Abstract

A novel compressive 3D imaging spectrometer based on the coded aperture snapshot spectral imager (CASSI) is proposed. By inserting a microlens array (MLA) into the CASSI system, one can capture spectral data of 3D objects in a single snapshot without requiring 3D scanning. The 3D spatio-spectral sensing phenomena is modelled by computational integral imaging in tandem with compressive coded aperture spectral imaging. A set of focal stack images is reconstructed from a single compressive measurement, and presented as images focused on different depth planes where the objects are located. The proposed optical system is demonstrated with simulations and experimental results.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Adaptive filter design via a gradient thresholding algorithm for compressive spectral imaging

Nelson Diaz, Hoover Rueda, and Henry Arguello
Appl. Opt. 57(17) 4890-4900 (2018)

3D passive integral imaging using compressive sensing

Myungjin Cho, Abhijit Mahalanobis, and Bahram Javidi
Opt. Express 20(24) 26624-26635 (2012)

Higher-order computational model for coded aperture spectral imaging

Henry Arguello, Hoover Rueda, Yuehao Wu, Dennis W. Prather, and Gonzalo R. Arce
Appl. Opt. 52(10) D12-D21 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. H. Kim, T. A. Harvey, D. S. Kittle, H. Rushmeier, J. Dorsey, Richard O. Prum, and B. J. Javidi, “3D Imaging Spectroscopy for Measuring Hyperspectral Patterns on Solid Objects,” ACM Trans. Graphics 31(4), 13–15 (2012).
    [Crossref]
  2. P. Latorre-Carmona, E. Sanchez-Ortiga, X. Xiao, F. Pla, M. Martinez-Corral, H. Navarro, G. Saavedra, and B. Javidi, “Multispectral integral imaging acquisition and processing using a monochrome camera and a liquid crystal tunable filter,” Opt. Express 20(23), 25960–25969 (2012).
    [Crossref] [PubMed]
  3. A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47(10), B44–B51 (2008).
    [Crossref] [PubMed]
  4. A. Plaza and C.-I. Chang, “Preface to the special issue on high performance computing for hyperspectral imaging,” International Journal of High Performance Computing Applications,  22(4), 363–365 (2008).
    [Crossref]
  5. M. Cho and B. Javidi, “Three-dimensional visualization of objects in turbid water using integral imaging,” J. Disp. Technol. 6(10), 544–547 (2010).
    [Crossref]
  6. I. QuinzánSuárez, P. Latorre Carmona, P. Garćia Sevilla, E. Boldo, F. Pla, V. Garćia Jimenéz, R. Lozoya, and G. Pérez de Lućia, Int. Conf. on Pat. Rec. Applic. and Methods, 386–393 (2012).
  7. G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “An introduction to compressive coded aperture spectral imaging,” IEEE Signal Processing Magazine 31(1), 105–115 (2014).
    [Crossref]
  8. A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Video rate spectral imaging using a coded aperture snapshot spectral imager,” Opt. Express 17(8), 6368–6388 (2009).
    [Crossref] [PubMed]
  9. P. Llull, X. Yuan, L. Carin, and D. J. Brady, “Image translation for single-shot focal tomography,” Optica 2(9), 822–825 (2015).
    [Crossref]
  10. T. H. Tsai, P. Llull, X. Yuan, L. Carin, and J. Brady David, “Spectral-temporal compressive imaging,” Opt. Lett. 40(17), 4054–4057 (2015).
    [Crossref] [PubMed]
  11. X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
    [Crossref] [PubMed]
  12. J. -S. Jang and B. Javidi, “Three-dimensional projection integral imaging using micro-convex-mirror arrays,” Opt. Express 12(6), 1077–1083 (2004).
    [Crossref] [PubMed]
  13. S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12(3), 483–491 (2004).
    [Crossref] [PubMed]
  14. R. Horisaki, X. Xiao, J. Tanida, and B. Javidi, “Feasibility study for compressive multi-dimensional integral imaging,” Opt. Express 21(4), 4263–4279 (2013).
    [Crossref] [PubMed]
  15. W. Feng, H. Rueda, C. Fu, Q. Chen, and G. R. Arce, “Compressive spectral integral imaging using a microlens array,” Proc. SPIE 9857, 985706 (2016).
    [Crossref]
  16. X. Lin, J. Suo, G. Wetzstein, Q. Dai, and R. Raskar, “Coded focal stack photography,” IEEE International Conference on Computational Photography, 1–9 (2013).
  17. M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graphics 25(3), 924–934 (2006).
    [Crossref]
  18. D. Kittle, K. Choi, A. Wagadarikar, and D. J. Brady, “Multiframe image estimation for coded aperture snapshot spectral imagers,” Appl. Opt. 49(36), 6824–6833 (2010).
    [Crossref] [PubMed]
  19. A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Spectral image estimation for coded aperture snapshot spectral imagers,” Proc. SPIE 7076, 707602 (2008).
    [Crossref]
  20. J. Tan, Y. Ma, H. Rueda, D. Baron, and G. R. Arce, “Compressive hyperspectral imaging via approximate message passing,” IEEE J. of Selected Topics in Signal Processing,  10(2), 389–401 (2016).
    [Crossref]
  21. X. Yuan, T. H. Tsai, R. Zhu, P. Llull, D. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” IEEE J. Sel. Top. Sig. Proc. 9(6), 964–976 (2015).
    [Crossref]
  22. H. Arguello and G. R. Arce, “Code aperture optimization for spectrally agile compressive imaging,” J. Opt. Soc. Am. B 28(11), 2400–2413 (2011).
    [Crossref]
  23. F. Jin, J.-S. Jang, and B. Javidi, “Effects of device resolution on three-dimensional integral imaging,” Opt. Lett. 29(12), 1345–1347 (2004).
    [Crossref] [PubMed]
  24. M. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Sig. Proc. 1(4), 586–597 (2007).
    [Crossref]
  25. J. -S. Jang and B. Javidi, “Depth and lateral size control of three-dimensional images in projection integral imaging,” Opt. Express 12(16), 3778–3790 (2004).
    [Crossref] [PubMed]
  26. H. Arguello and G. R. Arce, “Colored coded aperture design by concentration of measure in compressive spectral imaging,” IEEE Trans. Image Processing 23(4), 1896–1908 (2014).
    [Crossref]
  27. H. Rueda, D. Lau, and G. R. Arce, “Multi-spectral compressive snapshot imaging using RGB image sensors,” Opt. Express 23(9), 12207–12221 (2015).
    [Crossref] [PubMed]
  28. H. Rueda, H. Arguello, and G. R. Arce, “DMD-based implementation of patterned optical filter arrays for compressive spectral imaging,” J. Opt. Soc. Am. B 32(1), 80–89 (2015).
    [Crossref]
  29. Y. Wu, I. O. Mirza, G. R. Arce, and D. W. Prather, “Development of a digital-micromirror-device-based multishot snapshot spectral imaging system,” Opt. Lett. 36(14), 2692–2694 (2011).
    [Crossref] [PubMed]
  30. X. Lin, G. Wetzstein, Y. Liu, and Q. Dai, “Dual-coded compressive hyperspectral imaging,” Opt. Lett. 39(7), 2044–2047 (2014).
    [Crossref] [PubMed]

2016 (2)

W. Feng, H. Rueda, C. Fu, Q. Chen, and G. R. Arce, “Compressive spectral integral imaging using a microlens array,” Proc. SPIE 9857, 985706 (2016).
[Crossref]

J. Tan, Y. Ma, H. Rueda, D. Baron, and G. R. Arce, “Compressive hyperspectral imaging via approximate message passing,” IEEE J. of Selected Topics in Signal Processing,  10(2), 389–401 (2016).
[Crossref]

2015 (5)

X. Yuan, T. H. Tsai, R. Zhu, P. Llull, D. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” IEEE J. Sel. Top. Sig. Proc. 9(6), 964–976 (2015).
[Crossref]

H. Rueda, D. Lau, and G. R. Arce, “Multi-spectral compressive snapshot imaging using RGB image sensors,” Opt. Express 23(9), 12207–12221 (2015).
[Crossref] [PubMed]

H. Rueda, H. Arguello, and G. R. Arce, “DMD-based implementation of patterned optical filter arrays for compressive spectral imaging,” J. Opt. Soc. Am. B 32(1), 80–89 (2015).
[Crossref]

P. Llull, X. Yuan, L. Carin, and D. J. Brady, “Image translation for single-shot focal tomography,” Optica 2(9), 822–825 (2015).
[Crossref]

T. H. Tsai, P. Llull, X. Yuan, L. Carin, and J. Brady David, “Spectral-temporal compressive imaging,” Opt. Lett. 40(17), 4054–4057 (2015).
[Crossref] [PubMed]

2014 (3)

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “An introduction to compressive coded aperture spectral imaging,” IEEE Signal Processing Magazine 31(1), 105–115 (2014).
[Crossref]

H. Arguello and G. R. Arce, “Colored coded aperture design by concentration of measure in compressive spectral imaging,” IEEE Trans. Image Processing 23(4), 1896–1908 (2014).
[Crossref]

X. Lin, G. Wetzstein, Y. Liu, and Q. Dai, “Dual-coded compressive hyperspectral imaging,” Opt. Lett. 39(7), 2044–2047 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (2)

M. H. Kim, T. A. Harvey, D. S. Kittle, H. Rushmeier, J. Dorsey, Richard O. Prum, and B. J. Javidi, “3D Imaging Spectroscopy for Measuring Hyperspectral Patterns on Solid Objects,” ACM Trans. Graphics 31(4), 13–15 (2012).
[Crossref]

P. Latorre-Carmona, E. Sanchez-Ortiga, X. Xiao, F. Pla, M. Martinez-Corral, H. Navarro, G. Saavedra, and B. Javidi, “Multispectral integral imaging acquisition and processing using a monochrome camera and a liquid crystal tunable filter,” Opt. Express 20(23), 25960–25969 (2012).
[Crossref] [PubMed]

2011 (2)

Y. Wu, I. O. Mirza, G. R. Arce, and D. W. Prather, “Development of a digital-micromirror-device-based multishot snapshot spectral imaging system,” Opt. Lett. 36(14), 2692–2694 (2011).
[Crossref] [PubMed]

H. Arguello and G. R. Arce, “Code aperture optimization for spectrally agile compressive imaging,” J. Opt. Soc. Am. B 28(11), 2400–2413 (2011).
[Crossref]

2010 (2)

M. Cho and B. Javidi, “Three-dimensional visualization of objects in turbid water using integral imaging,” J. Disp. Technol. 6(10), 544–547 (2010).
[Crossref]

D. Kittle, K. Choi, A. Wagadarikar, and D. J. Brady, “Multiframe image estimation for coded aperture snapshot spectral imagers,” Appl. Opt. 49(36), 6824–6833 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (3)

A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Spectral image estimation for coded aperture snapshot spectral imagers,” Proc. SPIE 7076, 707602 (2008).
[Crossref]

A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47(10), B44–B51 (2008).
[Crossref] [PubMed]

A. Plaza and C.-I. Chang, “Preface to the special issue on high performance computing for hyperspectral imaging,” International Journal of High Performance Computing Applications,  22(4), 363–365 (2008).
[Crossref]

2007 (1)

M. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Sig. Proc. 1(4), 586–597 (2007).
[Crossref]

2006 (1)

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graphics 25(3), 924–934 (2006).
[Crossref]

2004 (4)

Adams, A.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graphics 25(3), 924–934 (2006).
[Crossref]

Arce, G. R.

J. Tan, Y. Ma, H. Rueda, D. Baron, and G. R. Arce, “Compressive hyperspectral imaging via approximate message passing,” IEEE J. of Selected Topics in Signal Processing,  10(2), 389–401 (2016).
[Crossref]

W. Feng, H. Rueda, C. Fu, Q. Chen, and G. R. Arce, “Compressive spectral integral imaging using a microlens array,” Proc. SPIE 9857, 985706 (2016).
[Crossref]

H. Rueda, H. Arguello, and G. R. Arce, “DMD-based implementation of patterned optical filter arrays for compressive spectral imaging,” J. Opt. Soc. Am. B 32(1), 80–89 (2015).
[Crossref]

H. Rueda, D. Lau, and G. R. Arce, “Multi-spectral compressive snapshot imaging using RGB image sensors,” Opt. Express 23(9), 12207–12221 (2015).
[Crossref] [PubMed]

H. Arguello and G. R. Arce, “Colored coded aperture design by concentration of measure in compressive spectral imaging,” IEEE Trans. Image Processing 23(4), 1896–1908 (2014).
[Crossref]

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “An introduction to compressive coded aperture spectral imaging,” IEEE Signal Processing Magazine 31(1), 105–115 (2014).
[Crossref]

H. Arguello and G. R. Arce, “Code aperture optimization for spectrally agile compressive imaging,” J. Opt. Soc. Am. B 28(11), 2400–2413 (2011).
[Crossref]

Y. Wu, I. O. Mirza, G. R. Arce, and D. W. Prather, “Development of a digital-micromirror-device-based multishot snapshot spectral imaging system,” Opt. Lett. 36(14), 2692–2694 (2011).
[Crossref] [PubMed]

Arguello, H.

H. Rueda, H. Arguello, and G. R. Arce, “DMD-based implementation of patterned optical filter arrays for compressive spectral imaging,” J. Opt. Soc. Am. B 32(1), 80–89 (2015).
[Crossref]

H. Arguello and G. R. Arce, “Colored coded aperture design by concentration of measure in compressive spectral imaging,” IEEE Trans. Image Processing 23(4), 1896–1908 (2014).
[Crossref]

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “An introduction to compressive coded aperture spectral imaging,” IEEE Signal Processing Magazine 31(1), 105–115 (2014).
[Crossref]

H. Arguello and G. R. Arce, “Code aperture optimization for spectrally agile compressive imaging,” J. Opt. Soc. Am. B 28(11), 2400–2413 (2011).
[Crossref]

Baron, D.

J. Tan, Y. Ma, H. Rueda, D. Baron, and G. R. Arce, “Compressive hyperspectral imaging via approximate message passing,” IEEE J. of Selected Topics in Signal Processing,  10(2), 389–401 (2016).
[Crossref]

Boldo, E.

I. QuinzánSuárez, P. Latorre Carmona, P. Garćia Sevilla, E. Boldo, F. Pla, V. Garćia Jimenéz, R. Lozoya, and G. Pérez de Lućia, Int. Conf. on Pat. Rec. Applic. and Methods, 386–393 (2012).

Brady, D.

X. Yuan, T. H. Tsai, R. Zhu, P. Llull, D. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” IEEE J. Sel. Top. Sig. Proc. 9(6), 964–976 (2015).
[Crossref]

A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47(10), B44–B51 (2008).
[Crossref] [PubMed]

Brady, D. J.

Brady David, J.

Carin, L.

P. Llull, X. Yuan, L. Carin, and D. J. Brady, “Image translation for single-shot focal tomography,” Optica 2(9), 822–825 (2015).
[Crossref]

T. H. Tsai, P. Llull, X. Yuan, L. Carin, and J. Brady David, “Spectral-temporal compressive imaging,” Opt. Lett. 40(17), 4054–4057 (2015).
[Crossref] [PubMed]

X. Yuan, T. H. Tsai, R. Zhu, P. Llull, D. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” IEEE J. Sel. Top. Sig. Proc. 9(6), 964–976 (2015).
[Crossref]

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “An introduction to compressive coded aperture spectral imaging,” IEEE Signal Processing Magazine 31(1), 105–115 (2014).
[Crossref]

Chang, C.-I.

A. Plaza and C.-I. Chang, “Preface to the special issue on high performance computing for hyperspectral imaging,” International Journal of High Performance Computing Applications,  22(4), 363–365 (2008).
[Crossref]

Chen, Q.

W. Feng, H. Rueda, C. Fu, Q. Chen, and G. R. Arce, “Compressive spectral integral imaging using a microlens array,” Proc. SPIE 9857, 985706 (2016).
[Crossref]

Cho, M.

M. Cho and B. Javidi, “Three-dimensional visualization of objects in turbid water using integral imaging,” J. Disp. Technol. 6(10), 544–547 (2010).
[Crossref]

Choi, K.

Dai, Q.

X. Lin, G. Wetzstein, Y. Liu, and Q. Dai, “Dual-coded compressive hyperspectral imaging,” Opt. Lett. 39(7), 2044–2047 (2014).
[Crossref] [PubMed]

X. Lin, J. Suo, G. Wetzstein, Q. Dai, and R. Raskar, “Coded focal stack photography,” IEEE International Conference on Computational Photography, 1–9 (2013).

Dorsey, J.

M. H. Kim, T. A. Harvey, D. S. Kittle, H. Rushmeier, J. Dorsey, Richard O. Prum, and B. J. Javidi, “3D Imaging Spectroscopy for Measuring Hyperspectral Patterns on Solid Objects,” ACM Trans. Graphics 31(4), 13–15 (2012).
[Crossref]

Feng, W.

W. Feng, H. Rueda, C. Fu, Q. Chen, and G. R. Arce, “Compressive spectral integral imaging using a microlens array,” Proc. SPIE 9857, 985706 (2016).
[Crossref]

Figueiredo, M.

M. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Sig. Proc. 1(4), 586–597 (2007).
[Crossref]

Footer, M.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graphics 25(3), 924–934 (2006).
[Crossref]

Fu, C.

W. Feng, H. Rueda, C. Fu, Q. Chen, and G. R. Arce, “Compressive spectral integral imaging using a microlens array,” Proc. SPIE 9857, 985706 (2016).
[Crossref]

Garcia Jimenéz, V.

I. QuinzánSuárez, P. Latorre Carmona, P. Garćia Sevilla, E. Boldo, F. Pla, V. Garćia Jimenéz, R. Lozoya, and G. Pérez de Lućia, Int. Conf. on Pat. Rec. Applic. and Methods, 386–393 (2012).

Garcia Sevilla, P.

I. QuinzánSuárez, P. Latorre Carmona, P. Garćia Sevilla, E. Boldo, F. Pla, V. Garćia Jimenéz, R. Lozoya, and G. Pérez de Lućia, Int. Conf. on Pat. Rec. Applic. and Methods, 386–393 (2012).

Harvey, T. A.

M. H. Kim, T. A. Harvey, D. S. Kittle, H. Rushmeier, J. Dorsey, Richard O. Prum, and B. J. Javidi, “3D Imaging Spectroscopy for Measuring Hyperspectral Patterns on Solid Objects,” ACM Trans. Graphics 31(4), 13–15 (2012).
[Crossref]

Hong, S.-H.

Horisaki, R.

Horowitz, M.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graphics 25(3), 924–934 (2006).
[Crossref]

Jang, J. -S.

Jang, J.-S.

Javidi, B.

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
[Crossref] [PubMed]

R. Horisaki, X. Xiao, J. Tanida, and B. Javidi, “Feasibility study for compressive multi-dimensional integral imaging,” Opt. Express 21(4), 4263–4279 (2013).
[Crossref] [PubMed]

P. Latorre-Carmona, E. Sanchez-Ortiga, X. Xiao, F. Pla, M. Martinez-Corral, H. Navarro, G. Saavedra, and B. Javidi, “Multispectral integral imaging acquisition and processing using a monochrome camera and a liquid crystal tunable filter,” Opt. Express 20(23), 25960–25969 (2012).
[Crossref] [PubMed]

M. Cho and B. Javidi, “Three-dimensional visualization of objects in turbid water using integral imaging,” J. Disp. Technol. 6(10), 544–547 (2010).
[Crossref]

S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12(3), 483–491 (2004).
[Crossref] [PubMed]

F. Jin, J.-S. Jang, and B. Javidi, “Effects of device resolution on three-dimensional integral imaging,” Opt. Lett. 29(12), 1345–1347 (2004).
[Crossref] [PubMed]

J. -S. Jang and B. Javidi, “Three-dimensional projection integral imaging using micro-convex-mirror arrays,” Opt. Express 12(6), 1077–1083 (2004).
[Crossref] [PubMed]

J. -S. Jang and B. Javidi, “Depth and lateral size control of three-dimensional images in projection integral imaging,” Opt. Express 12(16), 3778–3790 (2004).
[Crossref] [PubMed]

Javidi, B. J.

M. H. Kim, T. A. Harvey, D. S. Kittle, H. Rushmeier, J. Dorsey, Richard O. Prum, and B. J. Javidi, “3D Imaging Spectroscopy for Measuring Hyperspectral Patterns on Solid Objects,” ACM Trans. Graphics 31(4), 13–15 (2012).
[Crossref]

Jin, F.

John, R.

Kim, M. H.

M. H. Kim, T. A. Harvey, D. S. Kittle, H. Rushmeier, J. Dorsey, Richard O. Prum, and B. J. Javidi, “3D Imaging Spectroscopy for Measuring Hyperspectral Patterns on Solid Objects,” ACM Trans. Graphics 31(4), 13–15 (2012).
[Crossref]

Kittle, D.

Kittle, D. S.

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “An introduction to compressive coded aperture spectral imaging,” IEEE Signal Processing Magazine 31(1), 105–115 (2014).
[Crossref]

M. H. Kim, T. A. Harvey, D. S. Kittle, H. Rushmeier, J. Dorsey, Richard O. Prum, and B. J. Javidi, “3D Imaging Spectroscopy for Measuring Hyperspectral Patterns on Solid Objects,” ACM Trans. Graphics 31(4), 13–15 (2012).
[Crossref]

Latorre Carmona, P.

I. QuinzánSuárez, P. Latorre Carmona, P. Garćia Sevilla, E. Boldo, F. Pla, V. Garćia Jimenéz, R. Lozoya, and G. Pérez de Lućia, Int. Conf. on Pat. Rec. Applic. and Methods, 386–393 (2012).

Latorre-Carmona, P.

Lau, D.

Levoy, M.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graphics 25(3), 924–934 (2006).
[Crossref]

Lin, X.

X. Lin, G. Wetzstein, Y. Liu, and Q. Dai, “Dual-coded compressive hyperspectral imaging,” Opt. Lett. 39(7), 2044–2047 (2014).
[Crossref] [PubMed]

X. Lin, J. Suo, G. Wetzstein, Q. Dai, and R. Raskar, “Coded focal stack photography,” IEEE International Conference on Computational Photography, 1–9 (2013).

Liu, Y.

Llull, P.

Lozoya, R.

I. QuinzánSuárez, P. Latorre Carmona, P. Garćia Sevilla, E. Boldo, F. Pla, V. Garćia Jimenéz, R. Lozoya, and G. Pérez de Lućia, Int. Conf. on Pat. Rec. Applic. and Methods, 386–393 (2012).

Ma, Y.

J. Tan, Y. Ma, H. Rueda, D. Baron, and G. R. Arce, “Compressive hyperspectral imaging via approximate message passing,” IEEE J. of Selected Topics in Signal Processing,  10(2), 389–401 (2016).
[Crossref]

Martinez-Corral, M.

Mirza, I. O.

Navarro, H.

Ng, R.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graphics 25(3), 924–934 (2006).
[Crossref]

Nowak, R. D.

M. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Sig. Proc. 1(4), 586–597 (2007).
[Crossref]

Pérez de Lucia, G.

I. QuinzánSuárez, P. Latorre Carmona, P. Garćia Sevilla, E. Boldo, F. Pla, V. Garćia Jimenéz, R. Lozoya, and G. Pérez de Lućia, Int. Conf. on Pat. Rec. Applic. and Methods, 386–393 (2012).

Pitsianis, N. P.

A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Video rate spectral imaging using a coded aperture snapshot spectral imager,” Opt. Express 17(8), 6368–6388 (2009).
[Crossref] [PubMed]

A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Spectral image estimation for coded aperture snapshot spectral imagers,” Proc. SPIE 7076, 707602 (2008).
[Crossref]

Pla, F.

Plaza, A.

A. Plaza and C.-I. Chang, “Preface to the special issue on high performance computing for hyperspectral imaging,” International Journal of High Performance Computing Applications,  22(4), 363–365 (2008).
[Crossref]

Prather, D. W.

Prum, Richard O.

M. H. Kim, T. A. Harvey, D. S. Kittle, H. Rushmeier, J. Dorsey, Richard O. Prum, and B. J. Javidi, “3D Imaging Spectroscopy for Measuring Hyperspectral Patterns on Solid Objects,” ACM Trans. Graphics 31(4), 13–15 (2012).
[Crossref]

QuinzánSuárez, I.

I. QuinzánSuárez, P. Latorre Carmona, P. Garćia Sevilla, E. Boldo, F. Pla, V. Garćia Jimenéz, R. Lozoya, and G. Pérez de Lućia, Int. Conf. on Pat. Rec. Applic. and Methods, 386–393 (2012).

Raskar, R.

X. Lin, J. Suo, G. Wetzstein, Q. Dai, and R. Raskar, “Coded focal stack photography,” IEEE International Conference on Computational Photography, 1–9 (2013).

Rueda, H.

W. Feng, H. Rueda, C. Fu, Q. Chen, and G. R. Arce, “Compressive spectral integral imaging using a microlens array,” Proc. SPIE 9857, 985706 (2016).
[Crossref]

J. Tan, Y. Ma, H. Rueda, D. Baron, and G. R. Arce, “Compressive hyperspectral imaging via approximate message passing,” IEEE J. of Selected Topics in Signal Processing,  10(2), 389–401 (2016).
[Crossref]

H. Rueda, H. Arguello, and G. R. Arce, “DMD-based implementation of patterned optical filter arrays for compressive spectral imaging,” J. Opt. Soc. Am. B 32(1), 80–89 (2015).
[Crossref]

H. Rueda, D. Lau, and G. R. Arce, “Multi-spectral compressive snapshot imaging using RGB image sensors,” Opt. Express 23(9), 12207–12221 (2015).
[Crossref] [PubMed]

Rushmeier, H.

M. H. Kim, T. A. Harvey, D. S. Kittle, H. Rushmeier, J. Dorsey, Richard O. Prum, and B. J. Javidi, “3D Imaging Spectroscopy for Measuring Hyperspectral Patterns on Solid Objects,” ACM Trans. Graphics 31(4), 13–15 (2012).
[Crossref]

Saavedra, G.

Sanchez-Ortiga, E.

Stern, A.

Sun, X.

A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Video rate spectral imaging using a coded aperture snapshot spectral imager,” Opt. Express 17(8), 6368–6388 (2009).
[Crossref] [PubMed]

A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Spectral image estimation for coded aperture snapshot spectral imagers,” Proc. SPIE 7076, 707602 (2008).
[Crossref]

Suo, J.

X. Lin, J. Suo, G. Wetzstein, Q. Dai, and R. Raskar, “Coded focal stack photography,” IEEE International Conference on Computational Photography, 1–9 (2013).

Tan, J.

J. Tan, Y. Ma, H. Rueda, D. Baron, and G. R. Arce, “Compressive hyperspectral imaging via approximate message passing,” IEEE J. of Selected Topics in Signal Processing,  10(2), 389–401 (2016).
[Crossref]

Tanida, J.

Tsai, T. H.

T. H. Tsai, P. Llull, X. Yuan, L. Carin, and J. Brady David, “Spectral-temporal compressive imaging,” Opt. Lett. 40(17), 4054–4057 (2015).
[Crossref] [PubMed]

X. Yuan, T. H. Tsai, R. Zhu, P. Llull, D. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” IEEE J. Sel. Top. Sig. Proc. 9(6), 964–976 (2015).
[Crossref]

Wagadarikar, A.

Wagadarikar, A. A.

A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Video rate spectral imaging using a coded aperture snapshot spectral imager,” Opt. Express 17(8), 6368–6388 (2009).
[Crossref] [PubMed]

A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Spectral image estimation for coded aperture snapshot spectral imagers,” Proc. SPIE 7076, 707602 (2008).
[Crossref]

Wetzstein, G.

X. Lin, G. Wetzstein, Y. Liu, and Q. Dai, “Dual-coded compressive hyperspectral imaging,” Opt. Lett. 39(7), 2044–2047 (2014).
[Crossref] [PubMed]

X. Lin, J. Suo, G. Wetzstein, Q. Dai, and R. Raskar, “Coded focal stack photography,” IEEE International Conference on Computational Photography, 1–9 (2013).

Willett, R.

Wright, S. J.

M. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Sig. Proc. 1(4), 586–597 (2007).
[Crossref]

Wu, Y.

Xiao, X.

Yuan, X.

Zhu, R.

X. Yuan, T. H. Tsai, R. Zhu, P. Llull, D. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” IEEE J. Sel. Top. Sig. Proc. 9(6), 964–976 (2015).
[Crossref]

ACM Trans. Graphics (2)

M. H. Kim, T. A. Harvey, D. S. Kittle, H. Rushmeier, J. Dorsey, Richard O. Prum, and B. J. Javidi, “3D Imaging Spectroscopy for Measuring Hyperspectral Patterns on Solid Objects,” ACM Trans. Graphics 31(4), 13–15 (2012).
[Crossref]

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graphics 25(3), 924–934 (2006).
[Crossref]

Appl. Opt. (3)

IEEE J. of Selected Topics in Signal Processing (1)

J. Tan, Y. Ma, H. Rueda, D. Baron, and G. R. Arce, “Compressive hyperspectral imaging via approximate message passing,” IEEE J. of Selected Topics in Signal Processing,  10(2), 389–401 (2016).
[Crossref]

IEEE J. Sel. Top. Sig. Proc. (2)

X. Yuan, T. H. Tsai, R. Zhu, P. Llull, D. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” IEEE J. Sel. Top. Sig. Proc. 9(6), 964–976 (2015).
[Crossref]

M. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Sig. Proc. 1(4), 586–597 (2007).
[Crossref]

IEEE Signal Processing Magazine (1)

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “An introduction to compressive coded aperture spectral imaging,” IEEE Signal Processing Magazine 31(1), 105–115 (2014).
[Crossref]

IEEE Trans. Image Processing (1)

H. Arguello and G. R. Arce, “Colored coded aperture design by concentration of measure in compressive spectral imaging,” IEEE Trans. Image Processing 23(4), 1896–1908 (2014).
[Crossref]

International Journal of High Performance Computing Applications (1)

A. Plaza and C.-I. Chang, “Preface to the special issue on high performance computing for hyperspectral imaging,” International Journal of High Performance Computing Applications,  22(4), 363–365 (2008).
[Crossref]

J. Disp. Technol. (1)

M. Cho and B. Javidi, “Three-dimensional visualization of objects in turbid water using integral imaging,” J. Disp. Technol. 6(10), 544–547 (2010).
[Crossref]

J. Opt. Soc. Am. B (2)

H. Arguello and G. R. Arce, “Code aperture optimization for spectrally agile compressive imaging,” J. Opt. Soc. Am. B 28(11), 2400–2413 (2011).
[Crossref]

H. Rueda, H. Arguello, and G. R. Arce, “DMD-based implementation of patterned optical filter arrays for compressive spectral imaging,” J. Opt. Soc. Am. B 32(1), 80–89 (2015).
[Crossref]

Opt. Express (7)

Opt. Lett. (4)

Optica (1)

Proc. SPIE (2)

W. Feng, H. Rueda, C. Fu, Q. Chen, and G. R. Arce, “Compressive spectral integral imaging using a microlens array,” Proc. SPIE 9857, 985706 (2016).
[Crossref]

A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Spectral image estimation for coded aperture snapshot spectral imagers,” Proc. SPIE 7076, 707602 (2008).
[Crossref]

Other (2)

X. Lin, J. Suo, G. Wetzstein, Q. Dai, and R. Raskar, “Coded focal stack photography,” IEEE International Conference on Computational Photography, 1–9 (2013).

I. QuinzánSuárez, P. Latorre Carmona, P. Garćia Sevilla, E. Boldo, F. Pla, V. Garćia Jimenéz, R. Lozoya, and G. Pérez de Lućia, Int. Conf. on Pat. Rec. Applic. and Methods, 386–393 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Scheme of the 3D compressive spectral integral imaging system. It consists of a microlens array, a coded aperture, a relay lens, a prism and a detector plane. The focal stack of 3D spectral images is captured by the MLA and the CASSI system.
Fig. 2
Fig. 2 Illustration of the spatio-spectral optical flow in the proposed scheme. The optical elements are represented by their effect on the discretized data cube. A region in a depth slice is projected with the parallax translation by each microlens. The elemental image array is coded by a row of the coded aperture and dispersed by the prism. The detector integrates the intensity of the coded and dispersed field.
Fig. 3
Fig. 3 Illustrative example of the translation matrix T for Nx = 8, Ny = 8, Nz = 2 and L = 2. The structure of the matrix accounts for the parallax translation and the zoom out effect by the microlens optics. It depicts the sensing procedure of 2 × 2 EIs from the depth slice data cube to the elemental image data cubes. The white squares show the locations of the ‘1’s in T. Due to the zoom out effect by the microlens, the magnification ratio of the two depth slices to the focal plane of the microlens array are 2 and 3, respectively.
Fig. 4
Fig. 4 Illustrative example of the matrix H for Nx = 8, Ny = 8 and L = 2. The structure of the matrix accounts for the effects of the coded aperture and the dispersion by off setting the diagonal structure from band to band. White squares represent the ‘1’s by unlock elements of the coded aperture. Here, V = Nx · (Ny + L − 1).
Fig. 5
Fig. 5 Test data with the size of 256 × 256 × 2 × 8(Nx′ × Ny′ × Nz × L)). (a) Original data which is divided into two parts. (b) Simulated 3D scene with a separation z.
Fig. 6
Fig. 6 Simulated results with 8 spectral channels. The first two rows show the elemental image array formed on the coded aperture plane by the simulated 4 × 4 microlens array. The central two rows of the figure show the reconstructed result of the object in front. The bottom two rows show the reconstructed result of the second object. The eight spectral channels are 500, 510, 530, 550, 580, 600, 620, and 640 nm, respectively. The averaged PSNR of the central two rows is 29.6 dB and the bottom two rows is 26.8 dB.
Fig. 7
Fig. 7 Spectral intensity of two pixels located at two objects. In the left and right of the figure, the top and bottom RGB images are the comparison between the original data and the reconstruction. The full spectral bands are used for RGB display. Two points A and B on the objects were selected for spectral comparison. The central column shows the spectral curves of the original and reconstructed pixels.
Fig. 8
Fig. 8 Captured 3D scene by a shifted pinhole camera. (a) Simulated 3D scene with two toys. The distance between the two objects is 70 mm. Two points are selected for spectral comparison. (b) 6 × 10 elemental images with different perspectives. Each elemental image is upside down due the pinhole optics.
Fig. 9
Fig. 9 Reconstructed results using the elemental images array in Fig. 8(b). The top row shows a focal stack consisting of two focal plane where the objects are located(one at z = 210 mm and the other at z = 280 mm). The full visible spectral channel are used for RGB display. The bottom row shows the reconstructed spectral curves of the two points compared to the original ones.
Fig. 10
Fig. 10 Prototype of the proposed system. The 3D scene is illuminated by an incoherent broadband lightsource. The microlens array is placed in front of the CASSI system to form the elemental images. The zoomed pictures show the patterns of the microlens array and the coded aperture.
Fig. 11
Fig. 11 Experimental result with the captured scene. (a) A 3D scene consisting of two letters “U” and “D”. The distance is 50 mm. (b) A compressive measurement of 4 columns and 8 rows of elemental images captured by the CCD camera. (c) and (e) show the reconstructed depth slices using the TwIST algorithm. (d) and (f) show the reconstructed depth slices using the GPSR algorithm. (g) and (h) show the spectral comparison of the two points in Fig. 11(a).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f k ( x , y , λ ) = f 0 ( x Γ k ( z ) , y Γ k ( z ) , z , λ ) d z , for k = 1 , 2 , , p q
f k = T k f 0
f = [ f 1 f 2 f k ] = [ T 1 T 2 T k ] f 0 = T f 0 , for k = 1 , 2 , , p q
g = Hf + ω ,
g = HT f 0 + ω = A f 0 + ω ,
arg min f 0 g A f 0 l 2 + τ R ( f 0 ) ,
R ( f 0 ) = m n i , j [ ( f ( i + 1 ) j n m f i j n m ) 2 + ( f i ( j + 1 ) n m f i j n m ) 2 ] 1 / 2 ,

Metrics