Abstract

We presented a novel technique to design microlens optical beam homogenizing system for excimer lasers. As a new approach by applying freeform surface microlens array, the homogenizer can yield somehow superior beam shaping results with larger but less microlens units than conventional method. With new concept and design, the diffraction effects at the microlens apertures can be reduced substantially. Large scale and highly uniform beam profile can be realized at a relative nearby working distance after beam shaping. This is hard to achieve by conventional method. Our design method takes the real spatial energy characteristics of the excimer laser beam as the design basis, and combined with feasible optimization method. The design method is demonstrated as a real instance based, on a 193 nm ArF excimer laser in our laboratory. Moreover, to verify the effectiveness of our method, the designed freeform microlens array homogenizer has been fabricated and tested experimentally. The experimental optical performance of the homogenizer coincides well with the theoretical simulation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simplified freeform optics design for complicated laser beam shaping

Zexin Feng, Brittany D. Froese, Rongguang Liang, Dewen Cheng, and Yongtian Wang
Appl. Opt. 56(33) 9308-9314 (2017)

Beam homogenizers based on chirped microlens arrays

Frank Wippermann, Uwe-D. Zeitner, Peter Dannberg, Andreas Bräuer, and Stefan Sinzinger
Opt. Express 15(10) 6218-6231 (2007)

Diffractive microlenses replicated in fused silica for excimer laser-beam homogenizing

Fredrik Nikolajeff, Sverker Hård, and Bernard Curtis
Appl. Opt. 36(32) 8481-8489 (1997)

References

  • View by:
  • |
  • |
  • |

  1. J. J. Ewing, “Excimer lasers at 30 years,” Opt. Photonics News 14(5), 26–31 (2003).
    [Crossref]
  2. R. Delmdahl and R. Pätzel, “Excimer laser technology trends,” J. Phys. D Appl. Phys. 47(3), 034004 (2014).
    [Crossref]
  3. G. Jin, S. Choi, M. Kim, S. Kim, and J. Song, “New pixel circuit design employing an additional pixel line insertion in AMOLED displays composed by excimer laser-crystallized TFTs,” J. Disp. Technol. 8(8), 479–482 (2012).
    [Crossref]
  4. S. Beke, B. Farkas, I. Romano, and F. Brandi, “3D scaffold fabrication by mask projection excimer laser stereolithography,” Opt. Mater. Express 4(10), 2032–2041 (2014).
    [Crossref]
  5. H. Fukuda, Y. Yoo, Y. Minegishi, N. Hisanaga, and T. Enami, “Advanced excimer laser technologies enable green semiconductor manufacturing,” Proc. SPIE 9052, 90522J (2014).
    [Crossref]
  6. Y. Liu and Y. Jiang, “Rapid fabrication of patterned high-performance conductor poly (vinylidene fluoride) surfaces using a 248nm excimer laser,” Opt. Express 18(21), 22041–22046 (2010).
    [Crossref] [PubMed]
  7. R. Beal, V. Aimez, and J. J. Dubowski, “Excimer laser induced quantum well intermixing: a reproducibility study of the process for fabrication of photonic integrated devices,” Opt. Express 23(2), 1073–1080 (2015).
    [Crossref] [PubMed]
  8. C. Dorronsoro, L. Remon, J. Merayo-Lloves, and S. Marcos, “Experimental evaluation of optimized ablation patterns for laser refractive surgery,” Opt. Express 17(17), 15292–15307 (2009).
    [Crossref] [PubMed]
  9. S. Beggs, J. Short, M. Rengifo-Pardo, and A. Ehrlich, “Applications of the excimer laser: a review,” Dermatol. Surg. 41(11), 1201–1211 (2015).
    [Crossref] [PubMed]
  10. M. E. Johnson and E. Voigtman, “Temporal and spectral characteristics of the output of an excimer laser,” Appl. Spectrosc. 44(6), 958–961 (1990).
    [Crossref]
  11. A. Masters and T. Geuking, “Beam shaping optics expand excimer-laser applications,” Laser Focus World 41(6), 99–101 (2005).
  12. F. M. Dickey, T. E. Lizotte, S. C. Holswade, and D. L. Shealy, Laser Beam Shaping Applications, 1st ed. (CRC Press, 2005).
  13. R. F. Pease and S. Y. Chou, “Lithography and other patterning techniques for future electronics,” Proc. IEEE 96(2), 248–270 (2008).
    [Crossref]
  14. F. M. Dickey, Laser Beam Shaping: Theory and Techniques, 2nd ed. (CRC Press, 2014).
  15. K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H. J. Kahlert, and H. Hugel, “Excimer laser beam homogenizer with low divergence,” Appl. Phys., A Mater. Sci. Process. 69(7), S315–S318 (1999).
    [Crossref]
  16. J. Turunen, P. Paallonen, M. Kuittinen, P. Laakkonen, J. Simonen, T. Kajava, and M. Kaivola, “Diffractive shaping of excimer laser beams,” J. Mod. Opt. 47(13), 2467–2475 (2000).
    [Crossref]
  17. M. Burkhardt and R. Brunner, “Functional integrated optical elements for beam shaping with coherence scrambling property, realized by interference lithography,” Appl. Opt. 46(28), 7061–7067 (2007).
    [Crossref] [PubMed]
  18. Y. Matsuura, D. Akiyama, and M. Miyagi, “Beam homogenizer for hollow-fiber delivery system of excimer laser light,” Appl. Opt. 42(18), 3505–3508 (2003).
    [Crossref] [PubMed]
  19. M. Zimmermann, N. R. V. Lindlein, and K. J. Weible, “Microlens laser beam homogenizer—from theory to application,” Proc. SPIE 6663, 666302 (2007).
    [Crossref]
  20. Y. Lin, G. N. Lawrence, and J. Buck, “Characterization of excimer lasers for application to lenslet array homogenizers,” Appl. Opt. 40(12), 1931–1941 (2001).
    [Crossref] [PubMed]
  21. A. Buttner and U. D. Zeitner, “Wave optical analysis of light-emitting diode beam shaping using microlens arrays,” Opt. Eng. 41(10), 2393–2401 (2002).
    [Crossref]
  22. P. J. Smilie and T. J. Suleski, “Variable-diameter refractive beam shaping with freeform optical surfaces,” Opt. Lett. 36(21), 4170–4172 (2011).
    [Crossref] [PubMed]
  23. Z. Feng, L. Huang, M. Gong, and G. Jin, “Beam shaping system design using double freeform optical surfaces,” Opt. Express 21(12), 14728–14735 (2013).
    [Crossref] [PubMed]
  24. Z. Feng, L. Huang, G. Jin, and M. Gong, “Designing double freeform optical surfaces for controlling both irradiance and wavefront,” Opt. Express 21(23), 28693–28701 (2013).
    [Crossref] [PubMed]
  25. R. Wu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Liu, “A mathematical model of the single freeform surface design for collimated beam shaping,” Opt. Express 21(18), 20974–20989 (2013).
    [Crossref] [PubMed]
  26. Z. Feng, B. D. Froese, and R. Liang, “Composite method for precise freeform optical beam shaping,” Appl. Opt. 54(31), 9364–9369 (2015).
    [Crossref] [PubMed]
  27. Y. Jin, Y. Zhao, and Y. Jiang, “Microlens beam homogenizer for excimer laser processing,” J. Laser Appl. 28(2), 022601 (2016).
    [Crossref]
  28. D. Salomon, Curves and Surfaces for Computer Graphics (Springer, 2005).
  29. I. Kaya, “Mathematical and computational methods for freeform optical shape description,” Diss. Department of Electrical Engineering and Computer Science, University of Central Florida (2013).
  30. K. Fuerschbach, J. P. Rolland, and K. P. Thompson, “A new family of optical systems employing φ-polynomial surfaces,” Opt. Express 19(22), 21919–21928 (2011).
    [Crossref] [PubMed]
  31. K. Rahbar, K. Faez, and E. Attaran Kakhki, “Phase wavefront aberration modeling using Zernike and pseudo-Zernike polynomials,” J. Opt. Soc. Am. A 30(10), 1988–1993 (2013).
    [Crossref] [PubMed]
  32. K. Fuerschbach, K. P. Thompson, and J. P. Rolland, “Interferometric measurement of a concave, φ-polynomial, Zernike mirror,” Opt. Lett. 39(1), 18–21 (2014).
    [Crossref] [PubMed]
  33. J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, 1st ed. (Chapman and Hall/CRC, 2002).
  34. S. Kudaev and P. Schreiber, “Automated optimization of nonimaging optics for luminaires,” Proc. SPIE 5962, 59620B (2005).
    [Crossref]

2016 (1)

Y. Jin, Y. Zhao, and Y. Jiang, “Microlens beam homogenizer for excimer laser processing,” J. Laser Appl. 28(2), 022601 (2016).
[Crossref]

2015 (3)

2014 (4)

K. Fuerschbach, K. P. Thompson, and J. P. Rolland, “Interferometric measurement of a concave, φ-polynomial, Zernike mirror,” Opt. Lett. 39(1), 18–21 (2014).
[Crossref] [PubMed]

S. Beke, B. Farkas, I. Romano, and F. Brandi, “3D scaffold fabrication by mask projection excimer laser stereolithography,” Opt. Mater. Express 4(10), 2032–2041 (2014).
[Crossref]

R. Delmdahl and R. Pätzel, “Excimer laser technology trends,” J. Phys. D Appl. Phys. 47(3), 034004 (2014).
[Crossref]

H. Fukuda, Y. Yoo, Y. Minegishi, N. Hisanaga, and T. Enami, “Advanced excimer laser technologies enable green semiconductor manufacturing,” Proc. SPIE 9052, 90522J (2014).
[Crossref]

2013 (4)

2012 (1)

G. Jin, S. Choi, M. Kim, S. Kim, and J. Song, “New pixel circuit design employing an additional pixel line insertion in AMOLED displays composed by excimer laser-crystallized TFTs,” J. Disp. Technol. 8(8), 479–482 (2012).
[Crossref]

2011 (2)

2010 (1)

2009 (1)

2008 (1)

R. F. Pease and S. Y. Chou, “Lithography and other patterning techniques for future electronics,” Proc. IEEE 96(2), 248–270 (2008).
[Crossref]

2007 (2)

2005 (2)

S. Kudaev and P. Schreiber, “Automated optimization of nonimaging optics for luminaires,” Proc. SPIE 5962, 59620B (2005).
[Crossref]

A. Masters and T. Geuking, “Beam shaping optics expand excimer-laser applications,” Laser Focus World 41(6), 99–101 (2005).

2003 (2)

2002 (1)

A. Buttner and U. D. Zeitner, “Wave optical analysis of light-emitting diode beam shaping using microlens arrays,” Opt. Eng. 41(10), 2393–2401 (2002).
[Crossref]

2001 (1)

2000 (1)

J. Turunen, P. Paallonen, M. Kuittinen, P. Laakkonen, J. Simonen, T. Kajava, and M. Kaivola, “Diffractive shaping of excimer laser beams,” J. Mod. Opt. 47(13), 2467–2475 (2000).
[Crossref]

1999 (1)

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H. J. Kahlert, and H. Hugel, “Excimer laser beam homogenizer with low divergence,” Appl. Phys., A Mater. Sci. Process. 69(7), S315–S318 (1999).
[Crossref]

1990 (1)

Aimez, V.

Akiyama, D.

Attaran Kakhki, E.

Beal, R.

Beggs, S.

S. Beggs, J. Short, M. Rengifo-Pardo, and A. Ehrlich, “Applications of the excimer laser: a review,” Dermatol. Surg. 41(11), 1201–1211 (2015).
[Crossref] [PubMed]

Beke, S.

Berger, P.

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H. J. Kahlert, and H. Hugel, “Excimer laser beam homogenizer with low divergence,” Appl. Phys., A Mater. Sci. Process. 69(7), S315–S318 (1999).
[Crossref]

Brandi, F.

Brunner, R.

Buck, J.

Burghardt, B.

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H. J. Kahlert, and H. Hugel, “Excimer laser beam homogenizer with low divergence,” Appl. Phys., A Mater. Sci. Process. 69(7), S315–S318 (1999).
[Crossref]

Burkhardt, M.

Buttner, A.

A. Buttner and U. D. Zeitner, “Wave optical analysis of light-emitting diode beam shaping using microlens arrays,” Opt. Eng. 41(10), 2393–2401 (2002).
[Crossref]

Choi, S.

G. Jin, S. Choi, M. Kim, S. Kim, and J. Song, “New pixel circuit design employing an additional pixel line insertion in AMOLED displays composed by excimer laser-crystallized TFTs,” J. Disp. Technol. 8(8), 479–482 (2012).
[Crossref]

Chou, S. Y.

R. F. Pease and S. Y. Chou, “Lithography and other patterning techniques for future electronics,” Proc. IEEE 96(2), 248–270 (2008).
[Crossref]

Delmdahl, R.

R. Delmdahl and R. Pätzel, “Excimer laser technology trends,” J. Phys. D Appl. Phys. 47(3), 034004 (2014).
[Crossref]

Dorronsoro, C.

Dubowski, J. J.

Ehrlich, A.

S. Beggs, J. Short, M. Rengifo-Pardo, and A. Ehrlich, “Applications of the excimer laser: a review,” Dermatol. Surg. 41(11), 1201–1211 (2015).
[Crossref] [PubMed]

Enami, T.

H. Fukuda, Y. Yoo, Y. Minegishi, N. Hisanaga, and T. Enami, “Advanced excimer laser technologies enable green semiconductor manufacturing,” Proc. SPIE 9052, 90522J (2014).
[Crossref]

Ewing, J. J.

J. J. Ewing, “Excimer lasers at 30 years,” Opt. Photonics News 14(5), 26–31 (2003).
[Crossref]

Faez, K.

Farkas, B.

Feng, Z.

Froese, B. D.

Fuerschbach, K.

Fukuda, H.

H. Fukuda, Y. Yoo, Y. Minegishi, N. Hisanaga, and T. Enami, “Advanced excimer laser technologies enable green semiconductor manufacturing,” Proc. SPIE 9052, 90522J (2014).
[Crossref]

Geuking, T.

A. Masters and T. Geuking, “Beam shaping optics expand excimer-laser applications,” Laser Focus World 41(6), 99–101 (2005).

Gong, M.

Hisanaga, N.

H. Fukuda, Y. Yoo, Y. Minegishi, N. Hisanaga, and T. Enami, “Advanced excimer laser technologies enable green semiconductor manufacturing,” Proc. SPIE 9052, 90522J (2014).
[Crossref]

Huang, L.

Hugel, H.

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H. J. Kahlert, and H. Hugel, “Excimer laser beam homogenizer with low divergence,” Appl. Phys., A Mater. Sci. Process. 69(7), S315–S318 (1999).
[Crossref]

Jasper, K.

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H. J. Kahlert, and H. Hugel, “Excimer laser beam homogenizer with low divergence,” Appl. Phys., A Mater. Sci. Process. 69(7), S315–S318 (1999).
[Crossref]

Jiang, Y.

Jin, G.

Jin, Y.

Y. Jin, Y. Zhao, and Y. Jiang, “Microlens beam homogenizer for excimer laser processing,” J. Laser Appl. 28(2), 022601 (2016).
[Crossref]

Johnson, M. E.

Kahlert, H. J.

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H. J. Kahlert, and H. Hugel, “Excimer laser beam homogenizer with low divergence,” Appl. Phys., A Mater. Sci. Process. 69(7), S315–S318 (1999).
[Crossref]

Kaivola, M.

J. Turunen, P. Paallonen, M. Kuittinen, P. Laakkonen, J. Simonen, T. Kajava, and M. Kaivola, “Diffractive shaping of excimer laser beams,” J. Mod. Opt. 47(13), 2467–2475 (2000).
[Crossref]

Kajava, T.

J. Turunen, P. Paallonen, M. Kuittinen, P. Laakkonen, J. Simonen, T. Kajava, and M. Kaivola, “Diffractive shaping of excimer laser beams,” J. Mod. Opt. 47(13), 2467–2475 (2000).
[Crossref]

Kim, M.

G. Jin, S. Choi, M. Kim, S. Kim, and J. Song, “New pixel circuit design employing an additional pixel line insertion in AMOLED displays composed by excimer laser-crystallized TFTs,” J. Disp. Technol. 8(8), 479–482 (2012).
[Crossref]

Kim, S.

G. Jin, S. Choi, M. Kim, S. Kim, and J. Song, “New pixel circuit design employing an additional pixel line insertion in AMOLED displays composed by excimer laser-crystallized TFTs,” J. Disp. Technol. 8(8), 479–482 (2012).
[Crossref]

Kudaev, S.

S. Kudaev and P. Schreiber, “Automated optimization of nonimaging optics for luminaires,” Proc. SPIE 5962, 59620B (2005).
[Crossref]

Kuittinen, M.

J. Turunen, P. Paallonen, M. Kuittinen, P. Laakkonen, J. Simonen, T. Kajava, and M. Kaivola, “Diffractive shaping of excimer laser beams,” J. Mod. Opt. 47(13), 2467–2475 (2000).
[Crossref]

Laakkonen, P.

J. Turunen, P. Paallonen, M. Kuittinen, P. Laakkonen, J. Simonen, T. Kajava, and M. Kaivola, “Diffractive shaping of excimer laser beams,” J. Mod. Opt. 47(13), 2467–2475 (2000).
[Crossref]

Lawrence, G. N.

Li, H.

Liang, R.

Lin, Y.

Lindlein, N. R. V.

M. Zimmermann, N. R. V. Lindlein, and K. J. Weible, “Microlens laser beam homogenizer—from theory to application,” Proc. SPIE 6663, 666302 (2007).
[Crossref]

Liu, P.

Liu, X.

Liu, Y.

Marcos, S.

Masters, A.

A. Masters and T. Geuking, “Beam shaping optics expand excimer-laser applications,” Laser Focus World 41(6), 99–101 (2005).

Matsuura, Y.

Merayo-Lloves, J.

Minegishi, Y.

H. Fukuda, Y. Yoo, Y. Minegishi, N. Hisanaga, and T. Enami, “Advanced excimer laser technologies enable green semiconductor manufacturing,” Proc. SPIE 9052, 90522J (2014).
[Crossref]

Miyagi, M.

Paallonen, P.

J. Turunen, P. Paallonen, M. Kuittinen, P. Laakkonen, J. Simonen, T. Kajava, and M. Kaivola, “Diffractive shaping of excimer laser beams,” J. Mod. Opt. 47(13), 2467–2475 (2000).
[Crossref]

Pätzel, R.

R. Delmdahl and R. Pätzel, “Excimer laser technology trends,” J. Phys. D Appl. Phys. 47(3), 034004 (2014).
[Crossref]

Pease, R. F.

R. F. Pease and S. Y. Chou, “Lithography and other patterning techniques for future electronics,” Proc. IEEE 96(2), 248–270 (2008).
[Crossref]

Rahbar, K.

Remon, L.

Rengifo-Pardo, M.

S. Beggs, J. Short, M. Rengifo-Pardo, and A. Ehrlich, “Applications of the excimer laser: a review,” Dermatol. Surg. 41(11), 1201–1211 (2015).
[Crossref] [PubMed]

Rolland, J. P.

Romano, I.

Scheede, S.

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H. J. Kahlert, and H. Hugel, “Excimer laser beam homogenizer with low divergence,” Appl. Phys., A Mater. Sci. Process. 69(7), S315–S318 (1999).
[Crossref]

Schreiber, P.

S. Kudaev and P. Schreiber, “Automated optimization of nonimaging optics for luminaires,” Proc. SPIE 5962, 59620B (2005).
[Crossref]

Senczuk, R.

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H. J. Kahlert, and H. Hugel, “Excimer laser beam homogenizer with low divergence,” Appl. Phys., A Mater. Sci. Process. 69(7), S315–S318 (1999).
[Crossref]

Short, J.

S. Beggs, J. Short, M. Rengifo-Pardo, and A. Ehrlich, “Applications of the excimer laser: a review,” Dermatol. Surg. 41(11), 1201–1211 (2015).
[Crossref] [PubMed]

Simonen, J.

J. Turunen, P. Paallonen, M. Kuittinen, P. Laakkonen, J. Simonen, T. Kajava, and M. Kaivola, “Diffractive shaping of excimer laser beams,” J. Mod. Opt. 47(13), 2467–2475 (2000).
[Crossref]

Smilie, P. J.

Song, J.

G. Jin, S. Choi, M. Kim, S. Kim, and J. Song, “New pixel circuit design employing an additional pixel line insertion in AMOLED displays composed by excimer laser-crystallized TFTs,” J. Disp. Technol. 8(8), 479–482 (2012).
[Crossref]

Suleski, T. J.

Thompson, K. P.

Turunen, J.

J. Turunen, P. Paallonen, M. Kuittinen, P. Laakkonen, J. Simonen, T. Kajava, and M. Kaivola, “Diffractive shaping of excimer laser beams,” J. Mod. Opt. 47(13), 2467–2475 (2000).
[Crossref]

Voigtman, E.

Weible, K. J.

M. Zimmermann, N. R. V. Lindlein, and K. J. Weible, “Microlens laser beam homogenizer—from theory to application,” Proc. SPIE 6663, 666302 (2007).
[Crossref]

Wu, R.

Yoo, Y.

H. Fukuda, Y. Yoo, Y. Minegishi, N. Hisanaga, and T. Enami, “Advanced excimer laser technologies enable green semiconductor manufacturing,” Proc. SPIE 9052, 90522J (2014).
[Crossref]

Zeitner, U. D.

A. Buttner and U. D. Zeitner, “Wave optical analysis of light-emitting diode beam shaping using microlens arrays,” Opt. Eng. 41(10), 2393–2401 (2002).
[Crossref]

Zhang, Y.

Zhao, Y.

Y. Jin, Y. Zhao, and Y. Jiang, “Microlens beam homogenizer for excimer laser processing,” J. Laser Appl. 28(2), 022601 (2016).
[Crossref]

Zheng, Z.

Zimmermann, M.

M. Zimmermann, N. R. V. Lindlein, and K. J. Weible, “Microlens laser beam homogenizer—from theory to application,” Proc. SPIE 6663, 666302 (2007).
[Crossref]

Appl. Opt. (4)

Appl. Phys., A Mater. Sci. Process. (1)

K. Jasper, S. Scheede, B. Burghardt, R. Senczuk, P. Berger, H. J. Kahlert, and H. Hugel, “Excimer laser beam homogenizer with low divergence,” Appl. Phys., A Mater. Sci. Process. 69(7), S315–S318 (1999).
[Crossref]

Appl. Spectrosc. (1)

Dermatol. Surg. (1)

S. Beggs, J. Short, M. Rengifo-Pardo, and A. Ehrlich, “Applications of the excimer laser: a review,” Dermatol. Surg. 41(11), 1201–1211 (2015).
[Crossref] [PubMed]

J. Disp. Technol. (1)

G. Jin, S. Choi, M. Kim, S. Kim, and J. Song, “New pixel circuit design employing an additional pixel line insertion in AMOLED displays composed by excimer laser-crystallized TFTs,” J. Disp. Technol. 8(8), 479–482 (2012).
[Crossref]

J. Laser Appl. (1)

Y. Jin, Y. Zhao, and Y. Jiang, “Microlens beam homogenizer for excimer laser processing,” J. Laser Appl. 28(2), 022601 (2016).
[Crossref]

J. Mod. Opt. (1)

J. Turunen, P. Paallonen, M. Kuittinen, P. Laakkonen, J. Simonen, T. Kajava, and M. Kaivola, “Diffractive shaping of excimer laser beams,” J. Mod. Opt. 47(13), 2467–2475 (2000).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

R. Delmdahl and R. Pätzel, “Excimer laser technology trends,” J. Phys. D Appl. Phys. 47(3), 034004 (2014).
[Crossref]

Laser Focus World (1)

A. Masters and T. Geuking, “Beam shaping optics expand excimer-laser applications,” Laser Focus World 41(6), 99–101 (2005).

Opt. Eng. (1)

A. Buttner and U. D. Zeitner, “Wave optical analysis of light-emitting diode beam shaping using microlens arrays,” Opt. Eng. 41(10), 2393–2401 (2002).
[Crossref]

Opt. Express (7)

Opt. Lett. (2)

Opt. Mater. Express (1)

Opt. Photonics News (1)

J. J. Ewing, “Excimer lasers at 30 years,” Opt. Photonics News 14(5), 26–31 (2003).
[Crossref]

Proc. IEEE (1)

R. F. Pease and S. Y. Chou, “Lithography and other patterning techniques for future electronics,” Proc. IEEE 96(2), 248–270 (2008).
[Crossref]

Proc. SPIE (3)

M. Zimmermann, N. R. V. Lindlein, and K. J. Weible, “Microlens laser beam homogenizer—from theory to application,” Proc. SPIE 6663, 666302 (2007).
[Crossref]

H. Fukuda, Y. Yoo, Y. Minegishi, N. Hisanaga, and T. Enami, “Advanced excimer laser technologies enable green semiconductor manufacturing,” Proc. SPIE 9052, 90522J (2014).
[Crossref]

S. Kudaev and P. Schreiber, “Automated optimization of nonimaging optics for luminaires,” Proc. SPIE 5962, 59620B (2005).
[Crossref]

Other (5)

J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, 1st ed. (Chapman and Hall/CRC, 2002).

D. Salomon, Curves and Surfaces for Computer Graphics (Springer, 2005).

I. Kaya, “Mathematical and computational methods for freeform optical shape description,” Diss. Department of Electrical Engineering and Computer Science, University of Central Florida (2013).

F. M. Dickey, T. E. Lizotte, S. C. Holswade, and D. L. Shealy, Laser Beam Shaping Applications, 1st ed. (CRC Press, 2005).

F. M. Dickey, Laser Beam Shaping: Theory and Techniques, 2nd ed. (CRC Press, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Optical schematic illustration of optical microlens array homogenizer for excimer laser.
Fig. 2
Fig. 2 Intensity distribution of the initial excimer beam profile. (a) Pseudo color image of the intensity distribution, (b) intensity distribution curve in the x direction, and (c) intensity distribution curve in the y direction.
Fig. 3
Fig. 3 Simulated incident excimer laser beam profile with Zemax Opticstudio. (a) Pseudo color image of intensity distribution on virtual detector, (b) normalized intensity distribution curve in the x direction, and (c) normalized intensity distribution curve in the y direction.
Fig. 4
Fig. 4 Intuitive schematic of the optimization method. (a) A couple of axisymmetric beamlets. The energy intensity distributions have a complementary tendency to each other. (b) The visual relationship between optical elements. The microlenses in array 1 are specified as freeform ones.
Fig. 5
Fig. 5 Simulated beam shaping and homogenizing results for a couple of axisymmetric beamlets. (a) Original intensity distribution of the beamlets, (b) intensity distribution before optimization, and (c) intensity distribution after optimization.
Fig. 6
Fig. 6 Surface sag map of the two axisymmetric microlenses after optimization. (a) The upper one and (b) the lower one.
Fig. 7
Fig. 7 Comparison of the final beam shaping and homogenizing results before and after optimization. The upper row (a), (b) and (c) show the results by the originally spherical microlens array, including (a) pseudo color intensity distribution, (b) intensity distribution curve in the x direction, and (c) intensity distribution curve in the y direction. The lower row (d), (e) and (f) show the results by the freeform microlens array, including (d) pseudo color intensity distribution, (e) intensity distribution curve in the x direction, and (f) intensity distribution curve in the y direction. After optimization with the freeform microlens array, the uniformity of the beam profile is improved from ± 9.4% (rms) to ± 1.3% (rms), with dimensions of 40 × 40 mm2.
Fig. 8
Fig. 8 Beam shaping and homogenizing results when tilting the freeform microlens array. (a), (b) and (c) are the situations when tilting 3° about the x, y and z axes respectively, corresponding to uniformity of ± 3.1% (rms), ± 1.9% (rms) and ± 5.4% (rms) respectively.
Fig. 9
Fig. 9 The optical cage system setup of the freeform microlens array homogenizer. (a) Front side and (b) back side.
Fig. 10
Fig. 10 Experimental results of the freeform microlens array homogenizer. (a) The ablation pattern on light-sensitive paper, (b) pseudo color image of the intensity distribution of the homogenized beam profile, (c) intensity distribution curve in the x direction, and (d) intensity distribution curve in the y direction.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

D H =d F f 1 f 2 [ ( f 1 + f 2 )a ].
D H =d F a .
FN=2×OPD= r 2 λ ( 1 R w 1 R 0 ),
FN= d 2 4λf .
FN= d D H 4λF .
T n (x)=cos(nco s 1 (x)),n=0...,x[1,1].
z= c( x 2 + y 2 ) 1+ 1 c 2 ( x 2 + y 2 ) + i=0 n j=0 m c ij T i ( x ¯ ) T j ( y ¯ ),

Metrics