Abstract

We present a method by which the degree of longitudinal variation in photonic crystal fibre (PCF) may be characterised through seeded four-wave mixing (FWM). Using an iterative numerical reconstruction, we created a theoretical model of the PCF that displays FWM phasematching properties that are similar to experiment across all measured length scales. Our results demonstrate that the structure of our PCF varies by less than ±1 % and that the characteristic length of the variations is approximately 15 cm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell
Opt. Express 12(2) 299-309 (2004)

Photonic sensing based on variation of propagation properties of photonic crystal fibres

John H. Rothwell, Dónal A. Flavin, William N. MacPherson, Julian D. C. Jones, Jonathan C. Knight, and Philip St. J. Russell
Opt. Express 14(25) 12445-12450 (2006)

Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber

K. Garay-Palmett, H. J. McGuinness, Offir Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley
Opt. Express 15(22) 14870-14886 (2007)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russel, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1997).
    [Crossref]
  2. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T.-P. Martin Man, and P. St. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19(9), 2148–2155 (2002).
    [Crossref]
  3. L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19, 4902 (2011).
    [Crossref] [PubMed]
  4. J. Sharping, J. Chen, X. Li, P. Kumar, and R. Windeler, “Quantum-correlated twin photons from microstructure fiber,” Optics Express 12, 3086 (2004).
    [Crossref] [PubMed]
  5. J. C. Knight, “Photonic Crystal Fibre,” Nature 424(6950), 847 (2002).
    [Crossref]
  6. O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and Ian A. Walmsley, “Tailored Photon-Pair Generation in Optical Fibers,” Physical Review Letters 102, 123603 (2009).
    [Crossref] [PubMed]
  7. M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express 17, 4670 (2009).
    [Crossref] [PubMed]
  8. C. Soller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. St. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A. 81, 031801 (2010).
    [Crossref]
  9. J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photon. 3, 687 (2009).
    [Crossref]
  10. A. R. McMillan, J. Fulconis, M. Halder, C. Xiong, J. G. Rarity, and W. J. Wadsworth, “Narrowband high-fidelity all-fibre source of heralded single photons at 1570 nm,” Opt. Express 17(8), 6156 (2009).
    [Crossref] [PubMed]
  11. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A. 64, 063815 (2001).
    [Crossref]
  12. K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14870 (2007).
    [Crossref] [PubMed]
  13. L. Cui, X. Li, and N. Zhao, “Minimizing the frequency correlation of photon pairs in photonic crystal fibers,” New Journal of Physics 14, 123001 (2012).
    [Crossref]
  14. M. Liscidini and J. E. Sipe, “Stimulated Emission Tomography,” Phys. Rev. Lett. 111, 193602 (2013).
    [Crossref] [PubMed]
  15. A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Reviews 5, L76 (2014).
    [Crossref]
  16. B. Fang, O. Cohen, M. Liscidini, J.E. Sipe, and V. O. Lorenz, “Fast and highly resolved capture of the joint spectral density of photon pairs,” Optica 1, 281 (2014)
    [Crossref]
  17. I. Jizan, L. G. Helt, C. Xiong, M. J. Collins, D.-Y. Choi, C. Joon Chae, M. Liscidini, M. J. Steel, B. J. Eggleton, and A. S. Clark, “Bi-photon spectral correlation measurements from a silicon nanowire in the quantum and classical regimes,” Sci. Rep. 5, 12557 (2015).
    [Crossref] [PubMed]
  18. B. Fang, M. Liscidini, J. E. Sipe, and V. O. Lorenz, “Multidimensional characterization of an entangled photon-pair source via stimulated emission tomography,” Opt. Express 24, 10013 (2016).
    [Crossref] [PubMed]
  19. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100, 133601 (2008).
    [Crossref] [PubMed]
  20. M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph”, Opt. Lett. 34, 2873 (2009).
    [Crossref] [PubMed]
  21. K. Saitoh and M. Koshiba, “Empirical relations for simple design of photonic crystal fibers,” Opt. Express 13, 267 (2005)
    [Crossref] [PubMed]
  22. L. Cui, X. Li, and N. Zhao, “Spectral properties of photon pairs generated by spontaneous four-wave mixing in inhomogeneous photonic crystal fibers,” Phys. Rev. A. 85, 023825 (2012).
    [Crossref]

2016 (1)

2015 (1)

I. Jizan, L. G. Helt, C. Xiong, M. J. Collins, D.-Y. Choi, C. Joon Chae, M. Liscidini, M. J. Steel, B. J. Eggleton, and A. S. Clark, “Bi-photon spectral correlation measurements from a silicon nanowire in the quantum and classical regimes,” Sci. Rep. 5, 12557 (2015).
[Crossref] [PubMed]

2014 (2)

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Reviews 5, L76 (2014).
[Crossref]

B. Fang, O. Cohen, M. Liscidini, J.E. Sipe, and V. O. Lorenz, “Fast and highly resolved capture of the joint spectral density of photon pairs,” Optica 1, 281 (2014)
[Crossref]

2013 (1)

M. Liscidini and J. E. Sipe, “Stimulated Emission Tomography,” Phys. Rev. Lett. 111, 193602 (2013).
[Crossref] [PubMed]

2012 (2)

L. Cui, X. Li, and N. Zhao, “Minimizing the frequency correlation of photon pairs in photonic crystal fibers,” New Journal of Physics 14, 123001 (2012).
[Crossref]

L. Cui, X. Li, and N. Zhao, “Spectral properties of photon pairs generated by spontaneous four-wave mixing in inhomogeneous photonic crystal fibers,” Phys. Rev. A. 85, 023825 (2012).
[Crossref]

2011 (1)

2010 (1)

C. Soller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. St. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A. 81, 031801 (2010).
[Crossref]

2009 (5)

2008 (1)

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

2007 (1)

2005 (1)

2004 (1)

J. Sharping, J. Chen, X. Li, P. Kumar, and R. Windeler, “Quantum-correlated twin photons from microstructure fiber,” Optics Express 12, 3086 (2004).
[Crossref] [PubMed]

2002 (2)

2001 (1)

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A. 64, 063815 (2001).
[Crossref]

1997 (1)

Atkin, D. M.

Avenhaus, M.

Birks, T. A.

Boucher, G.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Reviews 5, L76 (2014).
[Crossref]

Brecht, B.

C. Soller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. St. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A. 81, 031801 (2010).
[Crossref]

Cemlyn, B.

Chen, J.

J. Sharping, J. Chen, X. Li, P. Kumar, and R. Windeler, “Quantum-correlated twin photons from microstructure fiber,” Optics Express 12, 3086 (2004).
[Crossref] [PubMed]

Choi, D.-Y.

I. Jizan, L. G. Helt, C. Xiong, M. J. Collins, D.-Y. Choi, C. Joon Chae, M. Liscidini, M. J. Steel, B. J. Eggleton, and A. S. Clark, “Bi-photon spectral correlation measurements from a silicon nanowire in the quantum and classical regimes,” Sci. Rep. 5, 12557 (2015).
[Crossref] [PubMed]

Clark, A.

Clark, A. S.

I. Jizan, L. G. Helt, C. Xiong, M. J. Collins, D.-Y. Choi, C. Joon Chae, M. Liscidini, M. J. Steel, B. J. Eggleton, and A. S. Clark, “Bi-photon spectral correlation measurements from a silicon nanowire in the quantum and classical regimes,” Sci. Rep. 5, 12557 (2015).
[Crossref] [PubMed]

Cohen, O.

Collins, M. J.

I. Jizan, L. G. Helt, C. Xiong, M. J. Collins, D.-Y. Choi, C. Joon Chae, M. Liscidini, M. J. Steel, B. J. Eggleton, and A. S. Clark, “Bi-photon spectral correlation measurements from a silicon nanowire in the quantum and classical regimes,” Sci. Rep. 5, 12557 (2015).
[Crossref] [PubMed]

Cui, L.

L. Cui, X. Li, and N. Zhao, “Spectral properties of photon pairs generated by spontaneous four-wave mixing in inhomogeneous photonic crystal fibers,” Phys. Rev. A. 85, 023825 (2012).
[Crossref]

L. Cui, X. Li, and N. Zhao, “Minimizing the frequency correlation of photon pairs in photonic crystal fibers,” New Journal of Physics 14, 123001 (2012).
[Crossref]

Ducci, S.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Reviews 5, L76 (2014).
[Crossref]

Eckstein, A.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Reviews 5, L76 (2014).
[Crossref]

M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph”, Opt. Lett. 34, 2873 (2009).
[Crossref] [PubMed]

Eggleton, B. J.

I. Jizan, L. G. Helt, C. Xiong, M. J. Collins, D.-Y. Choi, C. Joon Chae, M. Liscidini, M. J. Steel, B. J. Eggleton, and A. S. Clark, “Bi-photon spectral correlation measurements from a silicon nanowire in the quantum and classical regimes,” Sci. Rep. 5, 12557 (2015).
[Crossref] [PubMed]

Fang, B.

Favero, I.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Reviews 5, L76 (2014).
[Crossref]

Filloux, P.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Reviews 5, L76 (2014).
[Crossref]

Fulconis, J.

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photon. 3, 687 (2009).
[Crossref]

Garay-Palmett, K.

Grice, W. P.

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A. 64, 063815 (2001).
[Crossref]

Halder, M.

Helt, L. G.

I. Jizan, L. G. Helt, C. Xiong, M. J. Collins, D.-Y. Choi, C. Joon Chae, M. Liscidini, M. J. Steel, B. J. Eggleton, and A. S. Clark, “Bi-photon spectral correlation measurements from a silicon nanowire in the quantum and classical regimes,” Sci. Rep. 5, 12557 (2015).
[Crossref] [PubMed]

Hooper, L. E.

Jizan, I.

I. Jizan, L. G. Helt, C. Xiong, M. J. Collins, D.-Y. Choi, C. Joon Chae, M. Liscidini, M. J. Steel, B. J. Eggleton, and A. S. Clark, “Bi-photon spectral correlation measurements from a silicon nanowire in the quantum and classical regimes,” Sci. Rep. 5, 12557 (2015).
[Crossref] [PubMed]

Joly, N. Y.

C. Soller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. St. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A. 81, 031801 (2010).
[Crossref]

Joon Chae, C.

I. Jizan, L. G. Helt, C. Xiong, M. J. Collins, D.-Y. Choi, C. Joon Chae, M. Liscidini, M. J. Steel, B. J. Eggleton, and A. S. Clark, “Bi-photon spectral correlation measurements from a silicon nanowire in the quantum and classical regimes,” Sci. Rep. 5, 12557 (2015).
[Crossref] [PubMed]

Knight, J. C.

Koshiba, M.

Kumar, P.

J. Sharping, J. Chen, X. Li, P. Kumar, and R. Windeler, “Quantum-correlated twin photons from microstructure fiber,” Optics Express 12, 3086 (2004).
[Crossref] [PubMed]

Lemaître, A.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Reviews 5, L76 (2014).
[Crossref]

Leo, G.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Reviews 5, L76 (2014).
[Crossref]

Li, X.

L. Cui, X. Li, and N. Zhao, “Minimizing the frequency correlation of photon pairs in photonic crystal fibers,” New Journal of Physics 14, 123001 (2012).
[Crossref]

L. Cui, X. Li, and N. Zhao, “Spectral properties of photon pairs generated by spontaneous four-wave mixing in inhomogeneous photonic crystal fibers,” Phys. Rev. A. 85, 023825 (2012).
[Crossref]

J. Sharping, J. Chen, X. Li, P. Kumar, and R. Windeler, “Quantum-correlated twin photons from microstructure fiber,” Optics Express 12, 3086 (2004).
[Crossref] [PubMed]

Liscidini, M.

B. Fang, M. Liscidini, J. E. Sipe, and V. O. Lorenz, “Multidimensional characterization of an entangled photon-pair source via stimulated emission tomography,” Opt. Express 24, 10013 (2016).
[Crossref] [PubMed]

I. Jizan, L. G. Helt, C. Xiong, M. J. Collins, D.-Y. Choi, C. Joon Chae, M. Liscidini, M. J. Steel, B. J. Eggleton, and A. S. Clark, “Bi-photon spectral correlation measurements from a silicon nanowire in the quantum and classical regimes,” Sci. Rep. 5, 12557 (2015).
[Crossref] [PubMed]

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Reviews 5, L76 (2014).
[Crossref]

B. Fang, O. Cohen, M. Liscidini, J.E. Sipe, and V. O. Lorenz, “Fast and highly resolved capture of the joint spectral density of photon pairs,” Optica 1, 281 (2014)
[Crossref]

M. Liscidini and J. E. Sipe, “Stimulated Emission Tomography,” Phys. Rev. Lett. 111, 193602 (2013).
[Crossref] [PubMed]

Lorenz, V. O.

Lundeen, J. S.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and Ian A. Walmsley, “Tailored Photon-Pair Generation in Optical Fibers,” Physical Review Letters 102, 123603 (2009).
[Crossref] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14870 (2007).
[Crossref] [PubMed]

Martin Man, T.-P.

McGuinness, H. J.

McKinstrie, C. J.

McMillan, A. R.

Mosley, P. J.

L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19, 4902 (2011).
[Crossref] [PubMed]

C. Soller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. St. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A. 81, 031801 (2010).
[Crossref]

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and Ian A. Walmsley, “Tailored Photon-Pair Generation in Optical Fibers,” Physical Review Letters 102, 123603 (2009).
[Crossref] [PubMed]

M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph”, Opt. Lett. 34, 2873 (2009).
[Crossref] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Muir, A. C.

O’Brien, J. L.

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photon. 3, 687 (2009).
[Crossref]

Ortigosa-Blanch, A.

Podlipensky, A.

C. Soller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. St. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A. 81, 031801 (2010).
[Crossref]

Puentes, G.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and Ian A. Walmsley, “Tailored Photon-Pair Generation in Optical Fibers,” Physical Review Letters 102, 123603 (2009).
[Crossref] [PubMed]

Radic, S.

Rangel-Rojo, R.

Rarity, J. G.

Raymer, M. G.

Russel, P. St. J.

Russell, P. St. J.

C. Soller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. St. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A. 81, 031801 (2010).
[Crossref]

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T.-P. Martin Man, and P. St. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19(9), 2148–2155 (2002).
[Crossref]

Saitoh, K.

Sharping, J.

J. Sharping, J. Chen, X. Li, P. Kumar, and R. Windeler, “Quantum-correlated twin photons from microstructure fiber,” Optics Express 12, 3086 (2004).
[Crossref] [PubMed]

Silberhorn, C.

C. Soller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. St. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A. 81, 031801 (2010).
[Crossref]

M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph”, Opt. Lett. 34, 2873 (2009).
[Crossref] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Sipe, J. E.

B. Fang, M. Liscidini, J. E. Sipe, and V. O. Lorenz, “Multidimensional characterization of an entangled photon-pair source via stimulated emission tomography,” Opt. Express 24, 10013 (2016).
[Crossref] [PubMed]

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Reviews 5, L76 (2014).
[Crossref]

M. Liscidini and J. E. Sipe, “Stimulated Emission Tomography,” Phys. Rev. Lett. 111, 193602 (2013).
[Crossref] [PubMed]

Sipe, J.E.

Smith, B. J.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and Ian A. Walmsley, “Tailored Photon-Pair Generation in Optical Fibers,” Physical Review Letters 102, 123603 (2009).
[Crossref] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Soller, C.

C. Soller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. St. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A. 81, 031801 (2010).
[Crossref]

Steel, M. J.

I. Jizan, L. G. Helt, C. Xiong, M. J. Collins, D.-Y. Choi, C. Joon Chae, M. Liscidini, M. J. Steel, B. J. Eggleton, and A. S. Clark, “Bi-photon spectral correlation measurements from a silicon nanowire in the quantum and classical regimes,” Sci. Rep. 5, 12557 (2015).
[Crossref] [PubMed]

U’Ren, A. B.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14870 (2007).
[Crossref] [PubMed]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A. 64, 063815 (2001).
[Crossref]

Vuckovic, J.

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photon. 3, 687 (2009).
[Crossref]

Wadsworth, W. J.

Walmsley, I. A.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14870 (2007).
[Crossref] [PubMed]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A. 64, 063815 (2001).
[Crossref]

Walmsley, Ian A.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and Ian A. Walmsley, “Tailored Photon-Pair Generation in Optical Fibers,” Physical Review Letters 102, 123603 (2009).
[Crossref] [PubMed]

Wasylczyk, P.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

Windeler, R.

J. Sharping, J. Chen, X. Li, P. Kumar, and R. Windeler, “Quantum-correlated twin photons from microstructure fiber,” Optics Express 12, 3086 (2004).
[Crossref] [PubMed]

Xiong, C.

Zang, L. Y.

C. Soller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. St. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A. 81, 031801 (2010).
[Crossref]

Zhao, N.

L. Cui, X. Li, and N. Zhao, “Minimizing the frequency correlation of photon pairs in photonic crystal fibers,” New Journal of Physics 14, 123001 (2012).
[Crossref]

L. Cui, X. Li, and N. Zhao, “Spectral properties of photon pairs generated by spontaneous four-wave mixing in inhomogeneous photonic crystal fibers,” Phys. Rev. A. 85, 023825 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser & Photonics Reviews (1)

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser & Photonics Reviews 5, L76 (2014).
[Crossref]

Nat. Photon. (1)

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photon. 3, 687 (2009).
[Crossref]

Nature (1)

J. C. Knight, “Photonic Crystal Fibre,” Nature 424(6950), 847 (2002).
[Crossref]

New Journal of Physics (1)

L. Cui, X. Li, and N. Zhao, “Minimizing the frequency correlation of photon pairs in photonic crystal fibers,” New Journal of Physics 14, 123001 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Optica (1)

Optics Express (1)

J. Sharping, J. Chen, X. Li, P. Kumar, and R. Windeler, “Quantum-correlated twin photons from microstructure fiber,” Optics Express 12, 3086 (2004).
[Crossref] [PubMed]

Phys. Rev. A. (3)

C. Soller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. St. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A. 81, 031801 (2010).
[Crossref]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A. 64, 063815 (2001).
[Crossref]

L. Cui, X. Li, and N. Zhao, “Spectral properties of photon pairs generated by spontaneous four-wave mixing in inhomogeneous photonic crystal fibers,” Phys. Rev. A. 85, 023825 (2012).
[Crossref]

Phys. Rev. Lett. (2)

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref] [PubMed]

M. Liscidini and J. E. Sipe, “Stimulated Emission Tomography,” Phys. Rev. Lett. 111, 193602 (2013).
[Crossref] [PubMed]

Physical Review Letters (1)

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and Ian A. Walmsley, “Tailored Photon-Pair Generation in Optical Fibers,” Physical Review Letters 102, 123603 (2009).
[Crossref] [PubMed]

Sci. Rep. (1)

I. Jizan, L. G. Helt, C. Xiong, M. J. Collins, D.-Y. Choi, C. Joon Chae, M. Liscidini, M. J. Steel, B. J. Eggleton, and A. S. Clark, “Bi-photon spectral correlation measurements from a silicon nanowire in the quantum and classical regimes,” Sci. Rep. 5, 12557 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Pump envelope function of an 800 fs transform limited pulse with a Gaussian spectrum centered at 1064 nm. (b) Real part of the phasematching function of a PCF of length L = 0.25 m with Λ = 1.49μm, d/Λ = 0.41 designed to produce FWM at 805 nm and 1545 nm. (c) The resulting joint spectral intensity.
Fig. 2
Fig. 2 Schematic of a non-uniform PCF composed of m homogeneous sections. Each of the m sections is described by three parameters: d, Λ and L.
Fig. 3
Fig. 3 (a – c) Phasematching functions of three different sections of homogeneous PCF each 0.083m in length and with nominal values of Λ = 1.49μm, d/Λ = 0.41. (d) PMF of inhomogeneous fibre formed by coherent addition of phasematching functions (a)–(c) calculated using Eq. 7. (e) Resulting joint spectral intensity for inhomogeneous PCF.
Fig. 4
Fig. 4 (a) Scanning electron micrograph of cleaved PCF end face with a pitch of Λ = 1.49μm. (b) Schematic of stimulated emission tomography measurement; see text for details. (c) Schematic of the measurement tree. The complete PCF consists of a single 3 m length (level 3). This was divided into three 1 m lengths (level 2), each subsequently split into a further three 30 cm lengths (level 1). Finally, each of the level 1 sections was cut into two 15 cm lengths (base segments). Note that small lengths were lost when cleaving fibre ends.
Fig. 5
Fig. 5 A selection of JSIs measured for different fibre lengths. (a) Level 1 segment with L = 3 m. (b) Level 2 segment with L = 1 m. (c) Level 3 segment taken from (b) with L = 30 cm. (d) Base segment taken from (c) with L = 15 cm.
Fig. 6
Fig. 6 A comparison of measured JSIs (a)–(c) with the corresponding reconstructed JSIs (d)–(f). (a, d) Level 3 segment with L = 30 cm. (b, e) Level 2 segment with L = 1m. (c, f) Level 1 segment L = 3m.
Fig. 7
Fig. 7 Fractional variation of the reconstructed pitch about the mean as a function of position along the fibre. Hole sizes for each 1 m segment are indicated.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

2 ω p = ω s + ω i ,
Δ β = 2 β p ( ω p ) β s ( ω s ) β i ( ω i ) 2 γ P .
F ( ω s , ω i ) = | f ( ω s , ω i ) | 2 = | α ( ω s + ω i ) ϕ ( ω s , ω i ) | 2 .
α ( ω s + ω i ) = exp ( ( ω s + ω i 2 ω p 0 ) 2 4 σ p 2 ) ,
ϕ ( ω s , ω i ) = χ ( 3 ) 0 L e i Δ β z d z .
= 2 χ ( 3 ) L sinc ( Δ β L 2 ) exp ( i Δ β L 2 ) .
ϕ ( ω s , ω i ) = L 1 sinc ( Δ β 1 L 1 2 ) exp ( i Δ β 1 L 1 2 ) + n = 2 m L n sinc ( Δ β n L n 2 ) exp ( i Δ β n L n 2 ) exp ( i l = 1 n 1 Δ β l L l ) ,

Metrics