of Optical Nor Logic Gates Using Two Dimension Photonic Crystals,” Am. J. Mod. Phys. 2, 144–147 (2013).
[Crossref]

Lipson, M.

V. R. Almedia, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

Liu, D.

Liu, Gangqiang

B. Nelsen, Gangqiang Liu, M. Steger, D. W. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless Flow and Sharp Threshold of a Polariton Condensate with Long Lifetime,” Phys Rev. X 3, 041015 (2013).

Liu, Y.

Mansouri-Birjandi, M. A.

M. Ghadrdan and M. A. Mansouri-Birjandi, “All-Optical NOT Logic Gate Based on Photonic Crystals,” Int. J. Electr. Comput. Eng. (LJECE) 3, 478–482 (2013).

Mao, Q. H.

Marchetti, F. M.

M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and Ultrafast Dynamics of a Two-Fluid Polariton Switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

Mardiris, V.

Ch. Mizas, G. Ch. Sirakoulis, V. Mardiris, I. Karafyllidis, N. Glykos, and R. Sandaltzopoulos, “Reconstruction of DNA sequences using genetic algorithms and cellular automata: Towards mutation prediction?” BioSystems 92, 61–68, (2008).
[Crossref] [PubMed]

Martín, M. D.

C. Adrados, T. C. H. Liew, A. Amo, M. D. Martín, D. Sanvitto, C. Antón, E. Giacobino, A. Kavokin, A. Bramati, and L. Viña, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011).
[Crossref] [PubMed]

Meng, Z. M.

Metzger, C.

M. Amthor, T. C. H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Höfling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015).
[Crossref]

Mitzias, D. A

S. A Chatzichristofis, D. A Mitzias, G. Ch. Sirakoulis, and Y. S Boutalis, “A novel cellular automata based technique for visual multimedia content encryption,” Opt. Commun. 283, 4250–4260, (2010).
[Crossref]

Mizas, Ch.

Ch. Mizas, G. Ch. Sirakoulis, V. Mardiris, I. Karafyllidis, N. Glykos, and R. Sandaltzopoulos, “Reconstruction of DNA sequences using genetic algorithms and cellular automata: Towards mutation prediction?” BioSystems 92, 61–68, (2008).
[Crossref] [PubMed]

Morier-Genoud, F.

R. Cerna, Y. Léger, T. K. Paraïso, M. Wouters, F. Morier-Genoud, M. T. Portella-Oberli, and B. Deveaud, “Ultrafast tristable spin memory of a coherent polariton gas,” Nature Comm. 4, 2008 (2013).
[Crossref]

T. K. Paraiso, M. Wouters, Y. Leger, F. Morier-Genoud, and B. Deveaud-Pledran, “Multi-stability of a coherent spin ensemble in a semiconductor microcavity,” Nature Mater. 9, 655–660 (2010).
[Crossref]

Nalpantidis, L.

L. Nalpantidis, A. Amanatiadis, G. Ch. Sirakoulis, and A. Gasteratos, “Efficient hierarchical matching algorithm for processing uncalibrated stereo vision images and its hardware architecture,” IET Image Process. 5, 481–492, (2011).
[Crossref]

Nelsen, B.

B. Nelsen, Gangqiang Liu, M. Steger, D. W. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless Flow and Sharp Threshold of a Polariton Condensate with Long Lifetime,” Phys Rev. X 3, 041015 (2013).

Ohadi, H.

H. Ohadi, Y. del Valle-InclanRedondo, A. Dreismann, Y. G. Rubo, F. Pinsker, S. I. Tsintzos, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Tunable Magnetic Alignment between Trapped Exciton-Polariton Condensates,” Phys. Rev. Lett. 116, 106403 (2016).
[Crossref] [PubMed]

A. Dreismann, H. Ohadi, YVI Redondo, R. Balili, Y. G. Rubo, S. I. Tsintzos, G. Deligeorgis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates,” Nature Mater. advanced online publication at (2016).
[Crossref]

Panepucci, R. R.

V. R. Almedia, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

Paraiso, T. K.

T. K. Paraiso, M. Wouters, Y. Leger, F. Morier-Genoud, and B. Deveaud-Pledran, “Multi-stability of a coherent spin ensemble in a semiconductor microcavity,” Nature Mater. 9, 655–660 (2010).
[Crossref]

Paraïso, T. K.

R. Cerna, Y. Léger, T. K. Paraïso, M. Wouters, F. Morier-Genoud, M. T. Portella-Oberli, and B. Deveaud, “Ultrafast tristable spin memory of a coherent polariton gas,” Nature Comm. 4, 2008 (2013).
[Crossref]

Pelekanos, N. T.

G. Christmann, C. Coulson, J. J. Baumberg, N. T. Pelekanos, Z. Hatzopoulos, S. I. Tsintzos, and P. G. Savvidis, “Control of polariton scattering in resonant-tunneling double-quantum-well semiconductor microcavities,” Phys. Rev. B 82, 113308 (2010).
[Crossref]

Pfeiffer, L.

B. Nelsen, Gangqiang Liu, M. Steger, D. W. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless Flow and Sharp Threshold of a Polariton Condensate with Long Lifetime,” Phys Rev. X 3, 041015 (2013).

Pinsker, F.

H. Ohadi, Y. del Valle-InclanRedondo, A. Dreismann, Y. G. Rubo, F. Pinsker, S. I. Tsintzos, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Tunable Magnetic Alignment between Trapped Exciton-Polariton Condensates,” Phys. Rev. Lett. 116, 106403 (2016).
[Crossref] [PubMed]

Portella-Oberli, M. T.

R. Cerna, Y. Léger, T. K. Paraïso, M. Wouters, F. Morier-Genoud, M. T. Portella-Oberli, and B. Deveaud, “Ultrafast tristable spin memory of a coherent polariton gas,” Nature Comm. 4, 2008 (2013).
[Crossref]

Qin, F.

Redondo, YVI

A. Dreismann, H. Ohadi, YVI Redondo, R. Balili, Y. G. Rubo, S. I. Tsintzos, G. Deligeorgis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates,” Nature Mater. advanced online publication at (2016).
[Crossref]

Romanelli, M.

C. Leyder, T. C. H. Liew, A. V. Kavokin, I. A. Shelykh, M. Romanelli, J. Ph. Karr, E. Giacobino, and A. Bramati, “Interference of Coherent Polariton Beams in Microcavities: Polarization-Controlled Optical Gates,” Phys. Rev. Lett. 99, 196402 (2007).
[Crossref]

Rubo, Y. G.

H. Ohadi, Y. del Valle-InclanRedondo, A. Dreismann, Y. G. Rubo, F. Pinsker, S. I. Tsintzos, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Tunable Magnetic Alignment between Trapped Exciton-Polariton Condensates,” Phys. Rev. Lett. 116, 106403 (2016).
[Crossref] [PubMed]

A. Dreismann, H. Ohadi, YVI Redondo, R. Balili, Y. G. Rubo, S. I. Tsintzos, G. Deligeorgis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates,” Nature Mater. advanced online publication at (2016).
[Crossref]

Rubo, Yuri G.

T. C. H. Liew, Yuri G. Rubo, and A. V. Kavokin, “Generation and Dynamics of Vortex Lattices in Coherent Exciton-Polariton Fields,” Phys. Rev. Lett. 101, 187401 (2008).
[Crossref] [PubMed]

Sandaltzopoulos, R.

Ch. Mizas, G. Ch. Sirakoulis, V. Mardiris, I. Karafyllidis, N. Glykos, and R. Sandaltzopoulos, “Reconstruction of DNA sequences using genetic algorithms and cellular automata: Towards mutation prediction?” BioSystems 92, 61–68, (2008).
[Crossref] [PubMed]

Sanvitto, D.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nature Comm. 4, 1778 (2013).
[Crossref]

M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and Ultrafast Dynamics of a Two-Fluid Polariton Switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

C. Adrados, T. C. H. Liew, A. Amo, M. D. Martín, D. Sanvitto, C. Antón, E. Giacobino, A. Kavokin, A. Bramati, and L. Viña, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011).
[Crossref] [PubMed]

Savona, V.

V. Savona and W. Langbein, “Realistic heterointerface model for excitonic states in growth-interrupted GaAs quantum wells,” Phys. Rev. B 74, 075311 (2006).
[Crossref]

Savvidis, P. G.

H. Ohadi, Y. del Valle-InclanRedondo, A. Dreismann, Y. G. Rubo, F. Pinsker, S. I. Tsintzos, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Tunable Magnetic Alignment between Trapped Exciton-Polariton Condensates,” Phys. Rev. Lett. 116, 106403 (2016).
[Crossref] [PubMed]

T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B 85, 235102 (2012).
[Crossref]

G. Christmann, C. Coulson, J. J. Baumberg, N. T. Pelekanos, Z. Hatzopoulos, S. I. Tsintzos, and P. G. Savvidis, “Control of polariton scattering in resonant-tunneling double-quantum-well semiconductor microcavities,” Phys. Rev. B 82, 113308 (2010).
[Crossref]

A. Dreismann, H. Ohadi, YVI Redondo, R. Balili, Y. G. Rubo, S. I. Tsintzos, G. Deligeorgis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates,” Nature Mater. advanced online publication at (2016).
[Crossref]

Schneider, C.

M. Amthor, T. C. H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Höfling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015).
[Crossref]

Shelykh, I. A.

M. Amthor, T. C. H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Höfling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015).
[Crossref]

T. Espinosa-Ortega, T. C. H. Liew, and I. A. Shelykh, “Optical diode based on exciton-polaritons,” Appl. Phys. Lett. 103, 191110 (2013).
[Crossref]

C. Leyder, T. C. H. Liew, A. V. Kavokin, I. A. Shelykh, M. Romanelli, J. Ph. Karr, E. Giacobino, and A. Bramati, “Interference of Coherent Polariton Beams in Microcavities: Polarization-Controlled Optical Gates,” Phys. Rev. Lett. 99, 196402 (2007).
[Crossref]

Sich, M.

E. Cancellieri, J. K. Chana, M. Sich, D. N. Krizhanovskii, M. S. Skolnick, and D. M. Whittaker, “Logic gates with bright dissipative polariton solitons in Bragg cavity systems,” Phys. Rev. B 92, 174528 (2015).
[Crossref]

Sirakoulis, G. Ch.

L. Nalpantidis, A. Amanatiadis, G. Ch. Sirakoulis, and A. Gasteratos, “Efficient hierarchical matching algorithm for processing uncalibrated stereo vision images and its hardware architecture,” IET Image Process. 5, 481–492, (2011).
[Crossref]

S. A Chatzichristofis, D. A Mitzias, G. Ch. Sirakoulis, and Y. S Boutalis, “A novel cellular automata based technique for visual multimedia content encryption,” Opt. Commun. 283, 4250–4260, (2010).
[Crossref]

Ch. Mizas, G. Ch. Sirakoulis, V. Mardiris, I. Karafyllidis, N. Glykos, and R. Sandaltzopoulos, “Reconstruction of DNA sequences using genetic algorithms and cellular automata: Towards mutation prediction?” BioSystems 92, 61–68, (2008).
[Crossref] [PubMed]

Skolnick, M. S.

E. Cancellieri, J. K. Chana, M. Sich, D. N. Krizhanovskii, M. S. Skolnick, and D. M. Whittaker, “Logic gates with bright dissipative polariton solitons in Bragg cavity systems,” Phys. Rev. B 92, 174528 (2015).
[Crossref]

Snoke, D. W.

B. Nelsen, Gangqiang Liu, M. Steger, D. W. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless Flow and Sharp Threshold of a Polariton Condensate with Long Lifetime,” Phys Rev. X 3, 041015 (2013).

Stavrinidis, G.

T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B 85, 235102 (2012).
[Crossref]

Steger, M.

B. Nelsen, Gangqiang Liu, M. Steger, D. W. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless Flow and Sharp Threshold of a Polariton Condensate with Long Lifetime,” Phys Rev. X 3, 041015 (2013).

Sun, J.

Szymanska, M. H.

M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and Ultrafast Dynamics of a Two-Fluid Polariton Switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

Tartakovskii, A. I.

N. A. Gippius, S. G. Tikhodeev, V. D. Kulakovskii, D. N. Krizhanovskii, and A. I. Tartakovskii, “Nonlinear dynamics of polariton scattering in semiconductor microcavity: Bistability vs. stimulated scattering,” Europhys. Lett. 67, 997–1003 (2004).
[Crossref]

Tejedor, C.

M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and Ultrafast Dynamics of a Two-Fluid Polariton Switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

Tikhodeev, S. G.

N. A. Gippius, S. G. Tikhodeev, V. D. Kulakovskii, D. N. Krizhanovskii, and A. I. Tartakovskii, “Nonlinear dynamics of polariton scattering in semiconductor microcavity: Bistability vs. stimulated scattering,” Europhys. Lett. 67, 997–1003 (2004).
[Crossref]

Tsintzos, S. I.

H. Ohadi, Y. del Valle-InclanRedondo, A. Dreismann, Y. G. Rubo, F. Pinsker, S. I. Tsintzos, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Tunable Magnetic Alignment between Trapped Exciton-Polariton Condensates,” Phys. Rev. Lett. 116, 106403 (2016).
[Crossref] [PubMed]

T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B 85, 235102 (2012).
[Crossref]

G. Christmann, C. Coulson, J. J. Baumberg, N. T. Pelekanos, Z. Hatzopoulos, S. I. Tsintzos, and P. G. Savvidis, “Control of polariton scattering in resonant-tunneling double-quantum-well semiconductor microcavities,” Phys. Rev. B 82, 113308 (2010).
[Crossref]

A. Dreismann, H. Ohadi, YVI Redondo, R. Balili, Y. G. Rubo, S. I. Tsintzos, G. Deligeorgis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates,” Nature Mater. advanced online publication at (2016).
[Crossref]

Umucalilar, R. O.

R. O. Umucalilar and I. Carusotto, “Artificial gauge field for photons in coupled cavity arrays,” Phys. Rev. A 84, 043804 (2011).
[Crossref]

Viña, L.

C. Adrados, T. C. H. Liew, A. Amo, M. D. Martín, D. Sanvitto, C. Antón, E. Giacobino, A. Kavokin, A. Bramati, and L. Viña, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011).
[Crossref] [PubMed]

Wang, Y.

West, K.

B. Nelsen, Gangqiang Liu, M. Steger, D. W. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless Flow and Sharp Threshold of a Polariton Condensate with Long Lifetime,” Phys Rev. X 3, 041015 (2013).

Whittaker, D. M.

E. Cancellieri, J. K. Chana, M. Sich, D. N. Krizhanovskii, M. S. Skolnick, and D. M. Whittaker, “Logic gates with bright dissipative polariton solitons in Bragg cavity systems,” Phys. Rev. B 92, 174528 (2015).
[Crossref]

D. M. Whittaker, “Effects of polariton-energy renormalization in the microcavity optical parametric oscillator,” Phys. Rev. B 71, 115301 (2005).
[Crossref]

Wolfram, S.

S. Wolfram, “Computation Theory of of Cellular Automata,” Commun. Math. Phys. 96, 15–57 (1984).
[Crossref]

S. Wolfram, “Statistical mechanics of cellular automata,” Rev. Mod. Phys. 55, 601–644 (1983).
[Crossref]

Worschech, L.

M. Amthor, T. C. H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Höfling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015).
[Crossref]

Wouters, M.

R. Cerna, Y. Léger, T. K. Paraïso, M. Wouters, F. Morier-Genoud, M. T. Portella-Oberli, and B. Deveaud, “Ultrafast tristable spin memory of a coherent polariton gas,” Nature Comm. 4, 2008 (2013).
[Crossref]

T. K. Paraiso, M. Wouters, Y. Leger, F. Morier-Genoud, and B. Deveaud-Pledran, “Multi-stability of a coherent spin ensemble in a semiconductor microcavity,” Nature Mater. 9, 655–660 (2010).
[Crossref]

Zhang, X.

Zhou, F.

Am. J. Mod. Phys. (1)

W. P. Lin, Y. F. Hsu, and H. L. Kuo, “Design of Optical Nor Logic Gates Using Two Dimension Photonic Crystals,” Am. J. Mod. Phys. 2, 144–147 (2013).
[Crossref]

Appl. Phys. Lett. (1)

T. Espinosa-Ortega, T. C. H. Liew, and I. A. Shelykh, “Optical diode based on exciton-polaritons,” Appl. Phys. Lett. 103, 191110 (2013).
[Crossref]

BioSystems (1)

Ch. Mizas, G. Ch. Sirakoulis, V. Mardiris, I. Karafyllidis, N. Glykos, and R. Sandaltzopoulos, “Reconstruction of DNA sequences using genetic algorithms and cellular automata: Towards mutation prediction?” BioSystems 92, 61–68, (2008).
[Crossref] [PubMed]

Commun. Math. Phys. (1)

S. Wolfram, “Computation Theory of of Cellular Automata,” Commun. Math. Phys. 96, 15–57 (1984).
[Crossref]

Complex Systems (1)

M. Cook, “Universality in Elementary Cellular Automata Complex Systems,” Complex Systems 15, 1 (2004).

Eng. Appl. Artif. Intell. (1)

I. Karafyllidis, “Design of a dedicated parallel processor for the prediction of forest fire spreading using cellular automata and genetic algorithms,” Eng. Appl. Artif. Intell. 17, 19–36, (2004).
[Crossref]

Europhys. Lett. (1)

N. A. Gippius, S. G. Tikhodeev, V. D. Kulakovskii, D. N. Krizhanovskii, and A. I. Tartakovskii, “Nonlinear dynamics of polariton scattering in semiconductor microcavity: Bistability vs. stimulated scattering,” Europhys. Lett. 67, 997–1003 (2004).
[Crossref]

IET Image Process. (1)

L. Nalpantidis, A. Amanatiadis, G. Ch. Sirakoulis, and A. Gasteratos, “Efficient hierarchical matching algorithm for processing uncalibrated stereo vision images and its hardware architecture,” IET Image Process. 5, 481–492, (2011).
[Crossref]

Inf. Control (1)

M. A. Arbib, “Simple self-reproducing universal automata,” Inf. Control 9, 177–189, (1966).
[Crossref]

Int. J. Electr. Comput. Eng. (LJECE) (1)

M. Ghadrdan and M. A. Mansouri-Birjandi, “All-Optical NOT Logic Gate Based on Photonic Crystals,” Int. J. Electr. Comput. Eng. (LJECE) 3, 478–482 (2013).

Int. J. Theor. Phys. (1)

R. P. Feynman, “Simulating Physics with Computers,” Int. J. Theor. Phys. 21, 467–488, (1982).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (1)

V. R. Almedia, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

Nature Comm. (2)

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nature Comm. 4, 1778 (2013).
[Crossref]

R. Cerna, Y. Léger, T. K. Paraïso, M. Wouters, F. Morier-Genoud, M. T. Portella-Oberli, and B. Deveaud, “Ultrafast tristable spin memory of a coherent polariton gas,” Nature Comm. 4, 2008 (2013).
[Crossref]

Nature Mater. (1)

T. K. Paraiso, M. Wouters, Y. Leger, F. Morier-Genoud, and B. Deveaud-Pledran, “Multi-stability of a coherent spin ensemble in a semiconductor microcavity,” Nature Mater. 9, 655–660 (2010).
[Crossref]

Opt. Commun. (1)

S. A Chatzichristofis, D. A Mitzias, G. Ch. Sirakoulis, and Y. S Boutalis, “A novel cellular automata based technique for visual multimedia content encryption,” Opt. Commun. 283, 4250–4260, (2010).
[Crossref]

Opt. Express (3)

Phys Rev. X (1)

B. Nelsen, Gangqiang Liu, M. Steger, D. W. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless Flow and Sharp Threshold of a Polariton Condensate with Long Lifetime,” Phys Rev. X 3, 041015 (2013).

Phys. Lett. A (1)

I. Karafyllidis, “Cellular quantum computer architecture,” Phys. Lett. A 320, 35–38, (2003).
[Crossref]

Phys. Rev. A (3)

I. Karafyllidis, “Definition and evolution of quantum cellular automata with two qubits per cell,” Phys. Rev. A 70, 044301 (2004).
[Crossref]

A. Baas, J. Ph. Karr, H. Eleuch, and E. Giacobino, “Optical bistability in semiconductor microcavities,” Phys. Rev. A 69, 023809 (2014).
[Crossref]

R. O. Umucalilar and I. Carusotto, “Artificial gauge field for photons in coupled cavity arrays,” Phys. Rev. A 84, 043804 (2011).
[Crossref]

Phys. Rev. B (6)

V. Savona and W. Langbein, “Realistic heterointerface model for excitonic states in growth-interrupted GaAs quantum wells,” Phys. Rev. B 74, 075311 (2006).
[Crossref]

D. M. Whittaker, “Effects of polariton-energy renormalization in the microcavity optical parametric oscillator,” Phys. Rev. B 71, 115301 (2005).
[Crossref]

E. Cancellieri, J. K. Chana, M. Sich, D. N. Krizhanovskii, M. S. Skolnick, and D. M. Whittaker, “Logic gates with bright dissipative polariton solitons in Bragg cavity systems,” Phys. Rev. B 92, 174528 (2015).
[Crossref]

G. Christmann, C. Coulson, J. J. Baumberg, N. T. Pelekanos, Z. Hatzopoulos, S. I. Tsintzos, and P. G. Savvidis, “Control of polariton scattering in resonant-tunneling double-quantum-well semiconductor microcavities,” Phys. Rev. B 82, 113308 (2010).
[Crossref]

M. Amthor, T. C. H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Höfling, “Optical bistability in electrically driven polariton condensates,” Phys. Rev. B 91, 081404 (2015).
[Crossref]

T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B 85, 235102 (2012).
[Crossref]

Phys. Rev. Lett. (5)

C. Leyder, T. C. H. Liew, A. V. Kavokin, I. A. Shelykh, M. Romanelli, J. Ph. Karr, E. Giacobino, and A. Bramati, “Interference of Coherent Polariton Beams in Microcavities: Polarization-Controlled Optical Gates,” Phys. Rev. Lett. 99, 196402 (2007).
[Crossref]

C. Adrados, T. C. H. Liew, A. Amo, M. D. Martín, D. Sanvitto, C. Antón, E. Giacobino, A. Kavokin, A. Bramati, and L. Viña, “Motion of Spin Polariton Bullets in Semiconductor Microcavities,” Phys. Rev. Lett. 107, 146402 (2011).
[Crossref] [PubMed]

M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and Ultrafast Dynamics of a Two-Fluid Polariton Switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

H. Ohadi, Y. del Valle-InclanRedondo, A. Dreismann, Y. G. Rubo, F. Pinsker, S. I. Tsintzos, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Tunable Magnetic Alignment between Trapped Exciton-Polariton Condensates,” Phys. Rev. Lett. 116, 106403 (2016).
[Crossref] [PubMed]

T. C. H. Liew, Yuri G. Rubo, and A. V. Kavokin, “Generation and Dynamics of Vortex Lattices in Coherent Exciton-Polariton Fields,” Phys. Rev. Lett. 101, 187401 (2008).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85, 299–374 (2013).
[Crossref]

S. Wolfram, “Statistical mechanics of cellular automata,” Rev. Mod. Phys. 55, 601–644 (1983).
[Crossref]

Other (1)

A. Dreismann, H. Ohadi, YVI Redondo, R. Balili, Y. G. Rubo, S. I. Tsintzos, G. Deligeorgis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates,” Nature Mater. advanced online publication at (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Architecture of cavity array. Color solid circles show cavities in layers corresponding to the automaton cells, while black circles correspond to an auxiliary layer of cavities used to reproduce the 110 rule. Different strengths of connections between cavities are marked with different line styles. (b) Dependence of the intensity of a single uncoupled cavity on pump power. The S-shaped curve is characteristic of a bistable system: the lower (blue) and the upper (red) branches include the possible states; the dashed line indicates unstable states. The vertical line indicates a selected pump intensity for which the cavity intensity can be switched between its two stable values. Parameters: Δ = 0.5 meV and Γ = ħ/20 meV.
Fig. 2
Fig. 2 The phasor diagram showing how the direct driving term F and coupling terms from neighbouring cavities J 1 ψ 1 e i θ 1 + J 2 ψ 2 e i θ 2, and + J 3 ψ 3 e i θ 3 interfere to generate an effective driving. The dashed line shows the threshold corresponding to the second turning point in Fig. 1(b). If the effective drive exceeds this value, then a cavity will be switched. a) Example of interference causing triplets of cavities in states 110, 011 or 011 to switch on an auxiliary cavity. b) Example of interference causing triplets of cavities in states 001, 011 or 101 to switch on an auxiliary cavity. Parameters: |J1| = |J2| = |J3| = 0.1015. (a) θ2 = 0°, θ1 =−120°, and θ3 =120°. (b) θ1 =−120°, θ2 =120°, θ3 =0°.
Fig. 3
Fig. 3 Intensities of coupled automaton cavities after the state of the cavities in the first layer (left-most cavities) has been set to a particular configuration. The state of the final cavity (right-most) is switched to its higher intensity according to the 110 rule (Table 1).
Fig. 4
Fig. 4 Multi-layer cavity array with different numbers (65, 53, 40) of automaton cells for (a), (b) and (c), respectively.

Tables (1)

Tables Icon

Table 1 Definition of the rule 110 automaton in terms of responses to different input configurations:

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

= i ( Δ a ^ i a ^ i + α a ^ i a ^ i ) + i , j J i j a ^ a ^ e i θ i j + F 1 1 + e t t 0 τ 0 ( a ^ i + a ^ i ) + P i e ( t t 1 ) 2 τ 1 2 ( a ^ i + a ^ i )
i d ψ i d t = ( Δ + α | ψ i | 2 i Γ ) ψ i + F 1 1 + e t t 0 τ 0 + j J i j ψ j e i θ i j + P i e ( t t 1 ) 2 τ 1 2
| F | 2 = [ ( α n s Δ ) 2 + Γ 2 ] n s

Metrics