Abstract

We theoretically and experimentally investigate the design of an all-optical magnification and sampling function free from any active gain medium or additional amplified spontaneous noise emission. The proposed technique is based on the co-propagation of an arbitrary shaped signal together with an orthogonally polarized intense fast sinusoidal beating within a normally dispersive optical fiber. This process allows us to experimentally demonstrate a 40-GHz sampling operation as well as an 8-dB magnification of an arbitrary shaped nanosecond signal around 1550 nm in a 5-km long optical fiber. The experimental observations are in good agreement with numerical and theoretical analysis.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
40  GHz pulse source based on cross-phase modulation-induced focusing in normally dispersive optical fibers

Javier Nuño, Marin Gilles, Massimiliano Guasoni, Bertrand Kibler, Christophe Finot, and Julien Fatome
Opt. Lett. 41(6) 1110-1113 (2016)

Experimental generation of optical flaticon pulses

Bastien Varlot, Stefan Wabnitz, Julien Fatome, Guy Millot, and Christophe Finot
Opt. Lett. 38(19) 3899-3902 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15(6), 192–194 (1969).
    [Crossref]
  2. T. Kanada and D. L. Franzen, “Optical waveform measurement by optical sampling with a mode-locked laser diode,” Opt. Lett. 11(1), 4–6 (1986).
    [Crossref] [PubMed]
  3. H. Ohta, S. Nogiwa, N. Oda, and H. Chiba, “Highly sensitive optical sampling system using timing-jitter-reduced gain-switched optical pulse,” Electron. Lett. 33(25), 2142–2144 (1997).
    [Crossref]
  4. I. Shake, E. Otani, H. Takara, K. Uchiyama, Y. Yamabayashi, and T. Morioka, “Bit rate flexible quality monitoring of 10 to 160 Gb/s optical signals based on optical sampling technique,” Electron. Lett. 36(25), 2087–2088 (2000).
    [Crossref]
  5. R. L. Jungerman, G. Lee, O. Buccafusca, Y. Kaneko, N. Itagaki, R. Shioda, A. Harada, Y. Nihei, and G. Sucha, “1-THz bandwidth C- and L-Band optical sampling with a bit rate agile timebase,” IEEE Photonics Technol. Lett. 14(8), 1148–1150 (2002).
    [Crossref]
  6. T. Suhara, H. Ishizuki, M. Fujimura, and H. Nishihara, “Waveguide quasi-phase-matched sum-frequency generation device for high-efficiency optical sampling,” IEEE Photonics Technol. Lett. 11(8), 1027–1029 (1999).
    [Crossref]
  7. S. Nogiwa, Y. Kawaguchi, H. Ohta, and Y. Endo, “Highly sensitive and time-resolving optical sampling system using thin PPLN crystal,” Electron. Lett. 36(20), 1727–1728 (2000).
    [Crossref]
  8. N. Yamada, S. Nogiwa, and H. Ohta, “640 Gb/s OTDM signal measurement with high-resolution optical sampling system using wavelength-tunable soliton pulses,” IEEE Photonics Technol. Lett. 16(4), 1125–1127 (2004).
    [Crossref]
  9. J. Li, J. Hansryd, P. O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photonics Technol. Lett. 13(9), 987–989 (2001).
    [Crossref]
  10. S. I. Oda, A. Maruta, and K. Kitayama, “All-optical quantization scheme based on fiber nonlinearity,” IEEE Photonics Technol. Lett. 16(2), 587–589 (2004).
    [Crossref]
  11. J. Li, M. Westlund, H. Sunnerud, B. E. Olsson, M. Karlsson, and P. A. Andrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photonics Technol. Lett. 16(2), 566–568 (2004).
    [Crossref]
  12. P. A. Andrekson and M. Westlund, “Nonlinear optical fiber based high resolution all-optical waveform sampling,” Laser Photonics Rev. 1(3), 231–248 (2007).
    [Crossref]
  13. S. Zhang, Y. Liu, Y. Liu, and H. J. S. Dorren, “All-optical sampling exploiting nonlinear polarization rotation in a single semiconductor optical amplifier,” Opt. Commun. 285(6), 1001–1004 (2012).
    [Crossref]
  14. C. Xu and X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28(12), 986–988 (2003).
    [Crossref] [PubMed]
  15. R. Maram, J. Van Howe, M. Li, and J. Azaña, “Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect,” Nat. Commun. 5, 5163 (2014).
    [Crossref] [PubMed]
  16. J. Nuño, M. Gilles, M. Guasoni, B. Kibler, C. Finot, and J. Fatome, “40 GHz pulse source based on cross-phase modulation-induced focusing in normally dispersive optical fibers,” Opt. Lett. 41(6), 1110–1113 (2016).
    [Crossref] [PubMed]
  17. T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photonics Rev. 2(1–2), 83–99 (2008).
    [Crossref]
  18. K. E. Webb, M. Erkintalo, Y. Q. Xu, G. Genty, and S. G. Murdoch, “Efficiency of dispersive wave generation from a dual-frequency beat signal,” Opt. Lett. 39(20), 5850–5853 (2014).
    [Crossref] [PubMed]
  19. C. Fortier, B. Kibler, J. Fatome, C. Finot, S. Pitois, and G. Millot, “All-fibered high-quality low duty-cycle 160-GHz femtosecond pulse source,” Laser Phys. Lett. 5(11), 817–820 (2008).
    [Crossref]
  20. Q. Z. Wang, P. P. Ho, and R. R. Alfano, “Degenerate cross-phase modulation for pulse compression and amplification of ultrashort laser pulses,” Opt. Lett. 15(18), 1023–1025 (1990).
    [Crossref] [PubMed]
  21. J. Fatome, C. Finot, G. Millot, A. Armaroli, and S. Trillo, “Observation of Optical Undular Bores in Multiple Four-Wave Mixing,” Phys. Rev. X 4(2), 021022 (2014).
    [Crossref]
  22. P. K. A. Wai, C. R. Menyuk, and H. H. Chen, “Stability of solitons in randomly varying birefringent fibers,” Opt. Lett. 16(16), 1231–1233 (1991).
    [Crossref] [PubMed]
  23. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013).
  24. E. Lichtman, R. G. Waarts, and A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” J. Lightwave Technol. 7(1), 171–174 (1989).
    [Crossref]

2016 (1)

2014 (3)

K. E. Webb, M. Erkintalo, Y. Q. Xu, G. Genty, and S. G. Murdoch, “Efficiency of dispersive wave generation from a dual-frequency beat signal,” Opt. Lett. 39(20), 5850–5853 (2014).
[Crossref] [PubMed]

J. Fatome, C. Finot, G. Millot, A. Armaroli, and S. Trillo, “Observation of Optical Undular Bores in Multiple Four-Wave Mixing,” Phys. Rev. X 4(2), 021022 (2014).
[Crossref]

R. Maram, J. Van Howe, M. Li, and J. Azaña, “Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect,” Nat. Commun. 5, 5163 (2014).
[Crossref] [PubMed]

2012 (1)

S. Zhang, Y. Liu, Y. Liu, and H. J. S. Dorren, “All-optical sampling exploiting nonlinear polarization rotation in a single semiconductor optical amplifier,” Opt. Commun. 285(6), 1001–1004 (2012).
[Crossref]

2008 (2)

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photonics Rev. 2(1–2), 83–99 (2008).
[Crossref]

C. Fortier, B. Kibler, J. Fatome, C. Finot, S. Pitois, and G. Millot, “All-fibered high-quality low duty-cycle 160-GHz femtosecond pulse source,” Laser Phys. Lett. 5(11), 817–820 (2008).
[Crossref]

2007 (1)

P. A. Andrekson and M. Westlund, “Nonlinear optical fiber based high resolution all-optical waveform sampling,” Laser Photonics Rev. 1(3), 231–248 (2007).
[Crossref]

2004 (3)

S. I. Oda, A. Maruta, and K. Kitayama, “All-optical quantization scheme based on fiber nonlinearity,” IEEE Photonics Technol. Lett. 16(2), 587–589 (2004).
[Crossref]

J. Li, M. Westlund, H. Sunnerud, B. E. Olsson, M. Karlsson, and P. A. Andrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photonics Technol. Lett. 16(2), 566–568 (2004).
[Crossref]

N. Yamada, S. Nogiwa, and H. Ohta, “640 Gb/s OTDM signal measurement with high-resolution optical sampling system using wavelength-tunable soliton pulses,” IEEE Photonics Technol. Lett. 16(4), 1125–1127 (2004).
[Crossref]

2003 (1)

2002 (1)

R. L. Jungerman, G. Lee, O. Buccafusca, Y. Kaneko, N. Itagaki, R. Shioda, A. Harada, Y. Nihei, and G. Sucha, “1-THz bandwidth C- and L-Band optical sampling with a bit rate agile timebase,” IEEE Photonics Technol. Lett. 14(8), 1148–1150 (2002).
[Crossref]

2001 (1)

J. Li, J. Hansryd, P. O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photonics Technol. Lett. 13(9), 987–989 (2001).
[Crossref]

2000 (2)

I. Shake, E. Otani, H. Takara, K. Uchiyama, Y. Yamabayashi, and T. Morioka, “Bit rate flexible quality monitoring of 10 to 160 Gb/s optical signals based on optical sampling technique,” Electron. Lett. 36(25), 2087–2088 (2000).
[Crossref]

S. Nogiwa, Y. Kawaguchi, H. Ohta, and Y. Endo, “Highly sensitive and time-resolving optical sampling system using thin PPLN crystal,” Electron. Lett. 36(20), 1727–1728 (2000).
[Crossref]

1999 (1)

T. Suhara, H. Ishizuki, M. Fujimura, and H. Nishihara, “Waveguide quasi-phase-matched sum-frequency generation device for high-efficiency optical sampling,” IEEE Photonics Technol. Lett. 11(8), 1027–1029 (1999).
[Crossref]

1997 (1)

H. Ohta, S. Nogiwa, N. Oda, and H. Chiba, “Highly sensitive optical sampling system using timing-jitter-reduced gain-switched optical pulse,” Electron. Lett. 33(25), 2142–2144 (1997).
[Crossref]

1991 (1)

1990 (1)

1989 (1)

E. Lichtman, R. G. Waarts, and A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” J. Lightwave Technol. 7(1), 171–174 (1989).
[Crossref]

1986 (1)

1969 (1)

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15(6), 192–194 (1969).
[Crossref]

Alfano, R. R.

Andrekson, P. A.

P. A. Andrekson and M. Westlund, “Nonlinear optical fiber based high resolution all-optical waveform sampling,” Laser Photonics Rev. 1(3), 231–248 (2007).
[Crossref]

J. Li, M. Westlund, H. Sunnerud, B. E. Olsson, M. Karlsson, and P. A. Andrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photonics Technol. Lett. 16(2), 566–568 (2004).
[Crossref]

J. Li, J. Hansryd, P. O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photonics Technol. Lett. 13(9), 987–989 (2001).
[Crossref]

Armaroli, A.

J. Fatome, C. Finot, G. Millot, A. Armaroli, and S. Trillo, “Observation of Optical Undular Bores in Multiple Four-Wave Mixing,” Phys. Rev. X 4(2), 021022 (2014).
[Crossref]

Azaña, J.

R. Maram, J. Van Howe, M. Li, and J. Azaña, “Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect,” Nat. Commun. 5, 5163 (2014).
[Crossref] [PubMed]

Buccafusca, O.

R. L. Jungerman, G. Lee, O. Buccafusca, Y. Kaneko, N. Itagaki, R. Shioda, A. Harada, Y. Nihei, and G. Sucha, “1-THz bandwidth C- and L-Band optical sampling with a bit rate agile timebase,” IEEE Photonics Technol. Lett. 14(8), 1148–1150 (2002).
[Crossref]

Chen, H. H.

Chiba, H.

H. Ohta, S. Nogiwa, N. Oda, and H. Chiba, “Highly sensitive optical sampling system using timing-jitter-reduced gain-switched optical pulse,” Electron. Lett. 33(25), 2142–2144 (1997).
[Crossref]

Dorren, H. J. S.

S. Zhang, Y. Liu, Y. Liu, and H. J. S. Dorren, “All-optical sampling exploiting nonlinear polarization rotation in a single semiconductor optical amplifier,” Opt. Commun. 285(6), 1001–1004 (2012).
[Crossref]

Duguay, M. A.

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15(6), 192–194 (1969).
[Crossref]

Endo, Y.

S. Nogiwa, Y. Kawaguchi, H. Ohta, and Y. Endo, “Highly sensitive and time-resolving optical sampling system using thin PPLN crystal,” Electron. Lett. 36(20), 1727–1728 (2000).
[Crossref]

Erkintalo, M.

Fatome, J.

J. Nuño, M. Gilles, M. Guasoni, B. Kibler, C. Finot, and J. Fatome, “40 GHz pulse source based on cross-phase modulation-induced focusing in normally dispersive optical fibers,” Opt. Lett. 41(6), 1110–1113 (2016).
[Crossref] [PubMed]

J. Fatome, C. Finot, G. Millot, A. Armaroli, and S. Trillo, “Observation of Optical Undular Bores in Multiple Four-Wave Mixing,” Phys. Rev. X 4(2), 021022 (2014).
[Crossref]

C. Fortier, B. Kibler, J. Fatome, C. Finot, S. Pitois, and G. Millot, “All-fibered high-quality low duty-cycle 160-GHz femtosecond pulse source,” Laser Phys. Lett. 5(11), 817–820 (2008).
[Crossref]

Finot, C.

J. Nuño, M. Gilles, M. Guasoni, B. Kibler, C. Finot, and J. Fatome, “40 GHz pulse source based on cross-phase modulation-induced focusing in normally dispersive optical fibers,” Opt. Lett. 41(6), 1110–1113 (2016).
[Crossref] [PubMed]

J. Fatome, C. Finot, G. Millot, A. Armaroli, and S. Trillo, “Observation of Optical Undular Bores in Multiple Four-Wave Mixing,” Phys. Rev. X 4(2), 021022 (2014).
[Crossref]

C. Fortier, B. Kibler, J. Fatome, C. Finot, S. Pitois, and G. Millot, “All-fibered high-quality low duty-cycle 160-GHz femtosecond pulse source,” Laser Phys. Lett. 5(11), 817–820 (2008).
[Crossref]

Fortier, C.

C. Fortier, B. Kibler, J. Fatome, C. Finot, S. Pitois, and G. Millot, “All-fibered high-quality low duty-cycle 160-GHz femtosecond pulse source,” Laser Phys. Lett. 5(11), 817–820 (2008).
[Crossref]

Franzen, D. L.

Friesem, A. A.

E. Lichtman, R. G. Waarts, and A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” J. Lightwave Technol. 7(1), 171–174 (1989).
[Crossref]

Fujimura, M.

T. Suhara, H. Ishizuki, M. Fujimura, and H. Nishihara, “Waveguide quasi-phase-matched sum-frequency generation device for high-efficiency optical sampling,” IEEE Photonics Technol. Lett. 11(8), 1027–1029 (1999).
[Crossref]

Genty, G.

Gilles, M.

Guasoni, M.

Hansen, J. W.

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15(6), 192–194 (1969).
[Crossref]

Hansryd, J.

J. Li, J. Hansryd, P. O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photonics Technol. Lett. 13(9), 987–989 (2001).
[Crossref]

Harada, A.

R. L. Jungerman, G. Lee, O. Buccafusca, Y. Kaneko, N. Itagaki, R. Shioda, A. Harada, Y. Nihei, and G. Sucha, “1-THz bandwidth C- and L-Band optical sampling with a bit rate agile timebase,” IEEE Photonics Technol. Lett. 14(8), 1148–1150 (2002).
[Crossref]

Hedekvist, P. O.

J. Li, J. Hansryd, P. O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photonics Technol. Lett. 13(9), 987–989 (2001).
[Crossref]

Ho, P. P.

Inoue, T.

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photonics Rev. 2(1–2), 83–99 (2008).
[Crossref]

Ishizuki, H.

T. Suhara, H. Ishizuki, M. Fujimura, and H. Nishihara, “Waveguide quasi-phase-matched sum-frequency generation device for high-efficiency optical sampling,” IEEE Photonics Technol. Lett. 11(8), 1027–1029 (1999).
[Crossref]

Itagaki, N.

R. L. Jungerman, G. Lee, O. Buccafusca, Y. Kaneko, N. Itagaki, R. Shioda, A. Harada, Y. Nihei, and G. Sucha, “1-THz bandwidth C- and L-Band optical sampling with a bit rate agile timebase,” IEEE Photonics Technol. Lett. 14(8), 1148–1150 (2002).
[Crossref]

Jungerman, R. L.

R. L. Jungerman, G. Lee, O. Buccafusca, Y. Kaneko, N. Itagaki, R. Shioda, A. Harada, Y. Nihei, and G. Sucha, “1-THz bandwidth C- and L-Band optical sampling with a bit rate agile timebase,” IEEE Photonics Technol. Lett. 14(8), 1148–1150 (2002).
[Crossref]

Kanada, T.

Kaneko, Y.

R. L. Jungerman, G. Lee, O. Buccafusca, Y. Kaneko, N. Itagaki, R. Shioda, A. Harada, Y. Nihei, and G. Sucha, “1-THz bandwidth C- and L-Band optical sampling with a bit rate agile timebase,” IEEE Photonics Technol. Lett. 14(8), 1148–1150 (2002).
[Crossref]

Karlsson, M.

J. Li, M. Westlund, H. Sunnerud, B. E. Olsson, M. Karlsson, and P. A. Andrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photonics Technol. Lett. 16(2), 566–568 (2004).
[Crossref]

Kawaguchi, Y.

S. Nogiwa, Y. Kawaguchi, H. Ohta, and Y. Endo, “Highly sensitive and time-resolving optical sampling system using thin PPLN crystal,” Electron. Lett. 36(20), 1727–1728 (2000).
[Crossref]

Kibler, B.

J. Nuño, M. Gilles, M. Guasoni, B. Kibler, C. Finot, and J. Fatome, “40 GHz pulse source based on cross-phase modulation-induced focusing in normally dispersive optical fibers,” Opt. Lett. 41(6), 1110–1113 (2016).
[Crossref] [PubMed]

C. Fortier, B. Kibler, J. Fatome, C. Finot, S. Pitois, and G. Millot, “All-fibered high-quality low duty-cycle 160-GHz femtosecond pulse source,” Laser Phys. Lett. 5(11), 817–820 (2008).
[Crossref]

Kitayama, K.

S. I. Oda, A. Maruta, and K. Kitayama, “All-optical quantization scheme based on fiber nonlinearity,” IEEE Photonics Technol. Lett. 16(2), 587–589 (2004).
[Crossref]

Knudsen, S. N.

J. Li, J. Hansryd, P. O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photonics Technol. Lett. 13(9), 987–989 (2001).
[Crossref]

Lee, G.

R. L. Jungerman, G. Lee, O. Buccafusca, Y. Kaneko, N. Itagaki, R. Shioda, A. Harada, Y. Nihei, and G. Sucha, “1-THz bandwidth C- and L-Band optical sampling with a bit rate agile timebase,” IEEE Photonics Technol. Lett. 14(8), 1148–1150 (2002).
[Crossref]

Li, J.

J. Li, M. Westlund, H. Sunnerud, B. E. Olsson, M. Karlsson, and P. A. Andrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photonics Technol. Lett. 16(2), 566–568 (2004).
[Crossref]

J. Li, J. Hansryd, P. O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photonics Technol. Lett. 13(9), 987–989 (2001).
[Crossref]

Li, M.

R. Maram, J. Van Howe, M. Li, and J. Azaña, “Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect,” Nat. Commun. 5, 5163 (2014).
[Crossref] [PubMed]

Lichtman, E.

E. Lichtman, R. G. Waarts, and A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” J. Lightwave Technol. 7(1), 171–174 (1989).
[Crossref]

Liu, X.

Liu, Y.

S. Zhang, Y. Liu, Y. Liu, and H. J. S. Dorren, “All-optical sampling exploiting nonlinear polarization rotation in a single semiconductor optical amplifier,” Opt. Commun. 285(6), 1001–1004 (2012).
[Crossref]

S. Zhang, Y. Liu, Y. Liu, and H. J. S. Dorren, “All-optical sampling exploiting nonlinear polarization rotation in a single semiconductor optical amplifier,” Opt. Commun. 285(6), 1001–1004 (2012).
[Crossref]

Maram, R.

R. Maram, J. Van Howe, M. Li, and J. Azaña, “Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect,” Nat. Commun. 5, 5163 (2014).
[Crossref] [PubMed]

Maruta, A.

S. I. Oda, A. Maruta, and K. Kitayama, “All-optical quantization scheme based on fiber nonlinearity,” IEEE Photonics Technol. Lett. 16(2), 587–589 (2004).
[Crossref]

Menyuk, C. R.

Millot, G.

J. Fatome, C. Finot, G. Millot, A. Armaroli, and S. Trillo, “Observation of Optical Undular Bores in Multiple Four-Wave Mixing,” Phys. Rev. X 4(2), 021022 (2014).
[Crossref]

C. Fortier, B. Kibler, J. Fatome, C. Finot, S. Pitois, and G. Millot, “All-fibered high-quality low duty-cycle 160-GHz femtosecond pulse source,” Laser Phys. Lett. 5(11), 817–820 (2008).
[Crossref]

Morioka, T.

I. Shake, E. Otani, H. Takara, K. Uchiyama, Y. Yamabayashi, and T. Morioka, “Bit rate flexible quality monitoring of 10 to 160 Gb/s optical signals based on optical sampling technique,” Electron. Lett. 36(25), 2087–2088 (2000).
[Crossref]

Murdoch, S. G.

Namiki, S.

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photonics Rev. 2(1–2), 83–99 (2008).
[Crossref]

Nihei, Y.

R. L. Jungerman, G. Lee, O. Buccafusca, Y. Kaneko, N. Itagaki, R. Shioda, A. Harada, Y. Nihei, and G. Sucha, “1-THz bandwidth C- and L-Band optical sampling with a bit rate agile timebase,” IEEE Photonics Technol. Lett. 14(8), 1148–1150 (2002).
[Crossref]

Nishihara, H.

T. Suhara, H. Ishizuki, M. Fujimura, and H. Nishihara, “Waveguide quasi-phase-matched sum-frequency generation device for high-efficiency optical sampling,” IEEE Photonics Technol. Lett. 11(8), 1027–1029 (1999).
[Crossref]

Nogiwa, S.

N. Yamada, S. Nogiwa, and H. Ohta, “640 Gb/s OTDM signal measurement with high-resolution optical sampling system using wavelength-tunable soliton pulses,” IEEE Photonics Technol. Lett. 16(4), 1125–1127 (2004).
[Crossref]

S. Nogiwa, Y. Kawaguchi, H. Ohta, and Y. Endo, “Highly sensitive and time-resolving optical sampling system using thin PPLN crystal,” Electron. Lett. 36(20), 1727–1728 (2000).
[Crossref]

H. Ohta, S. Nogiwa, N. Oda, and H. Chiba, “Highly sensitive optical sampling system using timing-jitter-reduced gain-switched optical pulse,” Electron. Lett. 33(25), 2142–2144 (1997).
[Crossref]

Nuño, J.

Oda, N.

H. Ohta, S. Nogiwa, N. Oda, and H. Chiba, “Highly sensitive optical sampling system using timing-jitter-reduced gain-switched optical pulse,” Electron. Lett. 33(25), 2142–2144 (1997).
[Crossref]

Oda, S. I.

S. I. Oda, A. Maruta, and K. Kitayama, “All-optical quantization scheme based on fiber nonlinearity,” IEEE Photonics Technol. Lett. 16(2), 587–589 (2004).
[Crossref]

Ohta, H.

N. Yamada, S. Nogiwa, and H. Ohta, “640 Gb/s OTDM signal measurement with high-resolution optical sampling system using wavelength-tunable soliton pulses,” IEEE Photonics Technol. Lett. 16(4), 1125–1127 (2004).
[Crossref]

S. Nogiwa, Y. Kawaguchi, H. Ohta, and Y. Endo, “Highly sensitive and time-resolving optical sampling system using thin PPLN crystal,” Electron. Lett. 36(20), 1727–1728 (2000).
[Crossref]

H. Ohta, S. Nogiwa, N. Oda, and H. Chiba, “Highly sensitive optical sampling system using timing-jitter-reduced gain-switched optical pulse,” Electron. Lett. 33(25), 2142–2144 (1997).
[Crossref]

Olsson, B. E.

J. Li, M. Westlund, H. Sunnerud, B. E. Olsson, M. Karlsson, and P. A. Andrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photonics Technol. Lett. 16(2), 566–568 (2004).
[Crossref]

Otani, E.

I. Shake, E. Otani, H. Takara, K. Uchiyama, Y. Yamabayashi, and T. Morioka, “Bit rate flexible quality monitoring of 10 to 160 Gb/s optical signals based on optical sampling technique,” Electron. Lett. 36(25), 2087–2088 (2000).
[Crossref]

Pitois, S.

C. Fortier, B. Kibler, J. Fatome, C. Finot, S. Pitois, and G. Millot, “All-fibered high-quality low duty-cycle 160-GHz femtosecond pulse source,” Laser Phys. Lett. 5(11), 817–820 (2008).
[Crossref]

Shake, I.

I. Shake, E. Otani, H. Takara, K. Uchiyama, Y. Yamabayashi, and T. Morioka, “Bit rate flexible quality monitoring of 10 to 160 Gb/s optical signals based on optical sampling technique,” Electron. Lett. 36(25), 2087–2088 (2000).
[Crossref]

Shioda, R.

R. L. Jungerman, G. Lee, O. Buccafusca, Y. Kaneko, N. Itagaki, R. Shioda, A. Harada, Y. Nihei, and G. Sucha, “1-THz bandwidth C- and L-Band optical sampling with a bit rate agile timebase,” IEEE Photonics Technol. Lett. 14(8), 1148–1150 (2002).
[Crossref]

Sucha, G.

R. L. Jungerman, G. Lee, O. Buccafusca, Y. Kaneko, N. Itagaki, R. Shioda, A. Harada, Y. Nihei, and G. Sucha, “1-THz bandwidth C- and L-Band optical sampling with a bit rate agile timebase,” IEEE Photonics Technol. Lett. 14(8), 1148–1150 (2002).
[Crossref]

Suhara, T.

T. Suhara, H. Ishizuki, M. Fujimura, and H. Nishihara, “Waveguide quasi-phase-matched sum-frequency generation device for high-efficiency optical sampling,” IEEE Photonics Technol. Lett. 11(8), 1027–1029 (1999).
[Crossref]

Sunnerud, H.

J. Li, M. Westlund, H. Sunnerud, B. E. Olsson, M. Karlsson, and P. A. Andrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photonics Technol. Lett. 16(2), 566–568 (2004).
[Crossref]

Takara, H.

I. Shake, E. Otani, H. Takara, K. Uchiyama, Y. Yamabayashi, and T. Morioka, “Bit rate flexible quality monitoring of 10 to 160 Gb/s optical signals based on optical sampling technique,” Electron. Lett. 36(25), 2087–2088 (2000).
[Crossref]

Trillo, S.

J. Fatome, C. Finot, G. Millot, A. Armaroli, and S. Trillo, “Observation of Optical Undular Bores in Multiple Four-Wave Mixing,” Phys. Rev. X 4(2), 021022 (2014).
[Crossref]

Uchiyama, K.

I. Shake, E. Otani, H. Takara, K. Uchiyama, Y. Yamabayashi, and T. Morioka, “Bit rate flexible quality monitoring of 10 to 160 Gb/s optical signals based on optical sampling technique,” Electron. Lett. 36(25), 2087–2088 (2000).
[Crossref]

Van Howe, J.

R. Maram, J. Van Howe, M. Li, and J. Azaña, “Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect,” Nat. Commun. 5, 5163 (2014).
[Crossref] [PubMed]

Waarts, R. G.

E. Lichtman, R. G. Waarts, and A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” J. Lightwave Technol. 7(1), 171–174 (1989).
[Crossref]

Wai, P. K. A.

Wang, Q. Z.

Webb, K. E.

Westlund, M.

P. A. Andrekson and M. Westlund, “Nonlinear optical fiber based high resolution all-optical waveform sampling,” Laser Photonics Rev. 1(3), 231–248 (2007).
[Crossref]

J. Li, M. Westlund, H. Sunnerud, B. E. Olsson, M. Karlsson, and P. A. Andrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photonics Technol. Lett. 16(2), 566–568 (2004).
[Crossref]

Xu, C.

Xu, Y. Q.

Yamabayashi, Y.

I. Shake, E. Otani, H. Takara, K. Uchiyama, Y. Yamabayashi, and T. Morioka, “Bit rate flexible quality monitoring of 10 to 160 Gb/s optical signals based on optical sampling technique,” Electron. Lett. 36(25), 2087–2088 (2000).
[Crossref]

Yamada, N.

N. Yamada, S. Nogiwa, and H. Ohta, “640 Gb/s OTDM signal measurement with high-resolution optical sampling system using wavelength-tunable soliton pulses,” IEEE Photonics Technol. Lett. 16(4), 1125–1127 (2004).
[Crossref]

Zhang, S.

S. Zhang, Y. Liu, Y. Liu, and H. J. S. Dorren, “All-optical sampling exploiting nonlinear polarization rotation in a single semiconductor optical amplifier,” Opt. Commun. 285(6), 1001–1004 (2012).
[Crossref]

Appl. Phys. Lett. (1)

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15(6), 192–194 (1969).
[Crossref]

Electron. Lett. (3)

H. Ohta, S. Nogiwa, N. Oda, and H. Chiba, “Highly sensitive optical sampling system using timing-jitter-reduced gain-switched optical pulse,” Electron. Lett. 33(25), 2142–2144 (1997).
[Crossref]

I. Shake, E. Otani, H. Takara, K. Uchiyama, Y. Yamabayashi, and T. Morioka, “Bit rate flexible quality monitoring of 10 to 160 Gb/s optical signals based on optical sampling technique,” Electron. Lett. 36(25), 2087–2088 (2000).
[Crossref]

S. Nogiwa, Y. Kawaguchi, H. Ohta, and Y. Endo, “Highly sensitive and time-resolving optical sampling system using thin PPLN crystal,” Electron. Lett. 36(20), 1727–1728 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (6)

N. Yamada, S. Nogiwa, and H. Ohta, “640 Gb/s OTDM signal measurement with high-resolution optical sampling system using wavelength-tunable soliton pulses,” IEEE Photonics Technol. Lett. 16(4), 1125–1127 (2004).
[Crossref]

J. Li, J. Hansryd, P. O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photonics Technol. Lett. 13(9), 987–989 (2001).
[Crossref]

S. I. Oda, A. Maruta, and K. Kitayama, “All-optical quantization scheme based on fiber nonlinearity,” IEEE Photonics Technol. Lett. 16(2), 587–589 (2004).
[Crossref]

J. Li, M. Westlund, H. Sunnerud, B. E. Olsson, M. Karlsson, and P. A. Andrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photonics Technol. Lett. 16(2), 566–568 (2004).
[Crossref]

R. L. Jungerman, G. Lee, O. Buccafusca, Y. Kaneko, N. Itagaki, R. Shioda, A. Harada, Y. Nihei, and G. Sucha, “1-THz bandwidth C- and L-Band optical sampling with a bit rate agile timebase,” IEEE Photonics Technol. Lett. 14(8), 1148–1150 (2002).
[Crossref]

T. Suhara, H. Ishizuki, M. Fujimura, and H. Nishihara, “Waveguide quasi-phase-matched sum-frequency generation device for high-efficiency optical sampling,” IEEE Photonics Technol. Lett. 11(8), 1027–1029 (1999).
[Crossref]

J. Lightwave Technol. (1)

E. Lichtman, R. G. Waarts, and A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” J. Lightwave Technol. 7(1), 171–174 (1989).
[Crossref]

Laser Photonics Rev. (2)

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photonics Rev. 2(1–2), 83–99 (2008).
[Crossref]

P. A. Andrekson and M. Westlund, “Nonlinear optical fiber based high resolution all-optical waveform sampling,” Laser Photonics Rev. 1(3), 231–248 (2007).
[Crossref]

Laser Phys. Lett. (1)

C. Fortier, B. Kibler, J. Fatome, C. Finot, S. Pitois, and G. Millot, “All-fibered high-quality low duty-cycle 160-GHz femtosecond pulse source,” Laser Phys. Lett. 5(11), 817–820 (2008).
[Crossref]

Nat. Commun. (1)

R. Maram, J. Van Howe, M. Li, and J. Azaña, “Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect,” Nat. Commun. 5, 5163 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

S. Zhang, Y. Liu, Y. Liu, and H. J. S. Dorren, “All-optical sampling exploiting nonlinear polarization rotation in a single semiconductor optical amplifier,” Opt. Commun. 285(6), 1001–1004 (2012).
[Crossref]

Opt. Lett. (6)

Phys. Rev. X (1)

J. Fatome, C. Finot, G. Millot, A. Armaroli, and S. Trillo, “Observation of Optical Undular Bores in Multiple Four-Wave Mixing,” Phys. Rev. X 4(2), 021022 (2014).
[Crossref]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Longitudinal evolution of the temporal intensity profiles of the sampling and signal waves (panels (a) and (b), respectively). L is for fiber length.
Fig. 2
Fig. 2 Numerical simulations (a) Input (red) and output (blue) intensity profiles of the sinusoidal sampling wave normalized to unity for an input average power of 26.5 dBm and 5 km of propagation. (b) Output intensity profiles of the orthogonally polarized signal wave when the pump is deactivated (in red) or activated (blue). The black crosses indicate the maximum values of the theoretical prediction. In the inset, a close view of the numerical and the theoretical estimations. (c) Same as (b) but normalized to unity.
Fig. 3
Fig. 3 Experimental setup. IM: intensity modulator, PM: phase modulator, AWG: arbitrary waveform generator, EDFA: Erbium-doped fiber amplifier, PC: polarization controller, PBS: polarization beam splitter, ESO: electrical sampling oscilloscope, OSO: optical sampling oscilloscope and OSA: optical spectrum analyzer.
Fig. 4
Fig. 4 (a) Normalized output signal in the temporal domain. For the red line, the pump is off and, for the blue curve, the signal is sampled (pump power equal to 26.5 dBm). This figure is obtained with the ESO. (b) Output intensity profile of the pump beam (power equal to 26.5 dBm). This snapshot is obtained with the OSO.
Fig. 5
Fig. 5 (a) Output signal in the temporal domain. For the red line, the pump is off and the signal is magnified for different injected powers. This figure is obtained with the OSO and only the envelope is drawn. (b) Magnifying factor of the output signal as a function of the injected pump power. The experimental values (blue circles) are compared with the numerical simulations (red line) and theoretical predictions (black crosses). (c) Experimental spectra of the output signal (in blue) compared to theoretical (black crosses) and numerical estimations (red dashed line) for a pump power of 26.5 dBm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

{ i u z β 2 2 2 u t 2 + 8 9 γ | v | 2 u+i α 2 u=0 i v z β 2 2 2 v t 2 + 8 9 γ | v | 2 v+i α 2 v=0
u( z,t )= u in ( t )[ S 2n ( z )exp( i2n ω p t ) ],

Metrics